训练10磁场对电流和运动电荷的作用
磁场中的电荷运动

磁场中的电荷运动在磁场中的电荷运动磁场是由电流产生的,而电荷是带电粒子。
当电荷运动时,会受到磁场的力的作用,这种现象被称为磁场中的电荷运动。
本文将介绍电荷在磁场中的运动规律以及与其他物理量的关系。
一、洛伦兹力的作用在磁场中,电荷受到的力被称为洛伦兹力。
洛伦兹力的大小和方向由以下公式给出:F = qvBsinθ其中,F是洛伦兹力的大小,q是电荷的大小,v是电荷的速度,B 是磁场的大小,θ是电荷速度与磁场方向之间的夹角。
从上述公式可以看出,当电荷的速度与磁场方向垂直时,洛伦兹力最大;当速度与磁场方向平行时,洛伦兹力最小,甚至为零。
这意味着电荷在磁场中的轨迹将偏离原来的方向,呈现出弯曲的形状。
二、电荷的圆周运动如果一个正电荷以一定的速度在磁场中运动,它将沿着圆形轨迹运动。
根据洛伦兹力的作用方向,可以推导出电荷的运动轨迹。
假设磁场方向为垂直于纸面向内,电荷的速度方向与纸面平行,则电荷将绕着磁场方向进行圆周运动。
在这种情况下,洛伦兹力提供了向心力,使得电荷保持圆周运动。
根据牛顿第二定律,可以得到以下公式:F = ma = (mv^2)/r其中,m是电荷的质量,a是向心加速度,v是电荷的速度,r是电荷运动的半径。
结合洛伦兹力的表达式,可以得到以下关系:qvB = (mv^2)/r通过简单的计算,可以得到电荷运动的半径:r = mv/(qB)可以看出,电荷的运动半径与其质量、速度以及磁场强度成反比。
三、磁力对电流的作用当电流通过导线时,产生的磁场会对导线上的电荷施加力。
电流中的每一个电子都受到洛伦兹力的作用,导致整个导线受到一个总的力。
在直流电路中,导线上的电荷移动速度是恒定的,因此洛伦兹力和电荷的运动方向垂直,导致电流导线呈直线形状。
而在交流电路中,电流的方向和大小都会发生周期性变化,导致电荷在导线中来回运动。
在每一个电流周期内,电荷受到的磁场力的方向也会改变。
由于这种磁场力是周期性变化的,导致导线上的电荷来回振动,并引发电磁感应现象。
磁场对运动电荷的作用课堂教学分析

磁场对运动电荷的作用课堂教学分析时间:2013-06-07 14:52来源:未知作者:滇池三中庞桂香点击:次一、教材分析与学情分析磁场对运动电荷的作用是高中物理选修 3-1 磁场这一章的重点和难点,就地位而言,学好这部分知识,可以为带电粒子在匀强磁场中的运动问题做好准备,特别为解决带电粒子在电磁场中运动的综合问题做好必要的铺垫。
这部分知识在初中和高一、教材分析与学情分析磁场对运动电荷的作用是高中物理选修3-1磁场这一章的重点和难点,就地位而言,学好这部分知识,可以为带电粒子在匀强磁场中的运动问题做好准备,特别为解决带电粒子在电磁场中运动的综合问题做好必要的铺垫。
这部分知识在初中和高一都未涉及,但在前面所学通电导线在磁场中所受安培力作用的基础上类比可以得到洛伦兹力的大小和方向,同时利用高一所学的力学方法和理论解决相关的应用问题,从而培养学生的分析能力、思维能力、应用数学知识的能力及应用所学知识解决问题的综合能力。
本节课的重点有两个:一是洛伦兹力的方向判断;二是洛伦兹力大小的计算。
本节课的教学难点是洛伦兹力大小的推导;电视显像管的工作原理。
本节内容在本章的作用是承前启后,就像桥梁一样把前后知识搭建起来。
二、课堂实录基本情况:共收集三节全大赛课、二节常态课。
内容如下:大赛课一:磁场对运动电荷的作用;大赛课二:磁场对运动电荷的作用;大赛课三:磁场对运动电荷的作用;常态课一:运动电荷在磁场中受到的力;常态课二:运动电荷在磁场中受到的力;从教学内容的安排上可看出,全国大赛课教学内容充实,启发到位,师生互动较好,充分体现了新课改的理念——学生的主体作用,教师的主导作用。
但从实际教学要求出发,磁场对运动电荷的作用尽管没有大赛课教学内容丰富、理论联系实际,但更注重实效。
最优的教学安排方式当然是在保证教学一定有效,一定达到教学目标的基础上能更高效,要做好这一点当然少不了认真研究学生的实际学情这个重要的环节,反思我们的常态教学,更多的都是根据以往的教学经验和学校所规定的课时来完成教学任务,在有效和高效两点上考虑是有不足的。
