§3.3平面直角坐标系导学案
平面直角坐标系(第3课时)导学案

2.2 平面直角坐标系( 3)学习目标:1、关于给定图形,会选择适合的平面直角坐标系,写出它的顶点坐标 , 领会能够用坐标刻画一个简单图形;2、会经过成立适合的平面直角坐标系,确立实质问题中物体的地点,形成数形联合意识;3、在运用数学表述和解决问题的过程中,认识数学拥有抽象、谨慎和应用宽泛的特色,领会数学价值,形成谨慎务实的科学态度。
课前准备: A4 纸一张,等边三角形纸板温故而知新1、请在右图所示平面直角坐标系中描出以下各点:A(3,0),B(-2,0),C(0,3),D(0,-4),E(3,2),F(3,-3),G(-2,2)H(4,4),M(-5,-5)2、你能将以上点进行适合的分类吗?说说你的想法。
3、如图,边长为 3 的正方形 ABCD, 请成立适合的平面直角坐标系,并写出各极点的坐标。
B A解:以为原点,分别以、所在直线为 x 轴,y 轴,C D 成立直角坐标系,此时各极点的坐标分别是(提示:平面直角坐标系离不开原点、X 轴、 Y 轴,所以在题目中要说明)讲堂研究:活动 1:聚焦目标一★小试牛刀我能行:1、你还能够如何成立平面直角坐标系?看看哪个小组的方法多?A A AB B BC D C D C D2、对照不一样的成立平面直角坐标系的方法,你更喜爱哪一种 ?说说你的见解 .★八仙过海我会做4.如图,长方形形ABCD 中,AB 是 4,BC 是 6,成立适合的平面直角坐标系,并直接写出各个极点的坐标。
ABC D★贯通融会我会讲5.(1) 关于边长为 4 的正△ ABC ,成立适合的平面直角坐标系,写出各个极点的坐标 .(提示:平面直角坐标系中点的坐标确实定方法)(2)如图 Rt △ABC 中, AC=BC=2 ,成立适合的平面直角坐标系,并直接写出 A、B、 C 三个点的坐标。
活动 2:聚焦目标二、三★火眼金睛我会用A CB6、我班甲、乙两女同学都参加了学校组织的啦啦操活动,甲同学站在大院里当时跳啦啦操的地点,对你说,假如将我的地点看作原点,那乙同学的地点就是(-3 ,-2),你能找见乙同学当时跳舞的地点吗?甲●7、在一次“寻宝”游戏中,寻宝人已经找到了坐标为(-2,1)和(2,1)的两个标记物 A,B ,而且知道藏宝地址的坐标( 1,-1),除别的不知道其余信息。
平面直角坐标系导学案

平面直角坐标系导学案一、知识点导学:1.数轴:规定了和的直线叫数轴。
数轴上的一个点可以用一个数表示,这个数叫该点在数轴上的坐标。
如图所示,A点在数轴上的坐标是-2,B点在数轴上的坐标是0,C点在数轴上的坐标是1, D点在数轴上的坐标是3。
同一数轴上两点间的距离,等于这两点在数轴上的坐标的差的绝对值。
如:AC=21--=3或AC=1(2)--=3,CD=13-=2或CD=31-=2。
2.平面直角坐标系:平面内有原点且互相的两条构成平面直角坐标系平面直角坐标系也叫坐标系。
水平的数轴叫做轴或轴或 ,取向右为正方向。
铅直的数轴叫做轴或轴或,取竖直向上为正方向。
两条数轴的交点叫 ,一般用字母表示,建立坐标系的平面叫。
x轴和y轴将坐标平面分成四部分,每一部分叫一个象限,如图,按___________方向编号为第一、二、三、四象限。
坐标原点,x轴,y轴不属于任何象限,在平面直角坐标系中,由组成的,顺序是横坐标在前纵坐标在后,中间用“,”分开,如:点(-2,3)的横坐标是-2纵坐标是3,位置不能颠倒,(-2,3)与(3,-2)是指两个不同点的坐标。
x轴将坐标平面分为两部分,x轴上方,点的坐标为正数,x轴下方,点的纵坐标为数。
第______象限及y轴正半轴上,点的纵坐标为_____数,第象限及y轴负半轴上,点的纵坐标为_____数。
若点P(a,b)在x轴上方,则b____0,若P(a,b)在x轴下方,则b____0,y轴将坐标平面分为两部分,y轴侧,点的横坐标为负数,y轴右侧,点的横坐标为数,第______象限和x轴负半轴上,点的标为负数,第______象限和x轴正半轴上,点的_____坐标为正数,若点P(a,b)在y轴左侧,则a____0,若P(a,b)在y轴右侧,则a____0,规定坐标原点的坐标是。
各个象限内,点的坐标的符号规律如表一。
坐标轴上,点的坐标的符号规律如表二。
3.⑴由点的坐标的符号可以确定点的位置,如:横坐标为0的点在轴上,横坐标为0纵坐标小于0的点在y轴上。
平面直角坐标系教案15篇

