中国古代数学问题.

合集下载

中国古代最著名的数学题

中国古代最著名的数学题

中国古代最著名的数学题
中国古代最著名的数学题有:
1.韩信点兵问题:韩信点兵,原来有1500名士兵,打完战后不知道士兵总数。

只知道士兵若三人一组余两人;五人一组余三人;七人一组余四人。

请问,总共有多少士兵?
2.鸡兔同笼问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
3.物不知数问题:有物不知其数,三三数之余二,五五数之余三,七七数之余二。

问物几何?
4.今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。

大鼠日自倍,小鼠日自半:有一堵十尺厚的墙,两只老鼠从两边向中间打洞。

大老鼠第一天打一尺,小老鼠也是一尺。

大老鼠每天的打洞进度是前一天的一倍,小老鼠每天的进度是前一天的一半。

问它们几天可以相逢,相逢时各打了多少。

中国古代数学趣题

中国古代数学趣题

中国古代数‎学1. 及时梨果元代数学家‎朱世杰于1‎303年编‎著的《四元玉鉴》中有这样一‎道题目:九百九十九‎文钱,及时梨果买‎一千,一十一文梨‎九个,七枚果子四‎文钱。

问:梨果多少价‎几何?此题的题意‎是:用999文‎钱买得梨和‎果共100‎0个,梨11文买‎9个,果4文买7‎个。

问买梨、果各几个,各付多少钱‎? 解:梨每个价:11÷9=911(文) 果每个价:4÷7=74(文) 果的个数:(911×1000-999)÷(911-74)=343(个) 梨的个数:1000-343=657(个)梨的总价:911×657=803(文) 果的总价:74×343=196(文)2.两鼠穿墙我国古代数‎学典籍《九章算术》第七章“盈不足”中有一道两‎鼠穿墙问题‎:今有垣厚五‎尺,两鼠对穿,大鼠日一尺‎,小鼠也日一‎尺。

大鼠日自倍‎,小鼠日自半‎。

问何日相逢‎,各穿几何?今意是:有厚墙5尺‎,两只老鼠从‎墙的两边相‎对分别打洞‎穿墙。

大老鼠第一‎天进一尺,以后每天加‎倍;小老鼠第一‎天也进一尺‎,以后每天减‎半。

问几天后两‎鼠相遇,各穿几尺?解:第一天,1+1=2尺 还有3尺第二天,2+0.5=2.5尺 还有0.5尺第三天,解:设还需X 天‎。

(4+0.25)X=0.5 X=172 172天=2小时49‎分 在第三日凌‎晨2时49‎分相逢,相逢时大老‎鼠穿 3.47尺,小老鼠穿 1.53尺。

3.隔壁分银只闻隔壁客‎分银,不知人数不‎知银,四两一份多‎四两,半斤一份少‎半斤。

试问各位能‎算者,多少客人多‎少银?(注:旧制1斤=16两,半斤=8两)此题是民间‎算题,用方程解比‎较方便。

解:设客人为x‎人。

4x+4=8x-8x=34×3+4=16(两)答:客人3人,银16两。

4.李白打酒李白街上走‎,提壶去打酒‎;遇店加一倍‎,见花喝一斗‎;三遇店和花‎,喝光壶中酒‎。

中国古代数学趣题

中国古代数学趣题

中国古代数学1.及时梨果元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:九百九十九文钱,及时梨果买一千,一十一文梨九个,七枚果子四文钱。

问:梨果多少价几何?此题的题意是:用999文钱买得梨和果共1000个,梨11文买9个,果4文买7个。

问买梨、果各几个,各付多少钱?解:梨每个价:11÷9=911(文)果每个价:4÷7=74(文)果的个数:(911×1000-999)÷(911-74)=343(个)梨的个数:1000-343=657(个)梨的总价:911×657=803(文)果的总价:74×343=196(文)2.两鼠穿墙我国古代数学典籍《九章算术》第七章“盈不足”中有一道两鼠穿墙问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺。

