252用列举法求概率习题精选答案

合集下载

人教版 九年级数学 25.2 用列举法求概率 培优训练(含答案)

人教版 九年级数学 25.2 用列举法求概率 培优训练(含答案)

人教版 九年级数学 25.2 用列举法求概率 培优训练一、选择题(本大题共8道小题) 1. 2019·大连 不透明袋子中装有红、绿小球各一个,这些小球除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为( ) A.23B.12C.13D.142. 小李与小陈做猜拳游戏,规定每人每次至少出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么小李获胜的概率为( )A.1325B.1225C.425D.123. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.234. 如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在阴影区域内的概率为( )A.14B.12C.π8D.π45. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.346. 从长度分别为2,3,4,5的4条线段中任取三条,能构成直角三角形的概率为( ) A.34B.12C.13D.147. 从如图所示图形中任取一个,是中心对称图形的概率是()A.14B.12C.34D .18. 从1,2,3,4四个数中随机选取两个不同的数,分别记为a ,c ,则关于x 的一元二次方程ax2+4x +c =0有实数解的概率为( ) A.14B.13C.12D.23二、填空题(本大题共8道小题)9. 学校组织团员参加实践活动,共安排2辆车,小王和小李随机上了1辆车,结果他们同车的概率是________.10. 2018·滨州若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是________.11.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场.由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为________.12. (2019·浙江台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________.13. 一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子一次,向上一面的点数是4的概率是________.14. 如图,在3×3的方格中,点A,B,C,D,E,F均位于格点上,从C,D,E,F四点中任取一点,与点A,B一起作为顶点构造三角形,则所构造的三角形为等腰三角形的概率是________.15. 如图所示,一只蚂蚁从点A出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能地随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么蚂蚁从点A 出发到达E处的概率是________.16. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的展开图的一部分,现从其余的小正方形中任取1个涂上阴影,能构成这个正方体的展开图的概率是________.三、解答题(本大题共4道小题)17. 在甲、乙两个不透明的口袋中装有大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,2,3,4,乙袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中任意摸出一个小球,记下数字为n.(1)请用列表或画树状图的方法表示出所有(m,n)的可能的结果;(2)若m,n都是方程x2-5x+6=0的解,则小明获胜;若m,n都不是方程x2-5x+6=0的解,则小利获胜,他们两人谁获胜的概率大?18. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.19. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.20. 小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A,B,C,D,E五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A,B两个出入口放入;②若小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元.(1)请用画树状图的方法列举出该游戏的所有可能情况; (2)小美玩一次游戏,得到小兔玩具的机会有多大? (3)假设有125人玩此游戏,估计游戏设计者可赚多少元.人教版 九年级数学 25.2 用列举法求概率 培优训练-答案一、选择题(本大题共8道小题)1. 【答案】D2. 【答案】A[解析] 画树状图如下:共有25种等可能的结果,两人出拳的手指数之和为偶数的结果有13种,所以小李获胜的概率为1325.故选A.3. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.4. 【答案】C[解析] 设正方形ABCD 的边长为2a ,针尖落在阴影区域内的概率=12×π×a24a2=π8. 故选C.5. 【答案】A6. 【答案】D[解析] 一共有四种可能,分别是2,3,4;2,3,5;2,4,5;3,4,5.其中只有长度分别是3,4,5的三条线段能构成直角三角形,所以能构成直角三角形的概率为14.7. 【答案】C[解析] 因为共有4种等可能的结果,任取一个,是中心对称图形的有3种结果,所以任取一个,是中心对称图形的概率是34.故选C.8. 【答案】C[解析] 列表如下:共有12种等可能的结果,其中关于x 的一元二次方程ax2+4x +c =0有实数解的结果有6种,分别为(1,2),(1,3),(1,4),(2,1),(3,1),(4,1),则P =612=12.故选C.二、填空题(本大题共8道小题)9. 【答案】1210. 【答案】13 [解析] 若从-1,1,2这三个数中任取两个分别作为点M 的横、纵坐标,一共有(-1,1),(-1,2),(1,-1),(1,2),(2,-1),(2,1)6种等可能结果,其中在第二象限的结果一共有2种,所以点M 在第二象限的概率是13.11.【答案】13【解析】根据题意画树状图如解图,每个运动员抽签的可能性相等,∵每个运动员的出场顺序都发生变化的有下列两种情况:乙、丙、甲;丙、甲、乙,∴每个运动员的出场顺序都发生变化的概率=26=13.12. 【答案】【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种, ∴两次摸出的小球颜色不同的概率为;故答案为:.13. 【答案】16 [解析] 抛掷骰子一次,向上一面的点数可能是1,2,3,4,5,6,一共有6种等可能的结果,其中向上一面的点数是4的结果有1种,所以P(向上一面的点数是4)=16.14. 【答案】34 [解析] 从C ,D ,E ,F 四个点中任意取一点,一共有4种可能,当选取点D ,C ,F 时,所构造的三角形是等腰三角形,故P(所构造的三角形是等腰三角形)=34.15. 【答案】12 [解析] 画树状图如图所示:由树状图知,共有4种等可能的结果,蚂蚁从点A 出发到达E 处的结果有2种, 所以蚂蚁从点A 出发到达E 处的概率是24=12.16. 【答案】47 [解析] 余下的小正方形共有7个,其中上面的4个涂上阴影都能构成正方体的展开图,所以任取1个小正方形涂上阴影,能构成正方体的展开图的概率为47.三、解答题(本大题共4道小题)17. 【答案】解:(1)画树状图如图所示:(2)因为解方程x2-5x +6=0,得x =2或x =3.由树状图得共有12种等可能的结果,其中m ,n 都是方程x2-5x +6=0的解的结果有4种,m ,n 都不是方程x2-5x +6=0的解的结果有2种, 所以小明获胜的概率为412=13,小利获胜的概率为212=16, 所以小明获胜的概率大.18. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.19. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B 手中的结果只有1种, ∴两次传球后,球恰好在B 手中的概率为14. (2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A 手中的结果有2种, ∴三次传球后,球恰好在A 手中的概率为28=14.20. 【答案】解:(1)画树状图如下:(2)由树状图知,共有10种等可能的结果,其中兔子从开始进入的出入口离开的结果有2种,所以小美玩一次游戏,得到小兔玩具的概率为210=15. (3)125×(3×45-4×15)=200(元). 答:估计游戏设计者可赚200元.。