平面直角坐标系教案平面直角坐标系教案15篇在教学工作者开展教学活动前,很有必要精心设计一份教案,教案是教学活动的依据,有着重要的地位。
我们应该怎么写教案呢?以下是小编帮大家整理的平面直角坐标系教案,欢迎阅读,希望大家能够喜欢。
平面直角坐标系教案1一教材分析1、教材的地位与作用本节课的教学内容是义务教育课程标准实验教科书,七年级下册第6.1.2节平面直角坐标系又称笛卡儿坐标。
平面直角坐标系是图形与数量之间的桥梁,有了它我们便可以把几何问题转化为代数问题,也可以把代数问题转化为几何问题。
本章内容从数的角度刻画了第五章有关平移的内容,对学生以后的学习起到铺垫作用,6.1.2节平面坐标系主要是介绍如何建立平面坐标系,如何确定点的坐标和由点的坐标寻找点的位置,以及平面坐标系中特殊部位点的坐标特征,根据学生的接受能力,我把本内容分为2课时,这是第一课时,主要介绍如何建立坐标系和在给定的坐标系中确定点的坐标。
2、教学目标根据新课标要求,数学的教学不仅要传授知识,更要注重学生在学习中所表现出来的情感态度,帮助学生认识自我、建立信心。
知识能力:①认识平面直角坐标系,了解点与坐标的对应系;②在给定的直角坐标系中,能由点的位置写出点坐标。
数学思考:①通过寻找确定位置,发展初步的空间观念;②通过学习用坐标的位置,渗透数形结合思想解决问题:通过运用确定点坐标,发展学生的应用意识。
情感态度:①通过建立平面直角坐标系和确定坐标系中点的坐标,培养学生合作交流与探索精神;②通过介绍数学家的故事,渗透理想和情感的教育。
3、重难点根据本章知识内容以及学生对坐标横纵坐标书写易出错误,确定本节重难点为:重点:认识平面坐标系难点:根据点的位置写出点的坐标一、教法分析针对学初一学生的年龄特点和心理特征,以及他们现有知识水平,通过科学家发现点的坐标形成的经过启迪学生思维,通过小组合作与交流及尝试练习,促进学生共同进步,并用肯定和激励的言语鼓舞、激励学生。
《平面直角坐标系》教案及导学案

【学习目标】
1、认识平面直角坐标系,在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标;
2、能根据实际条件建立适当的平面直角坐标系。
【学习重点】正确建立平面直角坐标系,根据坐标描出点的位置,由点的位置确定点的坐标的。
【学法指导】从熟悉的数轴为起点,了解数轴上点的坐标的定义,从而建立点与坐标的对应关系。
类比着利用数轴确定直线上点的位置的方法,探究出由两条相互垂直、原点重合的数轴建立了平面直角坐标系。
坐标平面内点与坐标的对应关系,相似于数轴上点与坐标的对应关系。
这样对点与坐标的对应关系顺利地实现由一维到二维的过渡。
点的坐标是用有序数对(列数在前,排数在后)表示的,利用有序数对就可以确定点的位置。
【学习过程】。
人教版数学《平面直角坐标系》导学案

人教版数学《平面直角坐标系》导学案人教版数学《平面直角坐标系》导学案人教版数学《平面直角坐标系》导学案1.会判断点的坐标在哪个象限。
2.能根据坐标在平面直角坐标系中描出点的坐标。
一、板书课题同学们,我们继续来学习6.1.2平面直角坐标系(板书)。
二、出示目标(一)过渡语:学习目标是什么?请看投影:(二)屏幕显示学习目标1.会判断点的坐标在哪个象限。
2.能根据坐标在平面直角坐标系中描出点的坐标。
三、自学指导(一)过渡语:怎样才能当堂达到学习目标呢?请大家按照指定认真自学。
(二)出示自学指导自学指导认真看课本(P42思考下面至P43练习前)○1思考四个象限中横坐标﹑纵坐标各有什么特点;○2仿照例中找点A的方法,描出点B﹑C﹑D﹑E的坐标;③解答P43探究中的问题。
如有疑问,可以小声问同学或举手问老师。
6分钟后,比谁会根据坐标描出点的位置四、先学(一)学生看书,教师巡视,督促每一位学生认真紧张地自学。
(二)检测1、过渡语:看完的同学请举手?会用平面直角坐标系的同学请举手?好,下面就比一比,看谁能仿照例题做出检测题。
2、检测题:P43 2.3、学生练习,教师巡视。
(收集错误进行二次备课)五、后教(一):自由更正请同学们认真看堂上板演的内容,如果有错误或不同解法的请上来更正或补充。
(二)讨论、归纳评:1、描点这些点描的对吗?我们先来看这个点L(-5,-3)第一步干什么?引导学生说出:在x轴上找出表示-5的'点,也就是:在x轴上找出表示横坐标的点(师板书)。
第二步干什么?引导学生说出:在y轴上找出表示纵坐标的点(师板书)第三步干什么?引导学生说出:过两个点分别坐x轴、y轴的垂线。