2014《步步高》物理大一轮复习讲义 第08章 单元小结练 磁场对电流或运动电荷作用的综合训练

单元小结练磁场对电流或运动电荷作用的综合训练(限时:45分钟)一、单项选择题1.关于电场力与洛伦兹力,以下说法正确的是() A.电荷只要处在电场中,就会受到电场力,而电荷静止在磁场中,也可能受到洛伦兹力B.电场力对在电场中的电荷一定会做功,而洛伦兹力对在磁场中的电荷却不会做功C.电场力与洛伦兹力一样,受力方向都在电场线和磁感线上D.只有运动的电荷在磁场中才可能会受到洛伦兹力的作用答案 D解析静止在磁场中的电荷不可能受到洛伦兹力,A错;尽管电场力对电荷可以做功,但如果电荷在电场中不动或沿等势面移动,电场力做功为零,B错;洛伦兹力的方向与磁感线垂直,与运动方向垂直,C错.只有D是正确的.2.在磁感应强度为B0、方向竖直向上的匀强磁场中,水平放置一根长通电直导线,电流的方向垂直于纸面向里.如图1所示,A、B、C、D是以直导线为圆心的同一圆周上的四点,在这四点中()图1A.B、D两点的磁感应强度大小相等B.A、B两点的磁感应强度大小相等C.C点的磁感应强度的值最大D.B点的磁感应强度的值最大答案 A解析由安培定则可判断通电直导线在C点的磁感应强度方向与B0的方向相反,B、D 两点的磁感应强度方向与B0垂直,故B、D两点磁感应强度大小相等,A点的磁感应强度方向与B 0相同,由磁场的叠加知A 点的合磁感应强度最大.故只有A 项正确. 3. 如图2所示,在半径为R 的圆形区域内充满磁感应强度为B 的匀强磁场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量的带正电、电荷量为q 、质量为m 、速度为v 的粒子,不考虑粒子间的相互作用力,关于这些粒子的运动,以下说法正确的是( )图2A .只要对着圆心入射,出射后均可垂直打在MN 上B .对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心C .对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长D .只要速度满足v =qBRm ,沿不同方向入射的粒子出射后均可垂直打在MN 上答案 D解析 当v ⊥B 时,粒子所受洛伦兹力充当向心力,做半径和周期分别为R =m v qB ,T =2πmqB 的匀速圆周运动;只要速度满足v =qBRm ,沿不同方向入射的粒子出射后均可垂直打在MN 上,选项D 正确.4. 如图3所示,在竖直绝缘的平台上,一个带正电的小球以水平速度v 0抛出,落在地面上的A 点,若加一垂直纸面向里的匀强磁场,则小球的落点( )图3A .仍在A 点B .在A 点左侧C .在A 点右侧D .无法确定 答案 C解析 加上磁场后,洛伦兹力虽不做功,但可以改变小球的运动状态(改变速度的方向),小球做曲线运动,在运动中任一位置受力如图所示,小球受到了斜向上的洛伦兹力的作用,小球在竖直方向的加速度a y =mg -q v B cos θm <g ,故小球平抛的时间将增加,由x =v 0t 知,落点应在A 点的右侧.5. 如图4所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直于纸面向里.P 为屏上的一个小孔.PC 与MN 垂直.一群质量为m 、带电荷量为-q 的粒子(不计重力),以相同的速率v 从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内.则在屏MN 上被粒子打中的区域的长度为( )图4A.2m v qBB.2m v cos θqBC.2m v (1-sin θ)qBD.2m v (1-cos θ)qB答案 D解析 屏MN 上被粒子击中的区域离P 点最远的距离x 1=2r =2m vqB ,屏MN 上被粒子击中的区域离P 点最近的距离x 2=2r cos θ=2m v cos θqB ,故在屏MN 上被粒子打中的区域的长度为x 1-x 2=2m v (1-cos θ)qB,D 正确.6. 如图5所示,长为L 的通电直导体棒放在光滑水平绝缘轨道上,劲度系数为k 的水平轻弹簧一端固定,另一端拴在棒的中点,且与棒垂直,整个装置处于方向竖直向上、磁感应强度为B 的匀强磁场中,弹簧伸长x ,棒处于静止状态.