人教版九年级数学上册25.2用列举法求概率习题精选(答案)(含知识点)

人教版九年级数学上册25.2用列举法求概率习题精选(答案)(含知识点)

练习题 试25.2用列举法求概率附参考答案◆随堂检测1.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)2.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”).3.有形状、大小和质地都相同的四张卡片,正面分别写有A 、B 、C 、D 和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.416:±=A 42:2=-B 33323:x x x C =- )0(:235≠=÷b b b b D(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A 、B 、C 、D 表示); (2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?◆典例分析把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.分析:游戏规则公平与否的问题是概率在生活中的一个重要应用.解决这类问题,关键要看双方获胜的概率是否相等,若双方获胜的概率相等,则公平,否则就不公平.所以首先要分别计算牌面数字相同和牌习题面数字不同的概率值,再比较其大小即可. 解:游戏规则不公平.理由如下:列表,由表可知,所有可能出现的结果共有9种,故3193)(==牌面数字相同P , 3296)(==牌面数字不同P . ∵31<32, ∴此游戏规则不公平,小李赢的可能性大.◆课下作业●拓展提高1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .45 B .35 C .25 D .152.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .35 B .310 C .425 D .9253.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.练习题4.小华和小丽设计了A 、B 两种游戏:游戏A 的规则是:用3张数字分别是2、3、4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字,若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则是:用4张数字分别是5、6、8、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜,否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.5.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.●体验中考1.(2009年,台湾)甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少? A.31 B.21C.125D.127 2.(2009年,常德市)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )A .甲B .乙C .丙D .不能确定3.(2009年,云南省)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.参考答案: ◆随堂检测1.不公平. 甲获胜的概率是49,乙获胜的概率是59,两个概率值不相等,故这个游戏不公平.2.<.3.解:(1)树状图或列表略.所有情况有12种:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC. (2)游戏不公平.这个规则对小强有利.理由如下: ∵P (小明)=61122=,P (小强)=651210=,P (小明)<P(小强) ∴这个规则对小强有利. ◆课下作业 ●拓展提高 1.B. 2.D.3.13. 4.答:选游戏B ,小丽获胜的可能性较大.理由如下:按游戏A ,416(936P ==小丽胜),而按游戏B ,721(1236P ==小丽胜). 5.解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16∴63168P ==(甲获胜),105168P ==(乙获胜).∵8583≠,∴这个游戏不公平.●体验中考 1.C. 2.C.3.解:树状图为:或列表为:由上述树状图或表格知:所有可能出现的结果共有16种.∴P (小明赢)=63168=,P (小亮赢)=105168=. ∴此游戏对双方不公平,小亮赢的可能性大.开始红 红 黄 蓝 红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝红 红 黄 蓝以下不需要可以删除人教版初中数学知识点总结必备必记目录七年级数学(上)知识点 (7)第一章有理数 (7)第二章整式的加减 (9)第三章一元一次方程 (10)第四章图形的认识初步 (11)七年级数学(下)知识点 (11)第五章相交线与平行线 (12)第六章平面直角坐标系 (13)第七章三角形 (14)第八章二元一次方程组 (16)第九章不等式与不等式组 (17)第十章数据的收集、整理与描述 (18)八年级数学(上)知识点 (19)第十一章全等三角形 (19)第十二章轴对称 (20)第十三章实数 (21)第十四章一次函数 (21)第十五章整式的乘除与分解因式 (22)八年级数学(下)知识点 (23)第十六章分式 (23)第十七章反比例函数 (24)第十八章勾股定理 (25)第十九章四边形 (26)第二十章数据的分析 (27)九年级数学(上)知识点 (28)第二十一章二次根式 (28)第二十二章一元二次根式 (28)第二十三章旋转 (29)第二十四章圆 (30)第二十五章概率 (32)九年级数学(下)知识点 (34)第二十六章二次函数 (34)第二十七章相似 (35)第二十八章锐角三角函数 (36)第二十九章投影与视图 (37)人教版数学九年级上册教案七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一.知识框架二.知识概念 1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