第四步干什么?描点,写坐标。
2、象限点R在第几象限?这个象限的点有什么特点?引导学生说出:横坐标大于0,纵坐标大于0.师板书:第一象限(+,+)同理评出第二、三、四象限、及这些象限点的特点。
第二现象(-,+);第三象限(-,-);第四象限(+,-)(师板书)点M(4,0)在第几象限?为什么?引导学生说出:坐标轴上的点不属于任何象限。
平面直角坐标系教案全

第三章平面直角坐标系集体备课:(共7课时)教材内容本章内容包括平面直角坐标系及有关概念,点的坐标,用坐标表示地理位置和平移等。
实际生活中常用有序实数对表示位置,由此引出平面直角坐标系,建立点与有序实数对的对应关系,从而把数和形结合起来。
用坐标法表示地理位置体现了直角坐标系在实际生活中的应用。
用坐标表示地理位置,可以通过建立直角坐标系,绘制出一个区域内地点分布的平面示意图来完成。
用坐标表示平移,从数的角度刻画了第五章有关平移的内容,主要研究了两方面的问题,一方面探讨点或图形的平移引起的点或图形顶点坐标的变化规律,另一方面探讨点或图形顶点坐标的有规律变化引起的点或图形的平移。
此外,用极坐标表示一个地点的地理位置,在本章最后的“数学活动”中有所渗透。
教案目标〔知识与技能〕1、能利用有序数对来表示点的位置;2会画出平面直角坐标系,能建立适当的直角坐标系描述物体的位置;3、在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
〔过程与方法〕1、经历画坐标系、描点,由点找坐标的过程和图形的坐标变化与图形平移之间关系的探索过程,发展学生的形象思维能力与数形结合意识;2、通过平面直角坐标确定地理位置,提高学生解决问题的能力。
〔情感、态度与价值观〕明确数学理论来源于实践,反过来又能指导实践,数与形是可以相互转化的,进一步发展学生的辩证唯物主义思想。
重点难点在平面直角坐标糸中,由已知点的坐标确定这一点的位置,由已知点的位置确定这一点的坐标和平面直角坐标系的应用是重点;建立坐标平面内点与有序实数对之间的一一对应关系和由坐标变化探求图形之间的变化是难点。
课时分配6.1平面直角坐标系……………………………………… 3课时6.2 坐标方法的简单应用…………………………………2课时本章小结……………………………………………………2课时3.1平面直角坐标系(1)〔教案目标〕理解有序数对的意义,能利用有序数对表示物体的位置。
平面直角坐标系导学案14页word文档

第六章 平面直角坐标系课题:6.1.1 有序数对【学习目标】理解有序数对的意义,了解平面上确定点的常用方法. 【学习重点】理解有序数对及平面内确定点的方法. 【学习难点】利用有序数对表示平面内的点. 【学习过程】 一、自主学习1. 数轴:画一条数轴,并在数轴上表示0,2,-5,0.25;2、数轴上的点与实数 对应,即数轴上的每一个点可以用 来表示,每一个实数也可以用 来表示。
3、 方位角:(1)如右图,点A 在点O 的 ;,则点B 在点 O 的 ;点C 在点 O 的 ;(2)在图上作出点O 的南偏东20º的OM 边。
小结:直线上一点(数轴上一点)可以用_____________________来确定他的位置 二、自主研究(一)平面内点的确定 1、行列定位法(坐标定位法)(1).去电影院看电影需买票,如果你买的票是6排3号,在电影院如何准确地找到这个位置呢?一般来说,先找 再找 。
如果另有一人的票是3排6号,两人是同一个座位吗?为什么?(1)图5-2是广州市地图简的一部分,你如何介绍“广州起义烈士陵园”所在区域?(2)如果“广州火车站”在B3区,则“广州起义烈士陵园”所在区域为,(3)“省政府”所在区域为。
(2有序数对:其中各个数表示的含义,我们把这种有的个数a与b组成的数对,叫做有序数对,记作。
利用有序数对,可以很准确地表示出平面内一个点的位置。
