计量经济学复习要点1

合集下载

计量经济学复习要点

计量经济学复习要点

1、什么是计量经济学?计量经济学(Econometrics)意为“经济测量”,它是利用经济理论、数学、统计推断等工具,对经济现象进行分析的一门社会科学。

2、计量经济学分析经济问题的经典步骤Step1 理论或假说的陈述Step2 建立数学模型Step3 建立相应的计量经济学模型Step4 获取数据Step5 计量模型的参数估计Step6 检验模型设定是否正确Step7 假设检验(检验来自模型的假说)Step8 预测或控制◆关于数据1、数据分类(1)时间序列数据(Time Series Data):对一个变量在不同时间取值的一组观测结果。

如每年、每月、每季度等(2)横截面数据(Cross Section Data):对一个变量在同一个时间点上搜集的数据。

如同一年的分国别、分省、分厂家数据(3)混合数据(Pooled Data):时序和横截面的混合数据,既有分时,每一时点的观察对象又有不同(多个横截面单元) 广泛运用的一类特殊的混合数据——面板数据/综列数据/合成数据(Panel Data):在时间轴上对相同的横截面单元跟踪调查得到的数据。

如每年对各省GDP的报告。

2、研究结果永远不可能比数据的质量更好观测误差、近似进位计量、高度加总、选择性偏误3、数据来源:网站、统计年鉴、商业数据库等(1)统计局、央行、证券交易所、世行、IMF等官方网站(2)图书馆(纸质、电子版年鉴)(3)商业数据库◆例子例1:凯恩斯消费理论①人们倾向于随他们收入的增加而增加消费,但消费的增加不如收入的增加那么多。

②C=a+bI →确定性关系③Y=β1+β2X+μ→μ为扰动项,非确定性关系④搜集80~91年美国消费及收入数据⑤估计参数:解释:平均而言,收入↑1美元,消费↑72美分⑥检验模型设定的正确性:是否应当加入别的可能影响消费额的变量,如就业等。

⑦假设检验:H0 : β 2 < 1 (边际消费倾向<1)⑧预测:给定X,算Y控制:给定Y ,算X◆ 基本的统计学术语和概念 1、随机变量 (r.v)以一定的概率取到各种可能值的变量,取值由抽样或试验结果决定。

计量经济学复习笔记

计量经济学复习笔记

2023计量经济学笔记PERSONAL NOTES计量经济学笔记目录CH1导论 (3)CH2简单线性回归模型 (5)CH3多元线性回归模型 (11)CH4多重共线性 (14)CH5异方差 (16)CH6自相关 (19)CH1导论1、计量经济学:以经济理论和经济数据的事实为依据,运用数学、统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。

研究主体是经济现象及其发展变化的规律。

2、运用计量分析研究步骤:●模型设定——确定变量和数学关系式●估计参数——分析变量间具体的数量关系●模型检验——检验所得结论的可靠性●模型应用——做经济分析和经济预测3、模型(1)变量A.解释变量:表示被解释变量变动原因的变量,也称自变量,回归元,X。

B.被解释变量:表示分析研究的对象,变动结果的变量,也成应变量,Y。

C.内生变量:其数值由模型所决定的变量,是模型求解的结果。

D.外生变量:其数值由模型意外决定的变量。

(外生变量数值的变化能够影响内生变量的变化,而内生变量却不能反过来影响外生变量。

)E.前定内生变量:过去时期的、滞后的或更大范围的内生变量,不受本模型研究范围的内生变量的影响,但能够影响我们所研究的本期的内生变量。

F.前定变量:前定内生变量和外生变量的总称。

(2)数据●时间序列数据:按照时间先后排列的统计数据(t)。

●截面数据:发生在同一时间截面上的调查数据(i)。

●面板数据:时间序列数据和截面数据结合的数据(t,i)。

●虚拟变量数据:表征政策,条件等,一般取0或1(d).4、估计评价统计性质的标准无偏:E(^β)=β有效:最小方差性一致:N趋近无穷时,β估计越来越接近真实值5、检验经济意义检验:所估计的模型与经济理论是否相等统计推断检验:检验参数估计值是否抽样的偶然结果,是否显著计量经济检验:是否符合计量经济方法的基本假定预测检验:将模型预测的结果与经济运行的实际对比6、计量经济学的研究过程CH2简单线性回归模型一、相关知识点:1、变量间的关系分为函数关系与相关关系(相关系数是对变量间线性相关程度的度量。