25.2_用列举法求概率(3新)--

25.2_用列举法求概率(3新)--

8.有两组卡片,第一组三张卡片上都写着A、 B、B,第二组五张卡片上都写着A、B、B、 D、E。试用列表法求出从每组卡片中各抽取 一张,两张都是B的概率。
9.将分别标有数字1,2,3 的三张卡片洗匀后, 背面朝上放在桌上。 (1)随机抽取一张,求抽到奇数的概率;
(2) 随机抽取一张作为十位上的数字(不放 回),再抽取一张作为个位上的数字,能组成 哪些两位数?恰好是32的概率是多少?
百位 十位
1 1 2 3 1
2 2 3 1
3 2 3
个位 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
解: 由树形图可以看出,所有可能的结果有27种,它们出 现的可能性相等. 其中恰有2个数字相同的结果有18个.
18 2 ∴ P(恰有两个数字相同)= 27 = 3
x y 36, 6000 x 2000 y 100000.
x 7, 解得 y 29.
所以希望中学购买了7台A型号电 脑.
数学病院
用下图所示的转盘进行“配紫色” 游戏,游戏者获胜的概率是多少?
刘华的思考过程如下:
随机转动两个转盘,所有可能出现的结果如下: 你认为她的 蓝 (灰,蓝) 绿 (灰,绿) 灰 想法对吗, 黄 (灰,黄) 为什么? 蓝 (白,蓝) 绿 (白,绿) 白用树状图 总共有9种结果,每种结果出现的可能性相同,而能 法求概率 够 配成紫色的结果只有一种: (红,蓝),故游戏 种结果出 者获胜的概率为1∕9 。 能性务必
25.2用列举法求概率(3)
1、一个袋子中装有2个红球和2个绿球,任意摸出一 球,记录颜色放回,再任意摸出一球,记录颜色放回,请 1 。 你估计两次都摸到红球的概率是________

252_1用列举法求概率(1)

252_1用列举法求概率(1)

引例:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上;
“掷两枚硬币”共有几种结果?
正正
正反 反正 反反
为了不重不漏地列出所有这些结果, 你有什么好办法么?
掷两枚硬币,不妨设其中一枚为A,另一枚为B, 用列表法列举所有可能出现的结果:
解:设有A1,A2,B1, B2四把钥匙,其中钥匙A1,A2可以
打开锁甲,B1, B2可以打开锁乙.列出所有可能的结
果如下:
钥匙1 A1
A2
B1
B2
钥匙2 A2 B1B2A1 B1 B2 A1 A2 B2 A1 A2 B1
82
P(能打开甲、乙两锁)= 12 = 3
12
12 3
4、某班要派出一对男女混合双打选手参加学校的乒乓 球比赛,准备在小娟、小敏、小华三名女选手和小明、 小强两名男选手中选男、女选手各一名组成一对参赛, 一共能够组成哪几对?采用随机抽签的办法,恰好选 出小敏和小强参赛的概率是多少?
4、有甲、乙两把不同的锁,各配有2把钥匙。求从这4把 钥匙中任取2把,能打开甲、乙两锁的概率。
用列举法求概率(1)
复习回顾: 一般地,如果在一次试验中,
有n种可能的结果,并且它们发生的可能性都相等,
事件A包含在其中的m种结果,
那么事件A发生的概率为:P( A)
m
n
求概率的步骤:
(1)列举出一次试验中的所有结果(n个);
(2)找出其中事件A发生的结果(m个);
(3)运用公式求事件A的概率:P( A) m n
如图是“扫雷”游戏。 在 9×9 个正方形雷区中, 随机埋藏着10颗地雷, 每个方格最多只能藏一颗地雷。

人教版数学九年级上册:25.2 用列举法求概率 同步练习(附答案)

人教版数学九年级上册:25.2 用列举法求概率  同步练习(附答案)