大鼠日自倍,小鼠日自半。

问何日相逢,各穿几何?今意是:有厚墙5尺,两只老鼠从墙的两边相对分别打洞穿墙。

大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半。

问几天后两鼠相遇,各穿几尺?解:第一天,1+1=2尺还有3尺第二天,2+0.5=2.5尺还有0.5尺第三天,解:设还需X 天。

(4+0.25)X=0.5 X=172172天=2小时49分在第三日凌晨2时49分相逢,相逢时大老鼠穿 3.47尺,小老鼠穿1.53尺。

3.隔壁分银只闻隔壁客分银,不知人数不知银,四两一份多四两,半斤一份少半斤。

试问各位能算者,多少客人多少银?(注:旧制1斤=16两,半斤=8两)此题是民间算题,用方程解比较方便。

解:设客人为x 人。

4x +4=8x -8x=34×3+4=16(两)答:客人3人,银16两。

4.李白打酒李白街上走,提壶去打酒;遇店加一倍,见花喝一斗;三遇店和花,喝光壶中酒。

试问酒壶中,原有多少酒?这是一道民间算题。

题意是:李白在街上走,提着酒壶边喝边打酒,每次遇到酒店将壶中酒加一倍,每次遇到花就喝去一斗(斗是古代容量单位,1斗=10升),这样遇店见花各3次,把酒喝完。

中国古代经典数学题

中国古代经典数学题

中国古代经典数学题
中国古代经典数学题有很多,以下是其中的一些例子:
1. 《孙子算经》中的“百钱买百鸡”问题:一个农夫用100文钱去买100只鸡,其中公鸡5文钱一只,母鸡3文钱一只,小鸡1文钱三只,问该农夫如何购买才能恰好买到100只鸡并且花光所有的钱?
2. 《周髀算经》中的“鸡兔同笼”问题:有若干只鸡和兔子在一个笼子里,数目不知道,但是头数是已知的,若数总共有35个头,脚的总数有94只,求兔子和鸡各有多少只?
3. 《算经十书》中的“海岛问题”:有36个人,他们要穿过一座桥,桥上只能同时容纳两个人,且必须有灯才能够通过。

这36个人中有12个人可以在1分钟内穿过桥,24个人需要2分钟,在桥的这一端还有一盏30秒钟的灯,问这36个人最短需要多长时间才能全部通过桥?
这些问题都具有一定的难度,但又非常有趣,是中国古代数学智慧的体现。

中国古代数学名题

中国古代数学名题

數學名題欣賞中国古代数学名题1、雞兔同籠:今有雞兔同籠,上有35個頭,下有94只腳。

雞兔各幾隻?想:假設把35只全看作雞,每只雞2只腳,共有70只腳。

比已知的總腳數94只少了24只,少的原因是把每只兔的腳少算了2只。

看看24只裏面少算了多少個2只,便可求出兔的只數,進而求出雞的只數。

解決這樣的問題,我國古代有人想出更特殊的假設方法。

假設一聲令下,籠子裏的雞都表演“金雞獨立”,兔子都表演“雙腿拱月”。

那麼雞和兔著地的腳數就是總腳數的一半,而頭數仍是35。

這時雞著地的腳數與頭數相等,每只兔著地的腳數比頭數多1,那麼雞兔著地的腳數與總頭數的差等於兔的頭數。

我國古代名著《孫子算經》對這種解法就有記載:“上署頭,下置足。

半其足,以頭除足,以足除頭,即得。

”具體解法:兔的只數是94÷2-35=12(只),雞的只數是35-12= 23(只)。

2.韓信點兵:今有物,不知其數。

三三數之剩二,五五數之剩三,七七數之剩二。

問物幾何?這是我國古代名著《孫子算經》中的一道題。

意思是:一個數除以3餘2,除以5餘3,除以7餘2。

求適合這些條件的最小自然數。

想:此題可用枚舉法進行推算。

先順序排出適合其中兩個條件的數,再在其中選擇適合另一個條件的數。

3.三階幻方:把1—9這九個自然數填在九空格裏,使橫、豎和對角線上三個數的和都等於15。

想:1+9=10,2+8=10,3+7=10,4+6=10。

這每對數的和再加上5都等於15,可確定中心格應填5,這四組數應分別填在橫、豎和對角線的位置上。

先填四個角,若填兩對奇數,那麼因三個奇數的和才可能得奇數,四邊上的格裏已不可再填奇數,不行。

若四個角分別填一對偶數,一對奇數,也行不通。

因此,判定四個角上必須填兩對偶數。

對角線上的數填好後,其餘格裏再填奇數就很容易了。

4.兔子問題:十三世紀,義大利數學家倫納德提出下面一道有趣的問題:如果每對大兔每月生一對小兔,而每對小兔生長一個月就成為大兔,並且所有的兔子全部存活,那麼有人養了初生的一對小兔,一年後共有多少對兔子?想:第一個月初,有1對兔子;第二個月初,仍有一對兔子;第三個月初,有2對兔子;第四個月初,有3對兔子;第五個月初,有5對兔子;第六個月初,有8對兔子……。

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释中国古代名题

巧解民间数学趣题注释中国古代名题
巧解民间数学趣题注释中国古代名题是指在中国古代流传下来的一些有趣的数学题目,这些题目多以民间的形式存在,并且具有一定的知名度。

下面是一些中国古代名题的注释:
1. 百鸡问题:古代一位数学家提出了“百鸡问题”,即用100文钱买100只鸡,公鸡5文钱一只,母鸡3文钱一只,小鸡3只1文钱,问公鸡、母鸡、小鸡各多少只?这个问题是一个著名的线性方程问题,可以用代数的方法解答。