计量经济学复习笔记要点

计量经济学复习笔记要点

计量经济学 总复习第一部分:统计基础知识均值的概念:通常人们所说的均值就是“平均数”,统计意义上的均值是“期望值”。

方差:变量的每个样本与均值的距离大小的概念。

标准差:对方差开根号就是标准差。

数学期望值与方差的数学性质总体方差: 1.常量aE (a )=a 2σ(a)=0抽样方差: 2.变量 y=a+bxE(y)=a+bE(x)总体标准偏差: 2σ(y)=b^2 * 2σ(x)抽样标准偏差:假设检验的定义:事先做一个假设,然后再用统计方法来检验这个假设是否有统计意义。

假设检验的步骤:第一步,设定假设条件。

原定假设,H0:u=u0,和替代假设,Ha:u ≠u0。

第二步,决定用哪种检验, 如果n ≥30,用Z 检验,如果n<30, 用t 检验。

第三步,找出临界值, 根据给定的定义域的大小,即α=1%、α=5%、或 α=10% 从概率分布表中查出Zc 值,或tc 值。

第四步,计算统计值, 或者第五步,比较统计值与临界值而得出结论。

如果统计值的绝对值大于临界值,那么我们就否定原定假设; 如果统计值的绝对值小于临界值,那么我们就不能否定原定假设。

第二部分 最小二乘法最小二乘法的假设条件:(1) (2) (3) (4) (5) 文字解释:Nu x Ni ∑-=22)(σ1)(22--=∑n x xs ni2σσ=2s s =nux Z σ0*-=n s u x t 0*-=)(=X E i ε∞<=22,)(σσεi Var 0),(=j i Cov εε0),(=i i X Cov ε1),(±≠j i X X Cov(1)每个误差必须是随机的,其误差的期望值是零;(2)误差都是雷同的,其方差相等,同时其方差的变化量必须是有限的; (3)每个误差之间必须是相互独立的; (4)误差项与方程式中的自变量是无关的; (5)自变量之间无直接的线性关系。

通用最小二乘法的步骤:第一步:求出误差项:第二步:求误差的平方和最小。

计量经济学复习资料

计量经济学复习资料

计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。

它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。

计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。

本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。

二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。

2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。

三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。

2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。

3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。

4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。

四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。

2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。

3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。

4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。

五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。

2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。

计量经济学重点

计量经济学重点

计量经济学重点计量经济学复习资料一、名词解释1.广义计经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。

2.狭义计经济学以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。

3.总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。

4.样本回归函数:指从总体中抽出的关于Y, x的若干组值形成的样本所建立的回归函数。

6、随机的总体回归函数:含有随机千扰项的总体回归函数(是相对于条件期望形式而言的)。

5.线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的I次方出现。

6.随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。

9、残差项:是一随机变量,是针对样本回归函数而言的。

7.条件期望:即条件均值,指X取特定值Xi时Y的期望值。

8.回归系数:回归模型中βo, β1等未知但却是固定的参数。

9.回归系教的估计量:指用β 0^ β1^等表示的用已知样本提供的信息所估计出来总体未知参数的结果。

10.最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。

11.最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。

12.估计的标准差:度量一个变量变化大小的测量值。

13.总离差平方和:用TSS表示,用以度量被解释变量的总变动。

14.回归平方和:用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。

15.残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。

16.协方差:用Cov(X, Y)表示,度量XY两个变量关联程度的统计量。

17.拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样木观测值拟合得越好。

计量经济学复习重点

计量经济学复习重点

1、经济变量:用来描述经济因素数量水平的指标。

2、解释变童:用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。

它对因变量的变额为发热所引5动做出解释。

3、被解释变量:是作为研究对象的变量。

它的变动是由•解释变量做出廉释的4、控制变量:在计量经济模型中人为设置的反映政黃要求、决策者意愿、经济系统运行条件和状态等方面的变量。

5、计量经济模型:为了研究分析某个系统中经济变量之问的数量关系而采用的随机代数模型。

6、相关关系:如果一个变量y的取值受另一个变量或另一组变量的彩响.但并不由它们惟一确定,则y与这个变量或这组变量之问的关系就是相关关系。

7、最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法。

8、拟合优度:样本回归直线与样本观测数据之问的拟合程度。

(9、残差:样本回归方程的拟合值与观測值的误差。

10、显著性检验:利用样本结果,来证实一个虚拟假设的真伪的一种检豔程序。

11、偏相关系数:在Y. X|. 1三个变量中,当儿既定时,表示Y与X2之问相关关系的指标。

12、异方差性:在线性回归模型中,如果随机误差项的方差不是常数,即对不同的解释变量观测值彼此不同,则称葩机项U1具有异方差性。

13、序列相关性:对于模型Xi = % + 妙九 +色乜+•••+%%+“i = 12 …屮菠机误差项互相独立的基本假设表现为C"(冷"” =0 /> j,i,j = \2…』(I分)如果出现Cov(比,“ J) H 0 i H人i J = 12…屮即对于不同的样本点•随机误差项之问不再是完全互相独立,而是存在某种相关性,则认为出现了序列相关性。