三、典例讲解例1、1.如图1所示,一方队正沿箭头所指的方向前进, A的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5)B.(5,4)C.(4,2)D.(4,3)2.如图1所示,B左侧第二个人的位置是 ( )A.(2,5)B.(5,2)C.(2,2)D.(5,5)3.如图1所示,如果队伍向北前进,那么A(3,4)西侧第二个人的位置是 ( )A.(4,1)B.(1,4)C.(1,3)D.(3,1)4.如图1所示,(4,3)表示的位置是 ( )A.AB.BC.CD.D5.小张看电影,买了一张8排10号的电影票,用有序实数对可表示为,如果变换有序数对的位置,所表示的位置和原来的位置(填“相同”或“不同”).6.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?7. 如图,甲处表示2街与5巷的十字路口,乙处表示5街与2巷的十字路口,如果用(2,5)表示甲处的位置,那么“(2,5)(3,5)(4,5)(5,5)(5,4)(5,3)(5,2)”表示从甲处到乙处的一条路线,请你画出这条从甲处到乙处的路线.8 我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作___________;数对(-2,-6)表示_________________________________.例2、如图(7题的图),从甲到已不走回头线有几种走法?四、知识运用1.如图1所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母的下面寻找.2.如图2所示,如果点A的位置为(3,2),那么点B的位置为______, 点C 的位置为______,点D和点E的位置分别为DCBA三行六行六列五列四列三列二列一列______,_______.3.如图3所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点C 的位置为_______.4.如图所示,请说出图中物体的位置.5.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法? 请分别写出这些路线. 6 .如图是某城市市区的一部分示意图,对市政府来说: (1) 北偏东60的方向有哪些单位?要想确定单位的位置。
八年级数学《平面直角坐标系》导学案

第六讲平面直角坐标系【知识要点】1、坐标平面内的点和有序实数对一一对应已知点P(x,y),它的横坐标x和纵坐标y的顺序是不能任意交换的,A(3,2)和B(2,3)表示两个不同的点.对于坐标平面内的任意一点P,存在唯一的一对有序实数(x,y)和它对应;反过来,对于任意一对有序实数(x,y),在坐标平面内有唯一的P点和它对应.这里,(x,y)称为点P的坐标,x是横坐标,y是纵坐标,x写在前,y写在后.2、各象限内坐标的符号点P(x,y)在第一象限内,则x>0,y>0,反之亦然.点P(x,y)在第二象限内,则x<0,y>0,反之亦然.点P(x,y)在第三象限内,则x<0,y<0,反之亦然.点P(x,y)在第四象限内,则x >0,y<0,反之亦然.3、特殊点的坐标x轴上点的纵坐标为零,即(x,0),如果某点的坐标为(x,0),则它在x轴上.y轴上点的横坐标为零,即(0,y),如果某点的坐标为(0,y),则它在y轴上.第一、三象限角平分线上点的横坐标和纵坐标相等,即(x,x),如果点的坐标为(x,x),则它必定在一、三象限角平分线上.第二、四象限角平分线上点的横坐标和纵坐标互为相反数,即(x,-x),如果点的坐标为(x,-x),则它在二、四象限角平分线上.原点的坐标是(0,0),反之,坐标是(0,0)的点是原点.4、对称点关于x轴对称的两个点的横坐标相等,纵坐标互为相反数.关于y轴对称的两点的横坐标互为相反数,纵坐标相等.关于原点对称的两点的横坐标纵坐标都互为相反数.如果一个点的坐标为(a ,b ),那么这个点关于x 轴、y 轴、原点的对称点分别是(a ,-b ),(-a ,b ),(-a ,-b ).它的逆命题亦成立.5、点P (x ,y )到两坐标轴的距离点P(x ,y )到x 轴和y 轴的距离分别是|y |和|x |. 点P(x ,y )【典型例题】专题一 、象限与字母的范围例1、点)2,1(2+-b a A 在坐标轴上,则 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
子洲三中 “双主”高效课堂 导学案
2014-2015学年第一学期 姓名: 组名: 使用时间2014年 月 日
年 级
科 目
课 题
主 备 人
备 课 方 式 负责人(签字) 审核领导(签字) 序号 八(3) 数学 §3.3轴对称与坐标变化 乔智
一、教学目标:
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的轴对称变换之间的关系.