2. 田忌赛马:这是一个古代的竞赛问题,讲述了田忌与王良进行马赛的故事。

田忌的马分为上中下三等,王良的马都是中等马,王良提出了几次策略,让田忌赢得比赛。

这个问题可以通过比较马匹的优势和劣势,并选择合适的策略来解决。

3. 鸡兔同笼:这是一个古代的动物问题,描述了一只笼子里关了若干只鸡和兔子,头数共计74个,脚数共计214只。

问笼中有几只鸡和兔子?这个问题可以通过设变量、列方程的方法求解。

4. 古代数学名题《海岛求恨本寓言图》:这是一种数学谜题,通过一幅图案来描述一个故事,要求按照图案中的要求解答问题。

这个题目需要观察图案,推理题目的意义,并给出答案。

这些中国古代名题都是以日常生活中的实际问题为背景,通过数学的方法解决,不仅考验了思维能力,还培养了人们的逻辑
思维能力和数学技巧。

这些问题也一直在民间广泛传播,成为经典的数学问题之一。

中国古代数学应用题

中国古代数学应用题

中国古代数学应用题
1. 一座高塔上有10个人,塔外站着另外10个人,塔上的每个人每分钟能够掉下一根香烟蒂。

如果塔上的人将所有的香烟蒂都掉给塔外的人,问需要多长时间才能将塔上的10个人全部掉下塔外?
解法:塔上的每个人每分钟能掉下一根香烟蒂,所以10个人一共能掉10根香烟蒂。