14、自回归模型:15、广乂最小二乘法:是最有普遍意义的最小二乘法,普通最小二乘法和加权最小二乘法是它的特例。

16、相关系数:度量变量之问相关程度的一个系数,一般用P表示。

17、多重共线性:解释变量之问存在完全或不完全的线性关系。

计量经济学复习要点

计量经济学复习要点

计量经济学复习要点164590(总20页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

计量经济学复习重点

计量经济学复习重点

1、统计检验是利用统计推断的原理,对参数估计的可靠程度、观察数据的拟合程度进行检验;主要方法有拟合优度检验、变量和方程的显著性检验2、计量经济学检验:检验模型的计量经济学性质,即检验模型基本假设的满足程度、各种经济计量假设的合理性。

主要检验准则:序列相关检验、异方差检验和多重共线检验。

3、模型预测检验:检验模型参数估计量的稳定性以及相对样本容量变化时的灵敏度,确定所建立的模型是否可以用于观察值以外的范围。

具体检验方法:(1)利用扩大了的样本 重新估计参数,检验两次估计结果的差异显著性;(2)将所建立的模型用于样本以外某一时期的实际预测,预测值与实际值进行比较并检验差异显著性。

4、建立计量经济模型的步骤5、样本回归模型回归分析是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

由于总体的信息往往无法掌握,现实的情况只能是在一次观测中得到总体的一组样本样本散点图近似于一条直线,画一条直线以尽可能好地拟合该散点图,由于样本取自总体,可以该线近似地代表总体回归线。

该线称为样本回归线,其函数形式记为:6、随机扰动项U :理论经济学和数理经济学一般假定经济变量之间存在确定性的规律,从而建立确定性的模型。

引入随机扰动项是为了更准确地描述社会经济系统。

随机扰动项是不可观察的,只能通过残差——实际值与拟合值的差——进行估计7、Gauss —Markov 定理(高斯-马克):满足性质1、2、3的最小二乘估计量是最优线性无偏估计量 最小二乘法求出参数估计量达到最小值。

性质1:线性特性;估计量a,b 均可由被解释变量Y 线性表示出来。

性质2:无偏性E (a )= E (b )= β 性质3:在a 、β的各种线性无偏估计中,最小二乘估计量a,b 具有最小方差。

8、完全共线性:如果存在 c 1X 1i +c 2X 2i +…+c k X ki =0 i=1,2,…,nii i X X f Y 10ˆˆ)(ˆββ+== (2.1.4)称为样本回归函数(sample regression function )SRF 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学复习要点第1章 绪论数据类型:截面、时间序列、面板 用数据度量因果效应,其他条件不变的概念 习题:C1、C2第2章 简单线性回归回归分析的基本概念,常用术语现代意义的回归是一个被解释变量对若干个解释变量依存关系的研究,回归的实质是由固定的解释变量去估计被解释变量的平均值。

简单线性回归模型是只有一个解释变量的线性回归模型。

回归中的四个重要概念1. 总体回归模型(Population Regression Model ,PRM)t t t u x y ++=10ββ--代表了总体变量间的真实关系。

2. 总体回归函数(Population Regression Function ,PRF )t t x y E 10)(ββ+=--代表了总体变量间的依存规律。

3. 样本回归函数(Sample Regression Function ,SRF )tt t e x y ++=10ˆˆββ--代表了样本显示的变量关系。

4. 样本回归模型(Sample Regression Model ,SRM )tt x y 10ˆˆˆββ+=---代表了样本显示的变量依存规律。

总体回归模型与样本回归模型的主要区别是:①描述的对象不同。

总体回归模型描述总体中变量y 与x 的相互关系,而样本回归模型描述所关的样本中变量y 与x 的相互关系。

②建立模型的依据不同。

总体回归模型是依据总体全部观测资料建立的,样本回归模型是依据样本观测资料建立的。

③模型性质不同。

总体回归模型不是随机模型,而样本回归模型是一个随机模型,它随样本的改变而改变。

总体回归模型与样本回归模型的联系是:样本回归模型是总体回归模型的一个估计式,之所以建立样本回归模型,目的是用来估计总体回归模型。

线性回归的含义线性:被解释变量是关于参数的线性函数(可以不是解释变量的线性函数) 线性回归模型的基本假设简单线性回归的基本假定:对模型和变量的假定、对随机扰动项u 的假定(零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定) 普通最小二乘法(原理、推导)最小二乘法估计参数的原则是以“残差平方和最小”。