则( )图5A .导体棒中的电流方向从b 流向aB .导体棒中的电流大小为kxBLC .若只将磁场方向缓慢顺时针转过一小角度,x 变大D .若只将磁场方向缓慢逆时针转过一小角度,x 变大答案 B解析由左手定则可知,导体棒中的电流方向从a流向b,选项A错误;由BIL=kx可得导体棒中的电流大小为I=kxBL,选项B正确;若只将磁场方向缓慢顺时针转过一小角度或逆时针转过一小角度,x都变小,选项C、D错误.二、多项选择题7.如图6所示,一个半径为R的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向).若导电圆环上载有如图所示的恒定电流I,则下列说法正确的是()图6A.导电圆环有收缩的趋势B.导电圆环所受安培力方向竖直向上C.导电圆环所受安培力的大小为2BIRD.导电圆环所受安培力的大小为2πBIR sin θ答案ABD解析若导线圆环上载有如图所示的恒定电流I,由左手定则可得导线圆环上各小段所受安培力斜向内,导电圆环有收缩的趋势,导电圆环所受安培力方向竖直向上,导电圆环所受安培力的大小为2πBIR sin θ,选项A、B、D正确.8. 如图7所示,在匀强磁场中有1和2两个质子在同一平面内沿逆时针方向做匀速圆周运动,轨道半径r1>r2并相切于P点,设T1、T2,v1、v2,a1、a2,t1、t2,分别表示1、2两个质子的周期,线速度,向心加速度以及各自从经过P点算起到第一次通过图中虚线MN所经历的时间,则()图7A.T1=T2B.v1=v2C.a1>a2D.t1<t2答案ACD解析对于质子,其qm相同,又T=2πmqB,在同一匀强磁场中,则T1=T2,选项A正确.又r=m vqB,且r1>r2则v1>v2.B错误.由a=v2r,T=2πrv,得a=2πTv,则a1>a2,C正确.又两质子的周期相同,由题图知质子1从经过P点算起到第一次通过图中虚线MN所转过的圆心角比质子2小,由t=θ360°T知,t1<t2,D正确.三、非选择题9. 在倾角θ=30°的斜面上,固定一金属框,宽l=0.25 m,接入电动势E=12 V、内阻不计的电池.垂直框面放置一根质量m=0.2 kg的金属棒ab,它与框架间的动摩擦因数μ=66,整个装置放在磁感应强度B=0.8 T、垂直框面向上的匀强磁场中,如图8所示.当调节滑动变阻器R的阻值在什么范围内时,可使金属棒静止在框架上?(框架与金属棒的电阻不计,g取10 m/s2)图8答案 1.4 Ω≤R≤8.0 Ω解析金属棒受到四个力作用:重力mg、垂直框面向上的支持力F N、沿框面向上的安培力F安及沿框面的静摩擦力F f.金属棒静止在框架上时,静摩擦力F f的方向可能沿框面向上,也可能沿框面向下,需分两种情况考虑:(1)当滑动变阻器R取值较大时,I较小,安培力F安较小,在金属棒重力分量mg sin θ作用下金属棒有沿框面下滑的趋势,金属棒所受静摩擦力F f沿框面向上,受力情况如图所示.此时金属棒刚好不下滑,满足平衡条件:B ER max l+μmg cos θ-mg sin θ=0解得R max=BElmg(sin θ-μcos θ)=8.0 Ω(2)当滑动变阻器R取值较小时,I较大,安培力F安较大,会使金属棒产生上滑的趋势,因此金属棒所受静摩擦力F f 沿框面向下,如图所示.此时金属棒刚好不上滑,满足平衡条件:B E R min l -μmg cos θ-mg sin θ=0 解得R min =BElmg (sin θ+μcos θ)=1.4 Ω所以要使金属棒静止在框架上,滑动变阻器R 的取值范围为1.4 Ω≤R ≤8.0 Ω10.如图9所示,在坐标系xOy 中,第一象限内充满着两个匀强磁场a 和b ,OP 为分界线,在区域a 中,磁感应强度为2B ,方向垂直纸面向里;在区域b 中,磁感应强度为B ,方向垂直纸面向外,P 点坐标为(4l,3l ).一质量为m 、电荷量为q 的带正电的粒子从P 点沿y 轴负方向射入区域b ,经过一段时间后,粒子恰能经过原点O ,不计粒子重力.(sin 37°=0.6,cos 37°=0.8).