塔上一共有10根香烟蒂,所以只需要1分钟就能将塔上的人全部掉下塔外。

2. 有一座长满花的山,山的一侧有个属性石,据说每年夏天都会带来好运。

一个人打算爬上山去找到属性石,他每天能够爬上山的一半距离,但每天夜晚会滑下山的1/4距离。

山高1000米,问这个人需要多少天才能够爬到山顶?
解法:第一天,这个人爬上了山的一半,即500米。

然后到了夜晚,滑下山的1/4,即125米。

第二天,这个人再次爬上剩下的一半,即375米。

然后到了夜晚,滑下山的1/4,即93.75米。

以此类推,每天爬上的距离是前一天剩余距离的一半,然后滑下山的1/4。

当他的爬升距离超过山高1000米时,就到达山顶。

经过28天,他能够到达山顶。

3. 有一只马,它每分钟能够跑200米,而兔子每分钟能够跑50米。

现在这只马追赶兔子,跑上10分钟后,距离兔子的距离是多少?
解法:马每分钟比兔子多跑150米。

在跑上10分钟后,马比
兔子多跑了1500米。

所以距离兔子的距离是1500米。

注意:这些是一些基于中国古代数学的简单应用题,实际上古代的数学应用远不止这些。

中国古代数学在代数、几何、概率等领域都有独特的贡献和应用。

数学中的中国传统文化问题大全

数学中的中国传统文化问题大全

数学中的中国传统文化一、算法问题1.用更相减损术求294和84的最大公约数时,需要做减法的次数为( )A.2 B.3C.4 D.5答案C解析(84,294)→(84,210)→(84,126)→(84,42)→(42,42),一共做了4次减法.2.如图所示的程序框图的算法思路来源于我国古代数学名着《九章算术》中的“更相减损术”,执行该程序框图,若输入的a,b分别为14,18,则输出的a为( )A.4 B.2C.0 D.14答案B解析由题意输出的a是18,14的最大公约数2,故选B.3.用辗转相除法求459和357的最大公约数,需要做除法的次数是( )A.1 B.2C.3 D.4答案C解析∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,需要做除法的次数是3.4.秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法,对于求一个n次多项式函数f n(x)=a n x n+a n-1x n-1+…+a1x+a0的具体函数值,运用常规方法计算出结果最多需要n次加法和n?n+1?2次乘法,而运用秦九韶算法由内而外逐层计算一次多项式的值的算法至多需要n次加法和n次乘法.对于计算机来说,做一次乘法运算所用的时间比做一次加法运算要长得多,所以此算法极大地缩短了CPU运算时间,因此即使在今天该算法仍具有重要意义.运用秦九韶算法计算f(x)=+4x5-x4+3x3-5x当x=3时的值时,最先计算的是( )A.-5×3=-15B.×3+4=C.3×33-5×3=66D.×36+4×35=1答案B解析f(x)=+4x5-x4+3x3-5x=((((+4)x-1)x+3)x+0)x-5)x,然后由内向外计算,最先计算的是×3+4=.5.若用秦九韶算法求多项式f(x)=4x5-x2+2当x=3时的值,则需要做乘法运算和加减法运算的次数分别为( )A.4,2 B.5,3C.5,2 D.6,2答案C解析∵f(x)=((((4x)x)x-1)x)x+2,∴乘法要运算5次,加减法要运算2次.6.已知函数f(x)=6x6+5,当x=x0时,用秦九韶算法求f(x0)的值,需要进行乘方、乘法、加法的次数分别为( )A.21,6,2 B.7,1,2C.0,1,2 D.0,6,1答案D解析∵f(x)=6x6+5,多项式的最高次项的次数是6,∴要进行乘法运算的次数是6.要进行加法运算的次数是1,运算过程中不需要乘方运算.7.中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的a依次为2,2,5,x,n均为2,则输出的s等于( )A.7 B.12C.17 D.34答案C解析第一次运算,a=2,s=2,n=2,k=1,不满足k>n;第二次运算,a=2,s=2×2+2=6,k=2,不满足k>n;第三次运算,a=5,s=6×2+5=17,k=3,满足k>n,输出s=17,故选C.8.用秦九韶算法求多项式f(x)=x3-3x2+2x-11的值时,应把f(x)变形为( )A.x3-(3x+2)x-11 B.(x-3)x2+(2x-11)C.(x-1)(x-2)x-11 D.((x-3)x+2)x-11答案D解析f(x)=x3-3x2+2x-11=((x-3)x+2)x-119.用秦九韶算法求函数f(x)=3x5-2x4+2x3-4x2-7当x=2的值时,v3的结果是( )A.4 B.10C.16 D.33答案C解析函数f(x)=3x5-2x4+2x3-4x2-7=((((3x-2)x+2)x-4)x)x-7,当x=2时,v0=3,v1=3×2-2=4,v2=4×2+2=10,v3=10×2-4=16.10.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2++2的值,当x=-2时,v1的值为( )A.1 B.7C.-7 D.-5答案 C解析∵f(x)=x6-5x5+6x4+x2++2=(((((x-5)x+6)x+0)x+1)x+x+2,∴v0=a6=1, v1=v0x+a5=1×(-2)-5=-7.11.利用秦九韶算法求多项式f(x)=-6x4+5x3+2x+6的值,当x=3时,v3的值为( )A.-486 B.-351C.-115 D.-339答案C解析f(x)=-6x4+5x3+2x+6=(((-6x+5)x+0)x+2)x+6,∴v0=a4=-6,v1=v0x+a3=-6×3+5=-13,v2=v1x+a2=-13×3+0=-39,v3=v2x+a1=-39×3+2=-115.12.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所着的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为4,3,则输出v的值为( )A.20 B.61C.183 D.548答案C解析由程序框图知,初始值:n=4,x=3,v=1,i=3,第一次循环:v=6,i=2;第二次循环:v=20,i=1;第三次循环:v=61,i=0;第四次循环:v=183,i=1.结束循环,输出当前v的值183.13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,那么孩子已经出生多少天?( )A.1 326 B.510 C.429 D.336答案B解析由题意满七进一,可得该图示为七进制数,化为十进制数为1×73+3×72+2×7+6=510.14.用秦九韶算法计算多项式f(x)=5x5+4x4+3x3+2x2+x+1,乘法运算次数为____________.加法运算次数为________.答案 5 5解析∵f(x)=((((5x+4)x+3)x+2)x+1)x+1,∴乘法要运算5次,加法要运算5次15.