古代数学趣题

合集下载

古代数学趣题

古代数学趣题

古代数学趣题数学是一门古老而又神奇的学科,它是人类智慧的结晶,也是人类文明的重要组成部分。

在古代,数学的发展经历了漫长的历程,涌现出了许多伟大的数学家和数学成果。

今天,我们来探索一下古代数学中的一些趣题,感受一下数学的美妙。

1. 求圆周率圆周率是一个神秘的数,它是圆的周长与直径之比,通常用希腊字母π表示。

在古代,人们一直试图求出圆周率的精确值,但是由于它的无限不循环小数,一直没有找到确切的答案。

然而,古代数学家们并没有放弃,他们通过不断地逼近,计算出了很多近似值。

其中,最著名的是中国古代数学家祖冲之的算法。

他采用圆周率的递归公式,将圆周率的计算转化为对圆的面积的计算。

具体方法是:将一个正方形分成若干个小正方形,然后在正方形内画一个外接圆,再在圆内画一个正多边形,通过不断增加正多边形的边数,逼近圆的面积,最终得到圆周率的近似值。

祖冲之的算法虽然只是一个近似值,但是它的精度非常高,已经达到了小数点后第七位。

2. 约瑟夫问题约瑟夫问题是一个有趣而又富有挑战性的问题,它的背景是古代犹太人和罗马人的战争。

据说,当时有一群犹太人被罗马人包围在一个洞穴里,他们想出了一个聪明的方法来躲避罗马人的追捕。

具体方法是:他们站成一个圆圈,从某个人开始,每隔一个人就将他杀掉,直到只剩下一个人为止。

那么,问题来了:如果有n个人,第m个人被杀掉,那么最后剩下的人是谁?这个问题虽然看似简单,却有很多不同的解法。

其中,最著名的是约瑟夫斯问题的递推公式。

该公式可以通过递归的方式求出约瑟夫斯问题的解,具体方法是:设f(n,m)表示n个人中,最后剩下的人的编号,那么f(n,m)的值可以通过f(n-1,m)的值递推得出。

3. 平方根的逼近平方根是一个非常重要的数学概念,它在几何学、物理学、工程学等领域都有着广泛的应用。

在古代,人们一直试图找到一种简单而又有效的方法来逼近平方根的值,以便在实际应用中使用。

其中,最著名的是希腊数学家欧几里得的算法。

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释我国古代名题我国古代的数学发展源远流长,古代的数学家们在没有现代科学技术的条件下,通过丰富的数学想象力和智慧,创造了许多深奥的数学问题和趣题。

这些数学趣题不仅在当时引起了广泛的兴趣,也成为了后人学习数学的重要教材和实践工具。

通过巧解这些民间数学趣题,我们可以更加深入地了解我国古代数学的独特魅力,以及古代数学家们的智慧和成就。

1. 历史悠久的民间数学趣题我国古代的民间数学趣题源远流长,从《周髀算经》中的古代数学题,到后来的《孙子算经》、《张丘建算经》等著名数学著作,古代数学趣题一直以其丰富多样、富有创意的特点吸引着学者和爱好者的兴趣。