求:图9(1)粒子从P 点运动到O 点的时间最少是多少? (2)粒子运动的速度可能是多少? 答案 (1)53πm 60qB (2)25qBl 12nm(n =1,2,3,…)解析 (1)设粒子的入射速度为v ,用R a 、R b 、T a 、T b 分别表示粒子在磁场a 区和b 区运动的轨道半径和周期,则:R a =m v 2qB ,R b =m v qB ,T a =2πm 2qB =πm qB ,T b =2πmqB粒子先从b 区运动,后进入a 区运动,然后从O 点射出时,粒子从P 运动到O 点所用时间最短.如图所示. tan α=3l 4l =34,得α=37°粒子在b 区和a 区运动的时间分别为:t b =2(90°-α)360°T b , t a =2(90°-α)360°T a故从P 到O 时间为 t =t a +t b =53πm60qB. (2)由题意及图可知n (2R a cos α+2R b cos α)=(3l )2+(4l )2 解得:v =25qBl12nm (n =1,2,3,…).。
磁场对运动电荷的作用

洛仑兹力只能改变电荷运动的速度方向, 不能改变速度的大小。
显像管的工作原理
电子束受到洛伦兹力而偏转 如图所示
(1)要是电子打在A点,偏
转磁场应该沿什么方向?
(2)要是电子打在B点,偏
转磁场应该沿什么方向? (3)要是电子束打在荧光屏
上的位置由中心O逐渐向A点
移动,偏转磁场应该怎样变 化?
课堂练习
在演示仪中可以观察到,没有磁场时,电子束是直进 的,外加磁场后,电子束的径迹变成圆形。磁场的强 弱和电子的速度都能影响圆的半径。
左:直线
右:圆形
洛伦兹力与电场力的区别:
1.产生: 电场对运动电荷、静止电荷都有电场力的作用 磁场只对运动电荷才有磁场力的作用
2.方向: 电场力的方向与电场方向平行,正电荷的电场力方向就
1.答:由现象知这束射线含有不 同的粒子。其中向左的射线为带 正电的粒子组成;中间的射线为 不带电粒子组成;向右的射线为 带负电的粒子组成。
课堂练习
F F
F
F
课堂练习
3.答:带电粒子在磁场中径迹弯曲、成螺旋形是由于 受到洛伦兹力的作用而使运动方向发生改变造成的。 两个运动的具有相反电荷的粒子在同一磁场中所受的 洛伦兹力方向相反,因此它们的径迹是一对相反绕向 的螺旋线。
洛伦兹力的方向
下图中电子束的偏转方向画的方向正确吗?
洛伦兹力一定垂直于磁感应强度B 和粒子速度v 。
F⊥v, F⊥B ,
F⊥ v、B相交所确定的平面
洛伦兹力的大小
F
- V0
F Bv
当速度v的方向与磁感应 强度B的方向垂直时:
F qvB
洛仑兹力F的大小等于电
B
荷量q、速度v、磁感应
强度B三者的乘积
【高中物理】磁场基本性质磁场对电流的作用

【高中物理】磁场基本性质磁场对电流的作用【高中物理】磁场基本性质、磁场对电流的作用一.教学内容:1.磁场基本性质2.磁场对电流的作用【要点读取】磁场基本性质(一)磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可以归咎于运动电荷之间通过磁场而出现的相互作用.(二)磁感线为了叙述磁场的高低与方向,人们在磁场中画出来的一组存有方向的曲线.1、疏密表示磁场的强弱.2、每一点切线方向则表示该点磁场的方向,也就是磁感应强度的方向.3、是闭合的曲线,在磁体外部由n极至s极,在磁体的内部由s极至n极.磁线不相切不相交。
4、坯强磁场的磁感线平行且距离成正比.没图画出来磁感线的地方不一定没磁场.5、安培定则:拇指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点的切线方向。
*记诵常用的几种磁场的磁感线:(三)磁感应强度1、磁场的最为基本的性质就是对放进其中的电流或磁极有力的促进作用,电流旋转轴磁场时受到磁场力最小,电流与磁场方向平行时,磁场力为零。