若f(x)=x4+3x3+x+1,用秦九韶算法计算f(π)时,需要乘法m次,加法n次,则m+n=________.答案6解析f(x)=x4+3x3+x+1=(((x+3)x)x+1)x+1,用秦九韶算法计算f(π)时,乘法运算与加法运算的次数和等于6.16.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x的不足近似值和过剩近似值分别为ba和dc(a,b,c,d∈N*),则b+da+c是x的更为精确的不足近似值或过剩近似值.我们知道π=59…,若令3110<π<4915,则第一次用“调日法”后得165是π的更为精确的过剩近似值,即3110<π<165,若每次都取最简分数,那么第四次用“调日法”后可得π的近似分数为________.答案22 717.我国古代数学名着《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在222…中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程2+x=x确定x=2,则1+11+11+…=________.答案1+52解析由题意,可令1+11+11+…=x,即1+1x=x,即x2-x-1=0,解得x=1+52(x=1-52舍),故1+11+11+…=1+52.18.用辗转相除法求840与1 764的最大公约数.答案 1 764=840×2+84,840=84×10+0,∴840与1 764的最大公约数是84.19.用更相减损术求440 与556的最大公约数.答案556-440=116,440-116=324,324-116=208,208-116=92,116-92=24,92-24=68,68-24=44,44-24=20,24-20=4,20-4=16,16-4=12,12-4=8,8-4=4,∴440与556的最大公约数4.20.用秦九韶算法求多项式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x当x=3时的值.答案f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)xv0=7,v1=7×3+6=27,v2=27×3+5=86,v3=86×3+4=262,v4=262×3+3=789,v5=789×3+2=2 369,v6=2 369×3+1=7 108,v7=7 108×3+0=21 324,∴f(3)=21 324,即当x=3时,函数值是21 324.21.(1)用辗转相除法求840与1 785的最大公约数;(2)用秦九韶算法计算函数f(x)=2x4+3x3+5x-4在x=2时的函数值.答案(1)1 785=840×2+105,840=105×8+0,∴840与1 785的最大公约数是105.(2)秦九韶算法如下:f(x)=2x4+3x3+5x-4=x(2x3+3x2+5)-4=x[x(2x2+3x)+5]-4=x{x[x(2x+3)]+5}-4,故当x=2时,f(x)=2×{2×[2×(2×2+3)]+5}-4=62.22.(1)用辗转相除法求779与247的最大公约数;(2)利用秦九韶算法求多项式f(x)=2x5+4x4-2x3+8x2+7x+4当x=3时的值.答案(1)779=247×3+38,247=38×6+19,38=19×2.故779与247的最大公约数是19;(2)把多项式改成如下形式:f(x)=2x5+4x4-2x3+8x2+7x+4=((((2x+4)x-2)x+8)x+7)x+4.按照从内到外的顺序,依次计算一次多项式当x=3时的值:v0=2,v1=v0x+4=2×3+4=10,v2=v1x-2=10×3-2=28,v3=v2x+8=28×3+8=92,v4=v3x+7=92×3+7=283,v5=v4x+4=283×3+4=853.所以当x=3时,多项式f(x)的值是853.23.(1)用辗转相除法求228与1 995的最大公约数;(2)用秦九韶算法求多项式f(x)=3x5+2x3-8x+5在x=2时的值.答案(1)1 995=228×8+171,228=171×1+57,171=57×3,因此57是1 995与228的最大公约数.(2)f(x)=3x5+2x3-8x+5=((((3x+0)x+2)x+0)x-8)x+5当x=2时,v0=3,v1=3×2=6,v2=6×2+2=14,v3=14×2=28,v4=28×2-8=48,v5=48×2+5=101,所以当x=2时,多项式的值是101.24.(1)用“更相减损术”求72和168的最大公约数;(2)用“辗转相除法”求98和280的最大公约数.答案(1)∵168-72=96,96-72=24,72-24=48,48-24=24,故72和168的最大公约数是24.(2)∵280=2×98+84,98=1×84+14,84=6×14,故98和280的最大公约数是14.25.用秦九韶算法求函数f(x)=x5+x3+x2+x+1当x=3时的函数值.答案f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1,当x=3时,v0=1,v1=v0×3+0=3;v2=v1×3+1=10;v3=v2×3+1=31;v4=v3×3+1=94;v5=v4×3+1=283,即x=3时的函数值为283.二、数列问题1.《九章算术》是我国古代的数学名着,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( )钱钱钱钱答案B解析依题意设甲、乙、丙、丁、戊所得钱分别为a-2d,a-d,a,a+d,a+2d,则由题意可知,a-2d+a-d=a+a+d+a+2d,即a=-6d,又a-2d+a-d+a+a+d+a+2d=5a=5,∴a=1,则a -2d =a -2×(-a 6)=43a =43.2.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”( )答案 B解析 设第十等人得金a 1斤,第九等人得金a 2斤,以此类推,第一等人得金a 10斤, 则数列{a n }构成等差数列,设公差为d ,则每一等人比下一等人多得d 斤金, 由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 8+a 9+a 10=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+24d =4,解得d =778, ∴每一等人比下一等人多得778斤金. 3.《张丘建算经》是公元5世纪中国古代内容丰富的数学着作,书中卷上第二十三问:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈.问日益几何?”其意思为“有个女子织布,每天比前一天多织相同量的布,第一天织五尺,一个月(按30天计)共织390尺.问:每天多织多少布?”