这些数学趣题往往以平实的语言和直观的例子,引导人们去思考数学问题,培养了人们的逻辑思维和数学素养。

2. 我国古代名题的特点与魅力我国古代名题以其深刻的数学内涵和独特的解题思路而著称,例如《海岛数目问题》、《走马问题》等。

这些名题在解题过程中需要深入分析,运用数学方法和技巧,展现了古代数学家们的智慧和创造力。

通过巧解这些名题,我们可以感受到其中蕴含的数学之美,体验古人对数学的热爱和探索精神。

3. 从民间数学趣题到古代名题的延伸与升华民间数学趣题往往源自于人们日常生活和实际需求,通过民间的智慧和创造,衍生出了许多有趣的数学问题。

这些民间数学趣题后来被古代数学家们加以提炼和升华,成为了著名的古代数学名题。

这种民间数学趣题到名题的延伸与升华,不仅丰富了古代数学的理论体系,也深化了人们对数学的理解和研究。

4. 个人观点与理解在我看来,巧解民间数学趣题注释我国古代名题不仅是一种学习和研究数学的方式,更是一种感受和体验我国古代数学文化的良好途径。

通过巧解这些趣题和名题,我们能够更好地理解古代数学家们的智慧和贡献,感受数学之美,激发学习数学的兴趣和热情。

总结与回顾通过巧解民间数学趣题注释我国古代名题,我们不仅可以体验数学的乐趣,也可以感受古代数学的独特魅力。

这种方式不仅可以提高我们的数学水平,也可以让我们更加全面、深刻和灵活地理解古代数学文化的内涵与精髓。

五年级奥数.数论.中国剩余定理及弃九法(B级).学生版

五年级奥数.数论.中国剩余定理及弃九法(B级).学生版

一、中国剩余定理——中国古代趣题1) 趣题一中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

2) 趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(Chinese Remainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘. 五树梅花廿一枝,是说除以5所得的余数用21乘. 七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数. 此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减知识框架中国剩余定理及弃九法去105,最后所得的整数就是所求.也就是270321215233-=⨯+⨯+⨯=,233105128-=,12810523为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是a b c被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.3)核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

古诗搞笑数学题

古诗搞笑数学题

古诗搞笑数学题古诗搞笑数学趣题1:《以碗知僧》巍巍古寺在山林,不知寺内几多僧。

三百六十四只碗,看看用尽不差争。

三人共食一碗饭,四人共吃一碗羹。

请问先生明算者,算来寺内几多僧。

答案:624名僧人古诗搞笑数学趣题2:李白街上走,提壶去买酒。

遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。

三遇店和花,喝光壶中酒,原有多少酒?答案:为7/8斗酒。

古诗搞笑数学趣题3:平地秋千未起,踏起一尺离地;送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉;良工高士素好奇,算出索长有几?答案:为绳索长为14.5尺。

古诗搞笑数学趣题4:《百鸟归巢图》宋·伦文叙归来一只复一只,三四五六七八只。

凤凰何少鸟何多,啄尽人间千石食。

请问:这篇诗的题目为什么叫“百鸟”呢?答案:两个“一”、“三”个“四”、“五”个“六”、“七”个“八”的和就是一百。

(1+1+3×4+5×6+7×8=100),这是把数字嵌入进去的逻辑数学题。

古诗搞笑数学趣题5:三寸鱼儿九里沟,口尾相衔直到头。

试问鱼儿多少数,请君对面说因由。

3寸长的一群小鱼儿,它们口尾相接在河里游玩,从头到尾排成了9里长。

试问这群鱼儿有多少条?请说出你推算的理由。

答案:因为1里=360步,所以9里为9×360=3240(步)又因为1步=5尺=50寸所以3240×50=162000(寸)所以162000÷3=54000(条)答:这群活泼可爱的小鱼儿共有5.4万条。

古诗搞笑数学趣题6:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?今有鸡兔关在一个笼子里,上有头35个,下有足94只,问鸡、兔各多少?答案:有鸡23只,有兔12只。

流传千年的“鸡兔同笼”问题

流传千年的“鸡兔同笼”问题

流传千年的“鸡兔同笼”问题作者:方秀林来源:《初中生世界·七年级》2021年第06期大约1500年前,我国古代数学名著《孙子算经》中记载了一道数学趣题——“鸡兔同笼”问题。

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这道题的意思就是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。

问笼中各有几只鸡和兔?相信大家在小学里就遇到过,下面我们来重温几种经典的解法:最古老的“砍足法”假设砍掉每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”。

这样,鸡和兔的脚的总数就由94只变成了47只。

而每只鸡的头数和脚数之比变为1∶1,每只兔的头数和脚数之比变为1∶2。

如果笼子里有一只双脚兔,则脚的数量就比头的数量多1。

因此,独脚鸡和双脚兔的总脚数47与总头数35的差,就是兔子的只数,即47-35=12(只)。

所以,鸡的只数就是35-12=23(只)了。

这正是《孙子算经》给出的解答。

如果你觉得这段分析还是像绕口令一样容易把人绕晕的话,那就来看看我们初中教材中给出的解法吧。

最万能的“方程组法”设有鸡x只,兔y只。

根据题意,得[x+y=35,①2x+4y=94。

②]解得[x=23,y=12。

]所以笼中有鸡23只,兔12只。

比较这两种解法,不难发现“砍足法”的解题思路其实就是“方程组法”中解方程组的过程:将方程②的两边都除以2,得x+2y=47,然后减去方程①,即可得出y的值,即兔的只数。