2、经历图形坐标变化与图形轴对称之间关系的探索过程,发展形象思维能力和数形结合意识。
二、教学过程
有了坐标系,图像上的点就对应着坐标了,反过来坐标就可以反应点了。
相应地,点的运动变化自然导致坐标的变化,坐标的变化也可以从数量的角度反应图形的变化。
不妨先研究我们熟悉的轴对称。
活动1:探索两个关于坐标轴对称的图形的坐标关系
1.在如图所示的平面直角坐标系中,第一、二象限内各有一面小旗。
两面小旗之间有怎样的位置关系?对应点A 与A 1的坐标又有什么特点?其它对应的点也有这个特点吗?
2.在右边的坐标系内,任取一点,做出这个点关于y 轴对称的点,看看两个点的坐标有什么样的位置关系,说说其中的道理。
变式。
发展
3.如果关于x 轴对称呢?
在这个坐标系里作出小旗ABCD 关于x 轴的对称图形,它的各个顶点的坐标与原来的点的坐标有什么关系?
归纳。
概括
4.关于x 轴对称的两点,它们的横坐标 ,纵坐标 ;
关于y 轴对称的两点,它们的横坐标 ,纵坐标 。
运用。
巩固
5.已知点P(2a-3,3),点A (-1,3b+2),
(1)如果点P 与点A 关于x 轴对称,那么a+b= ; (2)如果点P 与点A 关于y 轴对称,那么a+b= 。
活动2:探索坐标变化引起的图形变化
反过来,坐标具有上述关系的点,一定关于坐标轴对称吗?我们先做几个具体的,找找经验。
1(1)在平面直角坐标系中依次连接下列各点:(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2),(0,0),你得到了一个怎样的图案?
(2)将所得图案的各个顶点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,你会得到怎样的图案?这个图案与原图案又有怎样的位置关系呢?
变式。
拓展
2.如果1(1)中所得图案的各个顶点的横坐标保持不变,纵坐标分别变为原来的-1倍,顺次连接所得的点,你会得到怎样的图案?这个图案与原图案有怎样的位置关系呢? *3。
如果纵坐标、横坐标都分别变为原来的-1倍,得到的图形与原来的图形又有怎样的关系呢?说说你的判断和理由。
归纳。
概括
4.横坐标相同、纵坐标相反的两点, ; 横坐标相反、纵坐标相同的两点, 。
运用。
巩固
5.五个点的坐标如下:A(-1,2),B(1,2),C(2,-1),D(-1,-2),E(2,1),其中关于x 轴对称的点有 ,关于y 轴对称的有 。
活动3:反思小结 1.你有哪些收获?
2.要画一个和已知图形的成轴对称的图形,你有哪些方法,与同伴交流.
活动4:自主反馈
1. 已知A 、B 两点的坐标分别是(-2,3)和(2,3),则下面四个结论:
①A 、B 关于x 轴对称;②A 、B 关于y 轴对称;③A 、B 关于原点对称;④A 、B 之间的距离为4,其中正确的有( )
A .1个
B .2个
C .3个
D .4个
*2.一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0)则光线从A点到B点经过的路线长是( )。
A.4 B.5 C.6 D.7
批改日期 月 日。