2、在磁场中垂直于磁场方向的通电导线受到的磁场力f跟电流强度i和导线长度l 的乘积il的比值,叫做通电导线所在处的磁感应强度.①则表示磁场高低的量.就是矢量.②大小:(电流方向与磁感线垂直时的公式).③方向:左手定则:就是磁感线的切线方向;就是大磁针n极受力方向;就是大磁针恒定时n极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号t.⑤点定b定:就是说磁场中某一点的定了,则该处磁感应强度的大小与方向都就是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的共振:空间某点如果同时存有两个以上电流或磁体唤起的磁场,则该点的磁感应强度就是各电流或磁体在该点唤起的磁场的磁感应强度的矢量和,满足用户矢量运算法则。
2014高考物理大二轮专题复习课件:磁场对电流和运动电荷的作用

专题六 学案10
突破练习 4.彭老师在课堂上做了一个演示实验:装置如 图 6 所示,在容器的中心放一个圆柱形电极, 沿容器边缘内壁放一个圆环形电极,把 在容器内放 入液体,将该容器放在磁场中,液体就会旋 图6 转起来.王同学回去后重复彭老师的实验步骤,但液体并 没有旋转起来.造成这种现象的原因可能是,该同学在实 验过程中 A.将磁铁的磁极接反了 B.将直流电源的正负极接反了 C.使用的电源为 50 Hz 的交流电源 D.使用的液体为饱和食盐溶液 ( )
本 学 案 栏 目 开 关
的电流. a、O、b 在 M、N 的连线上,O 为
图1
MN 的中点,c、d 位于 MN 的中垂线上,且 a、b、c、d 到 O 点的距离均相等,关于以上几点处的磁场,下列说法正确 的是 A.O 点处的磁感应强度为零 B.a、b 两点处的磁感应强度大小相等,方向相反 C.c、d 两点处的磁感应强度大小相等,方向相同 D.a、c 两点处磁感应强度的方向不同 ( )
专题六 学案10
C.若 a 接负极, b 接正极,e 接正极, f 接负极,则 L 向左 滑动
本 学 案 栏 目 开 关
D.若 a 接负极, b 接正极,e 接负极, f 接正极,则 L 向左 滑动
审题突破 ①由螺线管中的电流方向判断产生的磁场方向. ②由导线中的电流方向,利用左手定则判断受力方向.
答案 A
本 学 案 栏 目 开 关
专题六 学案10
6.在倾角 θ=30° 的斜面上,固定一金属框, 宽 l=0.25 m,接入电动势 E=12 V、内阻 不计的电池.垂直框面放置一根质量 m=
本 学 案 栏 目 开 关
0.2 kg 的金属棒 ab,它与框架间的动摩擦 6 因数 μ= ,整个装置放在磁感应强度 B 6
高考物理新课标件磁场对运动电荷的作用

霍尔效应原理及应用
霍尔效应原理
当电流垂直于外磁场通过导体时,在 导体的垂直于磁场和电流方向的两个 端面之间会出现电势差,这一现象称 为霍尔效应。
霍尔元件
应用领域
霍尔效应在电子技术、自动化技术、 汽车技术等领域有广泛应用,如电子 点火器、无触点开关、位置传感器等 。
2. 调整磁场强度和电荷速度 时,要确保测量准确。
3. 多次重复实验,减小误差 。
数据处理与结果分析
数据处理
根据实验数据,计算电荷在磁场中的 偏转角度和半径,进而得到洛伦兹力 的大小和方向。
结果分析
通过比较实验数据和理论预测值,验 证洛伦兹力的存在并探究其与速度、 磁场强度的关系。同时,分析实验误 差来源,提出改进意见。
利用霍尔效应制成的元件称为霍尔元 件,可用于测量磁场、电流等物理量 。
XX
PART 03
典型问题分析与求解方法
REPORTING
判断带电粒子所受洛伦兹力方向
左手定则
伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感 线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线 在磁场中所受安培力的方向。
XX
高考物理新课标件磁 场对运动电荷的作用
汇报人:XX
20XX-01-16
REPORTING
目录
• 磁场与运动电荷基本概念 • 磁场对运动电荷作用机制 • 典型问题分析与求解方法 • 实验探究:验证洛伦兹力存在和性质 • 知识拓展:其他相关物理现象和规律 • 总结回顾与高考备考建议
XX
PART 01
等离子体振荡和波动现象
磁场对电荷运动的影响

磁场对电荷运动的影响磁场是由电流产生的。
当电荷运动时,它会产生一个磁场,而同时该电荷也会受到外部磁场的作用。