已知1匹=4丈,1丈=10尺,估算出每天多织的布约有( ) A .尺 B .尺 C .尺 D .尺答案 A解析 设每天多织d 尺,由题意a 1=5,{a n }是等差数列,公差为d , ∴S 30=30×5+30×292d =390, 解得d ≈.4.《张丘建算经》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,第二日,第五日,第八日所织之和为十五尺,问第九日所织尺数为( ) A .7 B .9 C .11 D .13答案 D解析 设第一天织a 1尺,从第二天起每天比第一天多织d 尺, 由已知得⎩⎪⎨⎪⎧7a 1+7×62d =21,a 1+d +a 1+4d +a 1+7d =15,解得a 1=-3,d =2,∴第九日所织尺数为a 9=a 1+8d =-3+8×2=13.5.古代数学着作《九章算术》有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?” 意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这女子每天分别织布多少?”根据已知条件,可求得该女子第3天所织布的尺数为( )答案C解析由题意可得:每天织布的量组成了等比数列{a n},S5=5,公比q=2 ,a1?1-25?1-2=5,计算可得a1=531,所以a3=531×22=2031.6.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A.33% B.49%C.62% D.88%答案B解析由题意可得:每日的织布量形成等差数列{a n},且a1=5,a30=1,设公差为d,则1=5+29d,解得d=-4 29 .∴S10=5×10+10×92×(-429)=1 27029.S30=30×?5+1?2=90.∴该女子到第10日时,大约已经完成三十日织布总量的1 27029×190≈=49%.7.《张丘建算经》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今三十织迄,问织几何.”其意思为:有个女子不善于织布,每天比前一天少织同样多的布,第一天织五尺,最后一天织一尺,三十天织完,问三十天共织布( )A.30尺B.90尺C.150尺D.180尺答案B解析由题意可得,每日的织布量形成等差数列{a n},且a1=5,a30=1,所以S30=30×?5+1?2=90.8.在我国古代着名的数学专着《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.9日B.8日C.16日D.12日答案A解析 由题意知,良马每日行的距离成等差数列, 记为{a n },其中a 1=103,d =13; 驽马每日行的距离成等差数列, 记为{b n },其中b 1=97,d =-;设第m 天相逢,则a 1+a 2+…+a m +b 1+b 2+…+b m =103m +m ?m -1?×132+97m +m ?m -1?×?-?2=2×1 125,解得m =9(负值舍去).9.《九章算术》是我国古代第一部数学专着,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节,第3节,第8节竹子的容积之和为( ) 升 升 升 升答案 A解析 自上而下依次设各节容积为a 1,a 2,…a 9,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧2?a 2+a 3?=33a 8=4,得⎩⎨⎧a 2+a 3=32,a 8=43,所以a 2+a 3+a 8=32+43=176(升).10.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( ) A .24里 B .48里 C .96里 D .192里答案 C解析 由题意可知此人每天走的步数构成以12为公比的等比数列,由题意和等比数列的求和公式可得a 1[1-?12?6]1-12=378,解得a 1=192,∴第二天此人走了192×12=96里.11.中国古代数学着作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( ) A .24里B .12里C .6里D .3里答案 C解析 记每天走的路程里数为{a n },可知{a n }是公比q =12的等比数列,由S 6=378,得S 6=a 1?1-126?1-12=378,解得a 1=192,∴a 6=192×125=6.12.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,一头粗,一头细,在粗的一段截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .6斤 B .9斤 C .10斤 D .12斤答案 B解析 此问题构成一个等差数列{a n },设首项为2,则a 5=4,∴中间3尺的重量为3a 3=a 1+a 52×3=2+42×3=9(斤), 故选B.13.我国古代数学着作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( ) A .6斤 B .9斤 C .斤 D .12 斤答案 A解析 依题意,金箠由粗到细各尺构成一个等差数列, 设首项a 1=4,则a 5=2,由等差数列性质得a 2+a 4=a 1+a 5=6, 所以第二尺与第四尺的重量之和为6斤.14.《算法通宗》是我国古代内容丰富的数学名书,书中有如下问题:“远望巍巍塔七层,红灯向下倍加增,共灯三百八十一,请问塔顶几盏灯?”其意思为“一座塔共七层,从塔顶至塔底,每层灯的数目都是上一层的2倍,已知这座塔共有381盏灯,请问塔顶有几盏灯?”( ) A .3 B .4 C .5 D .6答案 A解析 由题意设塔顶有a 盏灯,由题意由上往下数第n 层就有2n -1·a 盏灯,∴共有(1+2+4+8+16+32+64)a =381盏灯, 即1×?1-27?1-2a =381.解得a =3.15.我国古代数典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”上述问题中,两鼠在第几天相逢.( ) A .3 B .4 C .5 D .6答案 B解析 由题意可知,大老鼠每天打洞的距离是以1为首项,以2为公比的等比数列, 前n 天打洞之和为1-2n1-2=2n-1,同理,小老鼠前n 天打洞之和为1-?12?n1-12=2-12n -1,∴2n-1+2-12n -1=10,解得n ∈(3,4),取n =4. 即两鼠在第4天相逢.16.如图是谢宾斯基(Sierpinsiki)三角形,在所给的四个三角形图案中,着色的小三角形个数构成数列{a n }的前4项,则{a n }的通项公式可以是( ) A .a n =3n -1B .a n =2n -1C .a n =3nD .a n =2n -1答案 A解析 着色的小三角形个数构成数列{a n }的前4项,分别为a 1=1,a 2=3,a 3=3×3=32,a 4=32×3,因此{a n }的通项公式可以是a n =3n -1.17.