Min 21ˆ()ni ii Y Y =-∑01ˆˆ(,)ββ: 1121()()ˆ()nii i n ii XX Y Y X X ==--β=-∑∑ ,01ˆˆY X β=-βOLS 的代数性质拟合优度R 2离差平方和的分解:TSS=ESS+RSS“拟合优度”是模型对样本数据的拟合程度。

检验方法是构造一个可以表征拟合程度的指标——判定系数又称决定系数。

(1)21SSE SST SSR SSRR SST SST SST-===-,表示回归平方和与总离差平方和之比;反映了样本回归线对样本观测值拟合优劣程度的一种描述; (2) 2[0,1]R ∈;(3) 回归模型中所包含的解释变量越多,2R 越大!改变度量单位对OLS 统计量的影响函数形式(对数、半对数模型系数的解释)(1)01ˆˆˆi iY X =β+β:X 变化一个单位Y 的变化 (2)01ˆˆˆln ln i i Y X =β+β: X 变化1%,Y 变化1ˆβ%,表示弹性。

(3)01ˆˆˆln i i Y X =β+β:X 变化一个单位,Y 变化百分之1001ˆβ (4)01ˆˆˆln i i Y X =β+β:X 变化1%,Y 变化1ˆβ%。

OLS 无偏性,无偏性的证明 OLS 估计量的抽样方差 误差方差的估计 OLS 估计量的性质(1)线性:是指参数估计值µ0β和µ1β分别为观测值t y 的线性组合。

(2)无偏性:是指µ0β和µ1β的期望值分别是总体参数0β和1β。

(3)最优性(最小方差性):是指最小二乘估计量µ0β和µ1β在在各种线性无偏估计中,具有最小方差。

高斯-马尔可夫定理 OLS 参数估计量的概率分布OLS 随机误差项μ的方差σ2的估计2^22()iVar xσβ=∑2^22ie n σ=-∑简单回归的高斯马尔科夫假定 对零条件均值的理解 习题:4、5、6;C2、C3、C4第3章 多元回归分析:估计1、变量系数的解释(剔除、控制其他因素的影响)01122ˆˆˆˆi i iY X X =β+β+β 对斜率系数1ˆβ的解释:在控制其他解释变量(X2)不变的条件下,X1变化一个单位对Y 的影响;或者,在剔除了其他解释变量的影响之后,X1的变化对Y 的单独影响! 2、多元线性回归模型中对随机扰动项u 的假定,除了零均值假定、同方差假定、无自相关假定、随机扰动与解释变量不相关假定、正态性假定以外,还要求满足无多重共线性假定。

3、多元线性回归模型参数的最小二乘估计式;参数估计式的分布性质及期望、方差和标准误差;在基本假定满足的条件下,多元线性回归模型最小二乘估计式是最佳线性无偏估计式。

最小二乘法 (OLS) 公式: Y ' X X)' (X ˆ-1=β估计的回归模型:的方差协方差矩阵:残差的方差 :ˆˆY =X β+u βˆ2ˆˆ'u u n k -s =2ˆvar(σ-1(X'X)β)=估计的方差协方差矩阵是:拟合优度 遗漏变量偏误多重共线性多重共线性的概念多重共线性的后果 多重共线性的检验 多重共线性的处理习题:1、2、6、7、8、10;C2、C5、C6第4章 多元回归分析:推断经典线性模型假定 正态抽样分布变量显著性检验,t 检验 检验β值的其他假设 P 值实际显著性与统计显著性 检验参数的一个线性组合假设 多个线性约束的检验:F 检验理解排除性约束 报告回归结果习题:1、2、3、4、6、7、10、11;C3、C5、C8第6章 多元回归分析:专题测度单位对OLS 统计量的影响 进一步理解对数模型 二次式的模型 交互项的模型2ˆvar(s -1(X'X)β)=拟合优度修正可决系数的作用和方法。