在本文中,我们将探讨磁场对电荷运动的影响。
1. 磁力的作用磁场可以对电荷施加力,这种力称为磁力。
磁力的大小和方向由洛伦兹力定律确定。
洛伦兹力定律表明,磁力的大小与电荷的大小、电荷的运动速度以及磁场的强度和方向有关。
磁力的方向垂直于电荷的运动轨迹和磁场的方向,符合右手定则。
2. 磁场对带电粒子的弯曲轨迹当带电粒子穿过磁场时,由于受到磁力的作用,其运动轨迹会发生弯曲。
这种弯曲轨迹被称为洛伦兹力的曲线。
3. 磁场对电子轨道的影响在原子中,电子绕绕原子核运动,形成电子轨道。
在有磁场的情况下,电子的轨道将受到磁力的作用,导致其轨道的形状和方向发生改变。
这种现象称为塞曼效应。
4. 磁场对电磁感应的影响磁场还可以影响电磁感应现象。
当一个导体运动于磁场中,产生感应电动势时,会产生电流。
这种现象被称为磁感应。
5. 磁场对电子运动速度的限制在磁场中,电子受到磁力的作用,会发生向心力。
这种向心力会限制电子的运动速度和轨道半径。
当向心力与电子的离心力平衡时,电子将保持稳定的轨道。
6. 磁场对电子束的聚焦在粒子加速器中,利用磁场可以对电子束进行聚焦。
磁场可以使电子束在加速器中保持稳定的轨道,同时减小束斑的扩散,提高加速效率。
总结:磁场对电荷运动有着显著的影响。
磁力可以使电荷的运动轨迹发生弯曲,磁场也可以改变电子的轨道形状和方向。
此外,磁场还对电磁感应产生影响,限制电子运动速度,并对电子束的聚焦起到重要作用。
对磁场与电荷运动的关系的深入了解,对于电磁学的研究和应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题六 磁 场
训练10 磁场对电流和运动电荷的作用
一、单项选择题
1.(2012·河南焦作市一模)欧姆在探索导体的导电规律的时候,没有电流表,他利用小磁针的偏转检测电流,具体的做法是:在地磁场的作用下,处于水平静止的小磁针上方,平行于小磁针水平放置一直导线,当该导线中通有电流的时候,小磁针就会发生偏转;当通过该导线的电流为I 时,发现小磁针偏转了30°,由于直导线在某点产生的磁场与通过直导线的电流成正比,当他发现小磁针偏转了60°时,通过该导线的电流为
( ) A .3I B .2I C.3I
D .I
2.(2010·上海单科·13)如图1所示,长为2l 的直导线折成边长相等,夹角为60°的V 形,并置于与其所在平面相垂直的匀强磁场中,磁感应强度为B ,当在该导线中通以电流强度为I 的电流时,该V 形通电导线受到的安培力大小为
(
)
图1
A .0
B .0.5BI l
C .BI l
D .2BI l
3.(2012·安徽理综·19)如图2所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带
电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v
3
,仍从A 点沿原方
向射入磁场,不计重力,则粒子在磁场中的运动时
间变为
图2
A.1
2Δt B .2Δt C.1
3
Δt D .3Δt 4.(2012·福建厦门市高中毕业班适应性考试18题)显像管原理的示意图如图3所示,当
没有磁场时,电子束将打在荧光屏正中的O 点,安装在管径上的偏转线圈可以产生磁场,使电子束发生偏转.设垂直纸面向里的磁场方向为正方向,若使高速电子流打在荧光屏上的位置由a 点逐渐移动到b 点,下列磁场的变化能够使电子发生上述偏转的是
图
3
5.(2012·山东德州市一模)如图4所示,带负电的物块A 放在足够长的不带电的绝缘小车B 上,两者均保持静止,置于垂直于纸面向里的匀强磁场中,在t =0时刻用水平恒力F 向左推小车B .已知地面光滑,AB 接触面粗糙,A 所带电荷量保持不变,下列四图中关于A 、B 的v -t 图象大致正确的是
(
)
图
4
二、双项选择题
6.(2012·河北衡水市中学调研)如图5所示,平行于纸面水平向右的匀强磁场,磁感应
强度B 1=1 T .位于纸面内的细直导线,长L =1 m ,通有I =1 A 的恒定电流.当导线与B 1成60°夹角时,发现其受到的安培力为零,则该区域同时存在的另一匀强磁场的磁感应强度B 2的可能值是
(
)