25.2 用列举法求概率第1课时用列表法求概率1.同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A.14B.13C.12D.342.三张外观相同的卡片分别标有数字1,2,3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.13B.23C.16D.193.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是()A.12B.13C.23D.164.同时掷两枚质地均匀的骰子,两枚骰子点数的和是5的概率是()A.112B.19C.16D.145.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.1166.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是-2,-1,0,1.卡片除数字不同外其他均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A.14B.13C.12D.347.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.238.从1,2,3,4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是.9.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的概率是.10.张华和李明两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀.(1)请用列表法表示出所有可能出现的游戏结果; (2)求张华胜出的概率.剪刀 石头 布11.周末期间小明和小华到影城看电影,影城同时在四个放映室(1室、2室、3室、4室)播放四部不同的电影,他们各自在这四个放映室任选一个,每个放映室被选中的可能性都相同,则小明和小华选择同一间放映室看电影的概率是 .12.某校举行数学青年教师优秀课比赛活动,某天下午在安排2位男选手和2位女选手的出场顺序时,采用随机抽签方式,则第一、二位出场选手都是女选手的概率是 . 13.从长度分别为1,3,5,7的四条线段中任取三条作边,能构成三角形的概率为( )A.12B.13C.14D.1514.若从-1,1,2这三个数中,任取两个分别作为点M 的横、纵坐标,则点M 在第二象限的概率是 .15.在某校运动会4×400 m 接力赛中,甲、乙两名同学都是第一棒,参赛同学随机从四个赛道中抽取赛道,则甲、乙两名同学恰好抽中相邻赛道的概率为 .16.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率是23.(1)求袋子中白球的个数;(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.17.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠,指针指向其他区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其他情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘). (1)若顾客选择方式一,则享受9折优惠的概率为14;(2)若顾客选择方式二,请用列表法列出所有可能,并求顾客享受8折优惠的概率.转盘甲 转盘乙18.如图为甲、乙两个可以自由转动的均匀的转盘,甲转盘被分成3个面积相等的扇形,乙转盘被分成4个面积相等的扇形,每一个扇形都标有相应的数字,同时转动两个转盘,当转盘停止后,设甲转盘中指针所指区域内的数字为m ,乙转盘中指针所指区域内的数字为n(若指针指在边界线上,重转一次,直到指针指向一个区域为止).(1)请你用列表的方法求出|m +n|>1的概率;(2)直接写出点(m ,n)落在函数y =-x +1图象上的概率.第2课时 用树状图法求概率1.在一个不透明的口袋中装有2个白球、2个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,放回后再随机摸出一个球,两次摸到都是白球的概率是()A.112B.16C.14D.122.某校九年级共有1,2,3,4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18B.16C.38D.123.甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘,甲获胜的概率是()A.13B.49C.59D.234.经过某十字路口的汽车,可直行,也可向左转或向右转.如果这三种可能性大小相同,那么两辆汽车经过该十字路口时都直行的概率是.5.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.6.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5.现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.7.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用画树状图的方法表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.8.商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法求出他恰好买到雪碧和奶汁的概率.9.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率为()A.23B.12C.13D.1图1 图210.用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则取一把钥匙恰能打开一把锁的概率是()A.18B.16C.14D.1211.从-1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为.12.有3张背面完全相同的卡片,正面分别印有如图的几何图形.现将这3张卡片正面朝下摆放并洗匀,从中任意抽取一张记下卡片正面的图形;放回后再次洗匀,从中任意抽取一张,两次抽到的卡片正面的图形都是中心对称图形的概率是.13.(遵义中考)学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.14.在四边形ABCD 中,有下列条件:①AB 綊CD ;②AD 綊BC ;③AC =BD ;④AC ⊥BD. (1)从中任选一个作为已知条件,能判定四边形ABCD 是平行四边形的概率是 ; (2)从中任选两个作为已知条件,请用画树状图法表示能判定四边形ABCD 是矩形的概率,并判断能判定四边形ABCD 是矩形和是菱形的概率是否相等?15.小颖参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道题有3个选项,第二道题有4个选项,这两道题小颖都不会,不过小颖还有一个“求助”没有使用(使用“求助”可让主持人去掉其中一题中的一个错误选项).(1)若小颖第一道题不使用“求助”,那么小颖答对第一道题的概率是13;(2)若小颖将“求助”留在第二道题使用,求小颖顺利通关的概率; (3)从概率的角度分析,你会建议小颖在答第几道题时使用“求助”?参考答案:25.2 用列举法求概率 第1课时 用列表法求概率1.A 2.A 3.B 4.B 5.D 6.B 7.C 8. 14.9. 14.10.解:(1)列表如下:(2)由表可知,张华胜出的结果有3种, ∴P (张华胜出)=39=13.11.14.12.16.13.C 14. 13.15. 12.16.解:(1)设袋子中白球有x 个,根据题意,得x x +1=23.解得x =2. 经检验,x =2是所列方程的根,且符合题意. 答:袋子中有白球2个. (2)列表:∴两次都摸到相同颜色的小球的概率为59.17.(1)14;(2)解:列表如下:由表格可知共有其中指针指向每个区域的字母相同的有2种, 所以P (顾客享受8折优惠)=212=16.18.解:(1)列表如下:所以|m +n|>1的概率为512.(2)点(m ,n )落在函数y =-x +1图象上的概率为16.第2课时 用树状图法求概率1.C 2.B 3.C 4. 19.5. 25.6. 59.7.解:(1)画树状图如下:可能出现的结果共6种,分别是(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),它们出现的可能性相等.(2)∵两个数字之和能被3整除的情况共有2种, ∴P (两个数字之和能被3整除)=26=13.8.(1)14;(2)解:画树状图如下:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种,所以他恰好买到雪碧和奶汁的概率为212=16.9.A 10.C 11. 16.12. 49.13.(1)14;(2)解:画树状图如下:由树状图可知,共有16种等可能的结果,其中恰好取到两个白粽子的结果有4种. ∴P (小明恰好取到两个白粽子)=416=14.14.(1)12;(2)解:画树状图如下:由树状图可知,从中任选两个作为已知条件共有12种等可能的结果,能判定四边形ABCD 是矩形的有4种,能判定四边形ABCD 是菱形的有4种. ∴能判定四边形ABCD 是矩形的概率为412=13,能判定四边形ABCD 是菱形的概率为412=13.∴能判定四边形ABCD 是矩形和是菱形的概率相等. 15.(1)13;解:(2)用Z 表示正确选项,C 表示错误选项,画树状图如下:由树状图可知,共有9种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第二道题使用“求助”时,P (小颖顺利通关)=19.(3)若小颖将“求助”留在第一道题使用,画树状图如下:由树状图可知,共有8种等可能的结果,其中小颖顺利通关的结果有1种. ∴在第一道题使用“求助”时,P (小颖顺利通关)=18.11 ∵18>19,∴建议在答第一道题时使用“求助”.。