22222()111()(1)()i ii i e n k e n R Y Y n n k Y Y --=-=-----∑∑∑∑ 习题:1、3、4、7;C2、C3、C5、C9、C12第7章 虚拟变量虚拟变量的定义如何引入虚拟变量:如果一个变量分成N 组,引入该变量的虚拟变量形式是只能放入N-1个虚拟变量虚拟变量系数的解释虚拟变量系数的解释:不同组均值的差(基准组或对照组与处理组) 以下几种模型形式表达的不同含义;1)tt t t u D X Y +++=210βββ:截距项不同; 2)tt t t t u X D X Y +++=210βββ:斜率不同;3)tt t t t t u X D D X Y ++++=3210ββββ:截距项与斜率都不同;其中D 是二值虚拟变量,X 是连续的变量。

虚拟变量陷阱 虚拟变量的交互作用习题:2、4、9;C2、C3、C6、C7、C11第8章 异方差异方差的后果 异方差稳健标准误 BP 检验异方差的检验(White检验)加权最小二乘法习题:1、2、3、4;C1、C2、C8、C9Eviews回归结果界面解释表计量经济学复习题第1章习题:C1、C2第2章习题:4、5、6;C2、C3、C4第3章习题:1、2、6、7、8、10;C2、C5、C6 第4章习题:1、2、3、4、6、7、10、11;C3、C5、C8 第6章习题:1、3、4、7;C2、C3、C5、C9、C12 第7章习题:2、4、9;C2、C3、C6、C7、C11 第8章习题:1、2、3、4;C1、C2、C8、C91、判断下列表达式是否正确24690101010101, 1,2,,ˆˆˆ, 1,2,,(), 1,2,,(), 1,2,,ˆˆ(), 1,2,,i i iii i i i i i i i i i y x i nyx i n E y x x i n E y x x i n E y x x i n ββββββμββββ=+==+==++==+==+=L L L L L 0101010101, 1,2,,ˆˆˆ, 1,2,,ˆˆ, 1,2,,ˆˆˆ, 1,2,,ˆˆˆˆ, 1,2,,i i i i i i i i i iiii ii y x i n y x i n y x i n y x i ny x i n ββμββμββμββμββμ=++==++==++==++==++=L L L L L2、给定一元线性回归模型:t t t X Y μββ++=10 n t ,,2,1Λ=(1)叙述模型的基本假定;(2)写出参数0β和1β的最小二乘估计公式; (3)说明满足基本假定的最小二乘估计量的统计性质; (4)写出随机扰动项方差的无偏估计公式。

3、对于多元线性计量经济学模型:t kt k t t t X X X Y μββββ+++++=Λ33221 n t ,,,Λ21=(1)该模型的矩阵形式及各矩阵的含义; (2)对应的样本线性回归模型的矩阵形式; (3)模型的最小二乘参数估计量。

4、根据美国1961年第一季度至1977年第二季度的数据,我们得到了如下的咖啡需求函数的回归方程:D D D P I P t t t t t t tT Q 321'0097.0157.00961.00089.0ln 1483.0ln 5115.0ln 1647.02789.1ˆln ----++-= (-2.14) (1.23) (0.55) (-3.36) (-3.74) (-6.03) (-0.37)80.02=R其中,Q=人均咖啡消费量(单位:磅);P=咖啡的价格(以1967年价格为不变价格);I=人均可支配收入(单位:千元,以1967年价格为不变价格);P '=茶的价格(1/4磅,以1967年价格为不变价格);T=时间趋势变量(1961年第一季度为1,…,1977年第二季度为66);D 1=1:第一季度;D 2=1:第二季度;D 3=1:第三季度。

请回答以下问题:① 模型中P 、I 和P '的系数的经济含义是什么?② 咖啡的需求是否很有弹性? ③ 咖啡和茶是互补品还是替代品? ④ 你如何解释时间变量T 的系数? ⑤ 你如何解释模型中虚拟变量的作用? ⑥ 哪一个虚拟变量在统计上是显著的? ⑦ 咖啡的需求是否存在季节效应?5、为研究体重与身高的关系,我们随机抽样调查了51名学生(其中36名男生,15名女生),并得到如下两种回归模型:h W 5662.506551.232ˆ+-= (5.1)t=(-5.2066) (8.6246)h D W7402.38238.239621.122ˆ++-= (5.2) t=(-2.5884) (4.0149) (5.1613)其中,W(weight)=体重 (单位:磅);h(height)=身高 (单位:英寸)⎩⎨⎧= 01女生男生D请回答以下问题:① 你将选择哪一个模型?为什么?② 如果模型(5.2)确实更好,而你选择了(5.1),你犯了什么错误? ③ D 的系数说明了什么?6、简述异方差对下列各项有何影响:(1)OLS 估计量及其方差;(2)置信区间;(3)显著性t 检验和F 检验的使用。

相关文档
最新文档