图5
A.1
2 T B.22 T C .1 T D.
3 T
7.(2012·广东汕头市质量测评19题)如图6为磁流体发电机的原理图,等离子体束(含有正、负离子)以某一速度垂直喷射入由一对磁极CD 产生的匀强磁场中,A 、B 是一对平行于磁场放置的金属板.稳定后电流表中的电流从“+”极流向“-”极,由此可知 ( )
图6
A .D 磁极为N 极
B .正离子向B 板偏转
C .负离子向
D 磁极偏转
D .离子在磁场中的偏转过程洛伦兹力对其不做功 8.(2012·辽宁丹东市四校协作体一模20题)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D 形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都
能得到加速,两D 形金属盒处于垂直于盒底的匀强磁场中,如图7所示.设D 形盒半径为R .若用回旋加速器加速质子时,匀强磁场的磁感应强度为B ,高频交流电频率为f .则下列说法正确的是
( )
图7
A .质子被加速后的最大速度不可能超过2πfR
B .质子被加速后的最大速度与加速电场的电压大
小无关
C .只要R 足够大,质子的速度可以被加速到任意值
D .不改变B 和f ,该回旋加速器也能用于加速α粒子
9.(2012·江苏单科·9)如图8所示,MN 是磁感应强度为B 的匀强磁场的边界.一质量为m 、电荷量为q 的粒子在纸面内从O 点射入磁场.若粒子速度为v 0,最远能落在边界上的A 点.下列说法正确的有
(
)
图8
A .若粒子落在A 点的左侧,其速度一定小于v 0
B .若粒子落在A 点的右侧,其速度一定大于v 0
C .若粒子落在A 点左右两侧d 的范围内,其速度不可能小于v 0-qBd
2m
D .若粒子落在A 点左右两侧d 的范围内,其速度不可能大于v 0+qBd
2m
三、简答题
10.如图9所示,在x <0与x >0的区域中,存在磁感
应强度大小分别为B 1与B 2的匀强磁场,磁场方向均垂直于纸面向里,且B 1>B 2.一个带负电的粒子从坐标原点O 以速度v 沿x 轴负方向射出,要使该粒子经过一段时间后又经过O 点,B 1与B 2的比值应满足什么条件?
图9
11.(2012·河南洛阳市五校联考25题)如图10所示,xOy 平面内的圆O ′与y 轴相切于坐标
原点O ,在圆形区域内有与y 轴平行的匀强电场和垂直于纸面的匀强磁场(图中未画出),一个带电粒子(重力不计)从原点O 沿x 轴正方向以一定的速度进入场区,恰好沿x 轴做匀速直线运动而穿过场区.若撤去磁场,只保留电场,其它条件不变,粒子由M 点穿出场区,MO ′与x 轴的夹角α=60°.
若撤去电场只保留磁场,其它条件不变,粒子从N 点穿过场区,O ′N 与x 轴的夹角为β,求β
.
图10
12.(2012·湖南名校联考25题)如图11所示,在xOy 平面的第Ⅰ象限内,有垂直纸面向外
的匀强磁场,在第Ⅳ象限内,有垂直纸面向里的匀强磁场,磁感应强度大小均为B .P 点是x 轴上的一点,横坐标为x 0.现在原点O 处放置一粒子放射源,能沿xOy 平面,以与x 轴成45°角的恒定速度v 0向第一象限发射某种带正电的粒子.已知粒子第1次偏转后与x 轴相交于A 点,第n 次偏转后恰好通过P 点,不计粒子重力.求:
图11
(1)粒子的比荷q
m
;
(2)粒子从O 点运动到P 点所经历的路程和时间; (3)若全部撤去两个象限的磁场,代之以在xOy 平面内加上与速度v 0垂直的匀强电场(图中没有画出),也能使粒子通过P 点,求满足条件的电场的场强大小和方向.
答案
1.A 2. C 3.B 4.A 5.C 6.CD 7.AD 8.AB
9.BC 10.
B 2B 1=n
n +1
(n =1,2,3,…) 11.2tan -1
49
3 12.(1)
2n v 0x 0B (2)2πx 0
4
2πx 0
4v 0
(3)2B v 0
n 垂直v 0指向第Ⅳ象限。