部编数学九年级上册25.2用列举法求概率(解析版)含答案

部编数学九年级上册25.2用列举法求概率(解析版)含答案

2022-2023学年九年级数学上册章节同步实验班培优题型变式训练(人教版)25.2 用列举法求概率【题型1】列举法求概率1.(2022·全国·九年级课时练习)假定按同一种方式掷两枚均匀硬币,如果第一枚出现正面朝上,第二枚出现反面朝上,就记为(正,反),如此类推,出现(反,反)的概率是( )A .13B .34C .12D .14【点睛】本题考查了列举法求概率,解本题的关键在熟练掌握概率公式.概率=所求情况数与总情况数之比.【变式1-1】2.(2021·四川·平昌县中小学教学研究室九年级期末)如图所示的电路中,当随机闭合开关123,,S S S 中的两个时,能够让灯泡发光的概率为_________.【题型2】列表法或树状图法求概率1.(2022·山西吕梁·九年级期末)第十四届全国运动会会徽吉祥物发布,吉祥物朱朱、熊熊、羚羚、金金的设计方案是以陕西秦岭独有的四种国宝级动物“鹮朱、大熊猫、羚牛、金丝猴”为创意原型.小明和小彬各从四个吉祥物中选择一个制作成绘画作品,参与学校举办的绘画展,则他们选中“朱朱”和“金金”的概率为( )A.12B.16C.18D.112【变式2-1】2.(2022·全国·九年级单元测试)经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,那么两辆汽车经过这个十字路口时,第一辆车向左转,第二辆车向右转的概率是__.共有9种等可能的结果,其中第一辆车向左转,第二辆车向右转的结果有∴第一辆车向左转,第二辆车向右转的概率为19,故答案为:19.【题型3】游戏的公平性1.(2022·全国·九年级单元测试)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平【变式3-1】2.(2022·全国·九年级专题练习)如图,有8张标记数字1-8的卡片.甲、乙两人玩一个游戏,规则是:甲、乙两人轮流从中取走卡片;每次可以取1张,也可以取2张,还可以取3张卡片(取2张或3张卡片时,卡片上标记的数字必须连续);最后一个将卡片取完的人获胜.若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,则________(填“甲”或“乙”)一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案是________.(只填一种方案即可)【答案】甲取走标记5,6,7的卡片(答案不唯一)【分析】由游戏规则分析判断即可作出结论.【详解】解:若甲先取走标记2,3的卡片,乙又取走标记7,8的卡片,接着甲取走两张卡片,为4,5或5,6,则剩余的卡片为1,6或1,4,然后乙只能取走一张卡片,最后甲将一张卡片取完,则甲一定获胜;若甲首次取走标记数字1,2,3的卡片,乙要保证一定获胜,则乙首次取卡片的方案5,6,7,理由如下:乙取走5,6,7,则甲再取走4和8中的一个,最后乙取走剩下的一个,则乙一定获胜,故答案为:甲;5,6,7(答案不唯一).【点睛】本题考查游戏公平性,理解游戏规则是解答的关键.一.选择题1.(2022·全国·九年级单元测试)掷一枚质地均匀的骰子,前3次都是6点朝上,掷第4次时6点朝上的概率是()A.1B.56C.23D.16【点睛】本题考查简单随机事件的概率,理解概率的意义是正确解答的前提,列举出所有等可能出现的结果情况是解决问题的关键.2.(2021·辽宁大连·一模)把标号为1,2,3的三个小球放入一个不透明的口袋中,随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球的标号的和大于3的概率是()A.13B.49C.59D.233.(2021·辽宁阜新·中考真题)小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是()A.12B.23C.16D.56则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是16.故选:C.【点睛】本题考查了简单事件的概率,常用列表法或画树状图来求解.4.(2022·全国·九年级单元测试)甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5D.游戏公平5.(2022·广东广州·中考真题)为了疫情防控,某小区需要从甲、乙、丙、丁4名志愿者中随机抽取2名负责该小区入口处的测温工作,则甲被抽中的概率是()A.12B.14C.34D.512故选:A.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.6.(2022·全国·九年级专题练习)某市有6名教师志愿到四川地震灾区的甲、乙、丙三个镇去支教,每人只能去一个镇,则恰好其中一镇去4名,另两镇各去1名的概率为()A.2081B.1081C.5243D.10243二、填空题7.(2021·天津东丽·九年级期末)一个不透明的口袋中有三个完全相同的小球,小球上分别写有数字4、5、6,随机摸取1个小球然后放回,再随机摸取一个小球(1)用画树状图或列表的方法表示出可能出现的所有结果;(1)求两次抽出数字之和为奇数的概率.8.(2022·全国·九年级单元测试)不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.9.(2018·山西·九年级专题练习)小明和小亮做游戏,先是各自背着对方在纸上写一个自然数,然后同时呈现出来.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;否则,小亮获胜.这个游戏对双方_____.(填“公平”或“不公平”).由图可知:共有四种等可能结果出现,其中小明获胜的有两种,小亮获胜的也有两种,∴P(小明获胜)=2142=,P(小亮获胜)=2142=,∴P(小明获胜)=P(小亮获胜),∴该游戏是“公平”的.故答案为公平.点睛:本题的解题要点有两点:(1)能够画出符合题意的树状图;(10.