最简单的“抬脚法”让兔子和鸡同时抬起两只脚,这样笼子里站立的脚就减少了头数乘2只,由于鸡只有2只脚,这时候鸡只能一屁股坐地上了,所以笼子里站立的只剩下兔子的两只脚,再除以2就是兔子数。

兔子的只数:(94-35×2)÷2=12(只),鸡的只数:35-12= 23(只)。

这种方法的解题思路也可以用“方程组法”中解方程组的过程来解释:将方程①的两边同时乘2,得2x+2y=70,然后用方程②减之,得2y=24,两边再除以2,即可得出y的值,即兔的只数。

中国古代数学趣题

中国古代数学趣题

中国古代数学1.及时梨果元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。

问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。

问买梨、果各几个,各付多少钱?解:梨每个价:11÷9=911(文)果每个价:4÷7=74(文)果的个数:(911×1000-999)÷(911-74)=343(个)梨的个数:1000-343=657(个)梨的总价:911×657=803(文)果的总价:74×343=196(文)2.两鼠穿墙我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。

大鼠日自倍,小鼠日自半。

问何日相逢,各穿几何?今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。

大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。

问几天后两鼠相遇,各穿几尺?解:第一天,1+1=2尺还有3尺第二天,2+0.5=2.5尺还有0.5尺第三天,解:设还需X 天。

(4+0.25)X=0.5 X=172172天=2小时49分在第三日凌晨2时49分相逢,相逢时大老鼠穿 3.47尺,小老鼠穿1.53尺。

3.隔壁分银只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。

试问各位能算者,多少客人多少银?(注:旧制1斤=16两,半斤=8两)此题是民间算题,用方程解比较方便。

解:设客人为x 人。

4x +4=8x -8x=34×3+4=16(两)答:客人3人,银16两。

4.李白打酒李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。

试问酒壶中,原有多少酒?这是一道民间算题。

题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。

古代趣题 蜗牛爬树

古代趣题 蜗牛爬树

古代趣题蜗牛爬树
这是一个著名的中国古代数学趣题,被称为“蜗牛爬井问题”,也可以引申为“蜗牛爬树问题”。

问题描述如下:
一只蜗牛想要爬上一棵高10米的树。

白天,蜗牛能向上爬3米;但到了晚上,由于身体疲倦,它会下滑2米。

请问,这只蜗牛需要多少天才能成功爬到树顶?
解答:首先,蜗牛每天实际前进的高度是3米-2米=1米。

但在最后一天,当蜗牛爬到树顶或超过树顶时,它就不会再下滑了。

第1天结束,蜗牛爬了3米,下滑2米,离树顶还有7米;第2天结束,蜗牛又爬了3米,下滑2米,离树顶还有4米;第3天结束,蜗牛再爬3米,下滑2米,离树顶还有1米;第4天白天,蜗牛继续爬升3米,此时它已经到达或超过了树顶,不会再下滑,所以总共用了4天时间成功爬到树顶。

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释中国古代名题
巧解民间数学趣题注释中国古代名题是指在中国古代流传下来的一些有趣的数学题目,这些题目多以民间的形式存在,并且具有一定的知名度。

下面是一些中国古代名题的注释:
1. 百鸡问题:古代一位数学家提出了“百鸡问题”,即用100文钱买100只鸡,公鸡5文钱一只,母鸡3文钱一只,小鸡3只1文钱,问公鸡、母鸡、小鸡各多少只?这个问题是一个著名的线性方程问题,可以用代数的方法解答。