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列.上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案6766解析 设该数列{a n }的首项为a 1,公差为d ,依题意⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=3,a 7+a 8+a 9=4,即⎩⎪⎨⎪⎧4a 1+6d =3,3a 1+21d =4,解得⎩⎨⎧a 1+7d =43,d =766,则a 5=a 1+4d =a 1+7d -3d =43-2166=6766.18.华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示________?(如图)答案395解析图片中记录的是自然数乘以9的运算结果,左列是被乘数,右列是该数乘以9的积数,经过分析可知:其中▽代表1,?代表10,代表60.所以表示60×6+10×3+5×1=395.19.在我国南宋数学家杨辉所着的《详解九章算法》(1261年)一书中,用如图A所示的三角形,解释二项和的乘方规律.在欧洲直到1623年以后,法国数学家布莱士·帕斯卡的着作(1655年)介绍了这个三角形.近年来国外也逐渐承认这项成果属于中国,所以有些书上称这是“中国三角形”(Chinese triangle),如图世纪德国数学家莱布尼茨发现了“莱布尼茨三角形”如图 B.在杨辉三角中相邻两行满足关系式:C r n+C r+1n=C r+1n+1,其中n是行数,r∈N.请类比上式,在莱布尼茨三角形中相邻两行满足的关系式是________.1 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1…C0n C1n…C r n…C n-1n C n n图A1 C1n+1C0n1C1n+1C1n…1C1n+1C r n…1C1n+1C n-1n1C1n+1C n n图B答案1C1n+1C r n=1C1n+2C r n+1+1C1n+2C r+1n+1解析类比观察得,莱布尼茨三角形的每一行都能提出倍数1C1n+1,而相邻两项之和是上一行的两者相拱之数,所以类比式子C r n+C r+1n=C r+1n+1,有1C1n+1C r n=1C1n+2C r n+1+1C1n+2C r+1n+1.20.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面用点或用小石子表示数.他们研究过如图所示的三角形数,将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n }.可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________.(用k 表示) 答案 (1)5 030 (2)5k ?5k -1?2解析 由题意可得a n =1+2+3+…+n =n ?n +1?2,n ∈N *,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15, 由上述规律可知:b 2k =a 5k =5k ?5k +1?2(k ∈N *), b 2k -1=a 5k -1=?5k -1??5k -1+1?2=5k ?5k -1?2,故b 2 012=b 2×1 006=a 5×1 006=a 5 030, 即b 2 012是数列{a n }中的第5 030项. 21.请认真阅读下列材料:“杨辉三角” (1261年)是中国古代重要的数学成就,它比西方的“帕斯卡三角”(1653年)早了300多年(如图1).在“杨辉三角”的基础上德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数),称为莱布尼兹三角形(如图2)1 1 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1… … 图1 … … 图2请回答下列问题:(1)记S n 为图1中第n 行各个数字之和,求S 4,S 7,并归纳出S n ; (2)根据图2前5行的规律依次写出第6行的数. 答案 (1)S 4=8=23;S 7=64=26; Sn =2n -1.(2)图中每个数字都是其两脚的数字和, 故第6行为16 130 160 160 130 16.三、空间几何体1.我国古代数学名着《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( )寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) A .1 B .2 C .3 D .4 答案 C解析 如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸. ∵积水深9寸,∴水面半径为12(14+6)=10寸,则盆中水的体积为13π×9(62+102+6×10)=588π(立方寸).∴平地降雨量等于588ππ×142=3(寸).故选C.2.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V =112×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(注:1丈=10尺)( ) A .3 B . C . D .答案 A解析 由题意,圆柱体底面的圆周长48尺,高11尺, ∵圆堡瑽(圆柱体)的体积V =112×(底面的圆周长的平方×高), ∴V =112×(482×11)=2 112,设底面圆的半径为R ,∴⎩⎪⎨⎪⎧2πR =48,πR 2×11=2 112,∴π=3.3.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈立方尺,π≈3),则圆柱底圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺答案 B解析 设圆柱形谷仓底面半径为r 尺,由题意得,谷仓高h=403尺.于是谷仓的体积V=πr2·h≈2 000×,解得r≈9.∴圆柱底圆周长约为2πr≈54尺=5丈4尺.4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也.又以高乘之,三十六成一”.该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈136L2h.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V≈275L2h相当于将圆锥体积公式中的π近似取为( )答案B解析由题意知275L2h≈13πr2h?275L2≈13πr2,而L=2πr,代入得π≈258.5.