(2018·湖南娄底·中考真题)从2018年高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业的选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生A已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理的可能性相等,选化学、生物的可能性相等,则选修地理和生物的概率为___________.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.11.(2022·内蒙古兴安盟·模拟预测)疫情期间,进入学校都要进入测温通道,体温正常才可进入学校.某校有3个测温通道,分别记为A,B,C通道.学生可随机选取其中的一个通道测温进校园,某日早晨,小王和小李两位同学在进入校园时,恰好选择不同通道测温进校园的概率是_____________.12.(2022·湖南永州·模拟预测)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同,若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是____.共有6种情况,两张卡片标号恰好相同有2种情况,所以,两张卡片标号恰好相同的概率是P=21 63 =.故答案为1 3【点睛】本题考核知识点:求概率.解题关键点:列表求出所有情况.三、解答题13.(2022·江苏·星港学校八年级期末)2022年冬奥会在北京举办.现有如图所示“2022·北京冬梦之约”的四枚邮票供小明选择,依次记为A,B,C,D,背面完全相同.将这四枚邮票背面朝上,洗匀放好(1)小明从中随机抽取一枚,恰好抽到是B(冰墩墩)概率是 (2)小颖从中随机抽取一枚不放回,再从中随机抽取一枚.请用列表或画树状图的方法,求小颖同学抽到的两枚邮票恰好是B(冰墩墩)和C(雪容融)的概率.14.(2022·全国·九年级单元测试)一个箱子里共3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出一个球是白球的概率是______;(2)从箱子中任意摸出一个球后,放回箱子,搅匀后再摸出一个球,请画树状图或列表求2次摸出的球都是白球的概率.(3)小明向箱中放入n个红球后搅匀,然后从箱子中随机摸出一个球是白球的概率为14,求n的值.根据表格可知:总的可能情况有6种,两次都是白球的情况有即两次都是摸出白球的概率为:2÷6=13;(3)加入红球后球的总个数:1284¸=,则加入红球的个数为:n=8-3=5,即n值为5.15.(2021·吉林·中考真题)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.共有6种等可能出现的结果情况,其中两球都是白球的有1种,所以取出的2个球都是白球的概率为16.答:取出的2个球都是白球的概率为16.【点睛】本题考查简单事件的概率,正确列表或者画树状图是解题关键.16.(2022·江苏·九年级专题练习)某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.总的可能情况数为12种,含星期二(B)的情况有则乙同学选的两天中含星期二的概率为:6÷12=.即所求概率为12【点睛】本题考查了基本的概率公式和用树状图或列表法求解概率的知识.明确题意准确的作出列表是解答本题的关键.17.(2022·辽宁沈阳·中考真题)为了调动同学们学习数学的积极性,班内组织开展了“数学小先生”讲题比赛,老师将四道备讲题的题号1,2,3,4,分别写在完全相同的4张卡片的正面,将卡片背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是“4”的概率是________;(2)小明随机抽取两张卡片,用画树状图或列表的方法求两张卡片上的数字是“2”和“3”的概率.18.(2022·江苏宿迁·中考真题)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).所有所有的等可能的情况数有12种,符合条件的情况数有6种,所以一定有乙的概率为:61=. 122【点睛】本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。

25.2用列举法求概率(含答案).doc

25.2用列举法求概率(含答案).doc

25.2 用列举法求概率一、选择题1.某电视台举行歌手大奖赛,每场比赛都有编号为1~10号共10道综合素质测试题共选手随机抽取作答。

在某场比赛中,前两位选手分别抽走了2号,7号题,第3位选手抽中8号题的概率是( )。

(A)110 (B)19 (C)18 (D)172.某市民政部门:“五一”期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这此彩票中,设置如下奖项:如果花2元钱购买1张彩票,那么所得奖金不少于50元的概率是( ) (A)1200 (B) 3500 (C) 1500 (D) 120003.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图是如图3所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( )(A)16 (B)13 (C)12 (D)234.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“20”, “08”和“北京”的字块,如果婴儿能够拼排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着排列,那么这个婴儿能得到奖励的概率是( ) (A)16 (B)14 (C)13 (D)12 二、填空题5.如图4,是一个圆形转盘,现按1∶2∶3∶4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 .6.要在一只不透明的袋中放入若干个只有颜色不同的乒乓球,搅匀后,使得从袋中任意摸图42 16 4 3 8 图3出一个乒乓球是黄色的概率是25,可以怎样放球 (只写一种)7.有4条线段,分别为3cm ,4cm ,5cm ,6cm ,从中任取3条,能构成直角三角形的概率是______。