2. 田忌赛马:这是一个古代的竞赛问题,讲述了田忌与王良进行马赛的故事。

田忌的马分为上中下三等,王良的马都是中等马,王良提出了几次策略,让田忌赢得比赛。

这个问题可以通过比较马匹的优势和劣势,并选择合适的策略来解决。

3. 鸡兔同笼:这是一个古代的动物问题,描述了一只笼子里关了若干只鸡和兔子,头数共计74个,脚数共计214只。

问笼中有几只鸡和兔子?这个问题可以通过设变量、列方程的方法求解。

4. 古代数学名题《海岛求恨本寓言图》:这是一种数学谜题,通过一幅图案来描述一个故事,要求按照图案中的要求解答问题。

这个题目需要观察图案,推理题目的意义,并给出答案。

这些中国古代名题都是以日常生活中的实际问题为背景,通过数学的方法解决,不仅考验了思维能力,还培养了人们的逻辑
思维能力和数学技巧。

这些问题也一直在民间广泛传播,成为经典的数学问题之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古代数学趣题集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
中国古代数学
1. 及时梨果
元代数学家朱世杰于1303年编着的《四元玉鉴》中有这样一道题目: 九百九十九文钱,及时梨果买一千,
一十一文梨九个,七枚果子四文钱。

问:梨果多少价几何?
此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。

问买梨、果各几个,各付多少钱? 解:梨每个价:11÷9=
9
11(文) 果每个价:4÷7=7
4(文) 果的个数:(911×1000-999)÷(911-74)=343(个) 梨的个数:1000-343=657(个)
梨的总价:
9
11×657=803(文) 果的总价:74×343=196(文) 2.两鼠穿墙
我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。

大鼠日自倍,小鼠日自半。

问何日相逢,各穿几何
今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。

大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。

问几天后两鼠相遇,各穿几尺
解:第一天,1+1=2尺 还有3尺
第二天,2+0.5=2.5尺 还有0.5尺
第三天,解:设还需X 天。

(4+0.25)X=0.5 X=
17
2
17
2天=2小时49分 在第三日凌晨2时49分相逢,相逢时大老鼠穿 3.47尺,小老鼠穿 1.53尺。

3.隔壁分银
只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。

试问各位能算者,多少客人多少银?(注:旧制1斤=16两,半斤=8两) 此题是民间算题,用方程解比较方便。

解:设客人为x 人。

4x +4=8x -8
x =3
4×3+4=16(两)
答:客人3人,银16两。

4.李白打酒
李白街上走,提壶去打酒;
遇店加一倍,见花喝一斗;
三遇店和花,喝光壶中酒。

试问酒壶中,原有多少酒?
这是一道民间算题。

题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。

问壶中原来有酒多少?
解:设壶中原来有酒x 斗。

[(2x -1)×2-1]×2-1=0
x =
8
7 5.今有物不知其数
“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。

问物几何?”
题目的意思就是:有一些物品,不知道有多少个,只知道将它们三个三个地数,会剩下2个;五个五个地数,会剩下3个;七个七个地数,也会剩下2个。

这些物品的数量至少是多少个?
(注:诗题及题目原文都无“至少”二字,但“孙子问题”都是些求“最少”或者求“至少”的问题,否则就会有无数多个答案。

所以,解释题目意思时,在语句中加上了“至少”二字。


《孙子算经》解这道题目的“术文”和答案是:“三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十。

并之,得二百三十三,以二百十减之,即得。

”“答曰:二十三。


这段话的意思是:
先求被3除余2,并能同时被5、7整除的数,这样的数是140;
再求被5除余3,并能同时被3、7整除的数,这样的数是63;
然后求被7除余2,并能同时被3、5整除的数,这样的数是30。

于是,由140+63+30=233,得到的233就是一个所要求得的数。

但这个数并不是最小的。

再用求得的“233”减去或者加上3、5、7的最小公倍数“105”的倍数,就得到许许多多这样的数:
{23,128,233,338,443,…}
从而可知,23、128、233、338、443、…都是这一道题目的解,而其中最小的解是23。

其实由于三个三个地数和七个七个地数都是剩2个,由此可求出3、7的最小公倍数再加2,也就是23个。

23也正好是五个五个地数多3个,所以这些物品的数目至少是23个。

相关文档
最新文档