三、解答题8.袋中共有5个大小相同的红球、白球,任意摸出一球为红球的概率是25。

(1)袋中红球、白球各有几个?(2)任意摸出两个球均为红球的概率是________________________。

人教版 九年级九年级数学 25.2 用列举法求概率 突破训练(含答案)

人教版 九年级九年级数学 25.2 用列举法求概率 突破训练(含答案)

人教版 九年级九年级数学 用列举法求概率 突破训练一、选择题1. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( ) A.38B.58C.23D.122. 从同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A.16B.13C.12D.233. 有一首《对子歌》中写道“天对地,雨对风,大陆对长空”.现有四张书签,除正面分别写有“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是( ) A.12B.13C.14D.164. 有A ,B 两个不透明的口袋,每个口袋里装有两个相同的球,A 袋中的两个球上分别写有“细”“致”的字样,B 袋中的两个球上分别写有“信”“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是( ) A.13B.14C.23D.345. 2018·聊城 小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( ) A.12B.13C.23D.166. 如图25-2-1,有以下三个条件:①AC =AB ;②AB ∥CD ;③∠1=∠2.从这三个条件中选两个作为题设,另一个作为结论,则组成的命题是真命题的概率是( )A .0B.13C.23D .17. 书架上有3本小说、2本散文,从中随机抽取2本都是小说的概率是( ) A.310B.625C.925D.3258. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中的一项,那么两人同时选择“参加社会调查”的概率为( ) A.14B.13C.12D.349. 如图,在4×4的正方形网格中,阴影部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂上阴影,使阴影部分的图形仍然构成一个轴对称图形的概率是( )A.613 B.513C.413D.31310. 把十位上的数字比个位、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两数,与7组成“中高数”的概率是( ) A.12B.23C.25D.35二、填空题11. 如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字,分别转动这两个转盘,将转盘停止后指针所指区域内的两数相乘.(1) 请将所有可能出现的结果填入下表:(2)积为9的概率为________,积为偶数的概率为________;(3)从1~12这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为________.12. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.13. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.14. 如图所示的圆面图案是用半径相同的圆与圆弧构成的.若向圆面投掷飞镖,则飞镖落在阴影区域的概率为________.15. 如图,A是正方体小木块(质地均匀)的一个顶点,将小木块随机投掷在水平桌面上,则点A与桌面接触的概率是________.16. 分别写有数字13,2,-1,0,π的五张大小和质地均相同的卡片,从中任意抽取一张,抽到无理数的概率是________.17. 淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式决定,那么她们两人都抽到物理实验的概率是________.三、解答题18. 全面两孩政策实施后,甲、乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是________;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.19. 定义一种“各个数位上的数字从左向右逐渐减小”的数叫做“下降数”,如876就是一个“下降数”.在一个不透明的布袋中有三个质地相同的小球,小球上分别标有1,2,3三个数字.随机从中摸出一球,记下数字作为百位数字,然后放回摇匀.重复上面的操作两次,记下数字分别作为十位数字和个位数字,求三次摸球后得到的三位数是“下降数”的概率.20. 如图所示,有一个可以自由转动的转盘,其盘面被分为4等份,在每一等份分别标有对应的数字2,3,4,5.小明打算自由转动转盘10次,现已经转动了8次.每一次停止后,小明将指针所指数字记录如下:(1)求前8次的指针所指数字的平均数.(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由.(指针指向盘面等分线时视为无效转次)21. 四张背面完全相同的纸牌(如图10-ZT-2ⓐ,用①②③④表示),正面分别写有四个不同的条件,小明将这四张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.(1)写出两次摸牌出现的所有可能的结果(用①②③④表示);(2)以两次摸出的牌面上的结果为条件,求能判定图ⓑ中四边形ABCD为平行四边形的概率.22. 2019·孝感一个不透明的袋子中装有四个小球,上面分别标有数字-2,-1,0,1,它们除了数字不一样外,其他完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是________;(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图10-ZT-3,已知四边形ABCD的四个顶点的坐标分别为A(-2,0),B(0,-2),C(1,0),D(0,1),请用画树状图法或列表法,求点M落在四边形ABCD所围成的图形内(含边界)的概率.答案一、选择题1. 【答案】D [解析] 画树状图如下:所以至少有两枚硬币正面向上的概率是48=12.2. 【答案】A3. 【答案】B [解析] 画树状图如下:由树状图知,共有12种等可能的结果,其中抽到的书签正好配成“对子”的有4种结果, 所以抽到的书签正好配成“对子”的概率为13.4. 【答案】B [解析] 从每个口袋里各摸出一个球,有“细信”“细心”“致信”“致心”4种等可能的结果,其中组成“细心”字样的有1种结果,故概率是14.5. 【答案】B [解析] 小亮、小莹、大刚三位同学随机地站成一排,所有情况如下: 小亮、小莹、大刚;小亮、大刚、小莹; 小莹、小亮、大刚;小莹、大刚、小亮;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25.2用列举法求概率(第四课时)
◆随堂检测
1.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5、6、7的三张扑克牌中.随机抽取一张,放回后,再随机抽取一张,若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽取的两张牌面数字的积为偶数,则乙获胜,这个游戏___________.(填“公平”或“不公平”)
2.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数)_______P (奇数)(填“>”“<”或“=”).
3.有形状、大小和质地都相同的四张卡片,正面分别写有A 、B 、C 、D 和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不
放回),接着再随机抽取一张.
416:±=A 42:2=-B 33323:x x x C =- )0(:235≠=÷b b b b D
(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A 、B 、C 、D 表示); (2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?
◆典例分析
把一副扑克牌中的3张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当2张牌的牌面数字相同时,小王赢;当2张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.
分析:游戏规则公平与否的问题是概率在生活中的一个重要应用.解决这类问题,关键要看双方获胜的概率是否相等,若双方获胜的概率相等,则公平,否则就不公平.所以首先要分别计算牌面数字相同和牌
面数字不同的概率值,再比较其大小即可. 解:游戏规则不公平.理由如下:列表,
由表可知,所有可能出现的结果共有9种,故3
193)(==
牌面数字相同P , 3
296)(==
牌面数字不同P . ∵
31<3
2, ∴此游戏规则不公平,小李赢的可能性大.
◆课下作业
●拓展提高
1.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( ) A .
45 B .35 C .25 D .15
2.一个布袋里装有只有颜色不同的5个球,其中3个红球,2个白球.从中任意摸出1个球,记下颜色后放回,搅匀,再任意摸出1个球.摸出的2个球都是红球的概率是( ) A .
35 B .310 C .425 D .925
3.如图,将点数为2,3,4的三张牌按从左到右的方式排列,并且按从左到右的牌面数字记录排列结果为234.现在做一个抽放牌游戏:从上述左、中、右的三张牌中随机抽取一张,然后把它放在其余两张牌的中间,并且重新记录排列结果.例如,若第1次抽取的是左边的一张,点数是2,那么第1次抽放后的排列结果是324;第2次抽取的是中间的一张,点数仍然是2,则第2次抽放后的排列结果仍是324.照此游戏规则,两次抽放后,这三张牌的排列结果仍然是234的概率为_________.
4.小华和小丽设计了A 、B 两种游戏:游戏A 的规则是:用3张数字分别是2、3、4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字,若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.游戏B 的规则是:用4张数字分别是5、6、8、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌,若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜,否则小丽获胜.请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
5.甲、乙两同学用一副扑克牌中牌面数字分别是3、4、5、6的4张牌做抽数游戏,游戏规则是:将这4线牌的正面全部朝下、洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数,若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.
●体验中考
1.(2009年,台湾)甲、乙各丢一次公正骰子比大小.若甲、乙的点数相同时,算两人平手;若甲的点数大于乙时,算甲获胜;若乙的点数大于甲时,算乙获胜.求甲获胜的机率是多少? A.
31
B.21
C.125
D.12
7
2.(2009年,常德市)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是( )
A .甲
B .乙
C .丙
D .不能确定
3.(2009年,云南省)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规
则对双方公平吗?请你利用树状图或列表法说明理由.
参考答案: ◆随堂检测
1.不公平. 甲获胜的概率是49,乙获胜的概率是5
9
,两个概率值不相等,故这个游戏不公平. 2.<.
3.解:(1)树状图或列表略.
所有情况有12种:AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC. (2)游戏不公平.这个规则对小强有利.理由如下: ∵P (小明)=
61122=,P (小强)=6
5
1210=,P (小明)<P(小强) ∴这个规则对小强有利. ◆课下作业 ●拓展提高 1.B. 2.D.
3.1
3
. 4.答:选游戏B ,小丽获胜的可能性较大.理由如下:
按游戏A ,416(936P ==小丽胜)
,而按游戏B ,721
(1236
P ==小丽胜). 5.解:这个游戏不公平,游戏所有可能出现的结果如下表:
表中共有16∴63168P ==(甲获胜),105
168
P ==(乙获胜).∵8583≠,∴这个游戏不公平.
●体验中考 1.C. 2.C.
3.解:树状图为:
或列表为:
由上述树状图或表格知:所有可能出现的结果共有16种. ∴P (小明赢)=
63168=,P (小亮赢)=105
168
=. ∴此游戏对双方不公平,小亮赢的可能性大.
开始
红 红 黄 蓝
红 红 黄 蓝
红 红 黄 蓝
红 红 黄 蓝
红 红 黄 蓝。

相关文档
最新文档