在《九章算术》中,将有三条棱互相平行且有一个面为梯形的五面体称之为羡除,现有一个羡除如图所示,面ABCD、面ABFE、面CDEF均为等腰梯形,AB∥CD∥EF,AB=6,CD=8,EF=10,EF到面ABCD的距离为3,CD与AB间的距离为10,则这个羡除的体积是( )A.110 B.116C.118 D.120答案D解析过A作AP⊥CD,AM⊥EF,过B作BQ⊥CD,BN⊥EF,垂足分别为P,M,Q,N,将一侧的几何体放到另一侧,组成一个直三棱柱,底面积为12×10×3=15.棱柱的高为8,∴V=15×8=120.故选D.6.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4π.后人导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,r为球的半径,也即正方形的棱长均为2r,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,棱长为2r的正方形的方盖差为V方盖差,则V方盖差V正等于( )答案C解析由题意,V方盖差=r3-18V牟=r3-18×4π×43×π×r3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r× r2-?22r?2=26r3,∴V方盖差V正=13r326r3= 2.7.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线,当其正视图与侧视图完全相同时,它的正视图和俯视图分别可能是( )A.a,b B.a,cC.c,b D.b,d答案A解析由直观图可知,其正视图与侧视图完全相同,则其只能是圆,这时其俯视图就是正方形加对角线(实线).故选A.8.刘徽在他的《九章算术注》中提出一个独特的方法来计算球体的体积:他不直接给出球体的体积,而是先计算另一个叫“牟合方盖”的立体的体积.刘徽通过计算,“牟合方盖”的体积与球的体积之比应为4∶π,即V牟:V球=4∶π.也导出了“牟合方盖”的18体积计算公式,即18V牟=r3-V方盖差,从而计算出V球=43πr3.记所有棱长都为r的正四棱锥的体积为V正,则( ) A.V方盖差>V正B.V方盖差=V正C.V方盖差<V正D.以上三种情况都有可能答案A解析由题意,V方盖差=r3-18V牟=r3-18×4π×43πr3=13r3,所有棱长都为r的正四棱锥的体积为V正=13×r×r× r2-?22r?2=26r3,∴V方盖差>V正.9.我国古代数学名着《数学九章》中有云:“今有木长二丈四尺,围之五尺.葛生其下,缠木两周,上与木齐,问葛长几何?”其意思为“圆木长2丈4尺,圆周为5尺,葛藤从圆木的底部开始向上生长,绕圆木两周,刚好顶部与圆木平齐,问葛藤最少长多少尺(注:1丈等于10尺)( )A.29尺B.24尺C.26尺D.30尺答案C解析 由题意,圆柱的侧面展开图是矩形,一条直角边(即木棍的高)长24尺,另一条直角边长5×2=10(尺),因此葛藤长242+102=26(尺).10.《九章算术》是我国古代内容极为丰富的数学名着,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为9尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .28斛 C .36斛 D .66斛答案 B解析 设圆锥的底面半径为r ,则π2r =9,解得r =18π, 故米堆的体积为14×13×π×(18π)2×5≈45,∵1斛米的体积约为立方, ∴堆放的米有45÷≈28斛.11.《九章算术》是我国古代着名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB =1尺,弓形高CD =1寸,估算该木材镶嵌在墙中的体积约为( ) (注:1丈=10尺=100寸,π≈,sin °≈513) A .600立方寸 B .610立方寸 C .620立方寸 D .633立方寸答案 D 解析 如图,AB =10(寸),则AD =5(寸),CD =1(寸),设圆O 的半径为x (寸),则OD =(x -1)(寸), 在Rt△ADO 中,由勾股定理可得52+(x -1)2=x 2, 解得x =13(寸). ∴sin∠AOD =AD AO =513, 即∠AOD ≈°,则∠AOB =45°.则弓形¼ACB 的面积S =12×π4×132-12×10×12 ≈(平方寸).则该木材镶嵌在墙中的体积约为V =×100 =633(立方寸).故选D.12.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90°榫卯起来,如图,若正四棱柱体的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为________.(容器壁的厚度忽略不计)答案41π解析由题意,该球形容器的半径的最小值为1236+4+1=412,∴该球形容器的表面积的最小值为4π·414=41π.13.沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时.如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8 cm,细沙全部在上部时,其高度为圆锥高度的23(细管长度忽略不计).(1)如果该沙漏每秒钟漏下 cm3的沙,则该沙漏的一个沙时为多少秒(精确到1秒)?(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度(精确到.答案(1)开始时,沙漏上部分圆锥中的细沙的高为H=23×8=163,底面半径为r=23×4=83,V=13πr2H=13π×(83)2×163=,V÷=1 986(秒).所以沙全部漏入下部约需1 986秒.(2)细沙漏入下部后,圆锥形沙堆的底面半径为4,设高为H′,V=13π×42×H′=1 02481π,H′=6427≈.锥形沙堆的高度约为 cm.14.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.(1)证明:PB⊥平面DEF.试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.(2)若面DEF与面ABCD所成二面角的大小为π3,求DCBC的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题9:我国古代数学名著《孙子算经》中记载 了一道题,大意是:求100匹马恰好拉了100片 瓦, 已知1匹大马能拉3片瓦,3匹小马能拉1片 瓦,问有多少匹大马、多少匹小马? 解:若设大马有x匹, 小马有y匹,那么可列方程组为
练习: “我问开店李三公,众客都来到店中, 一房七客多七客,一房九客一房空.” 那么有多少间房,有多少位客人?
300x+500/7 y=10000
例7.中国古代的数学专著《九章算术》有方程 问题:“五只雀、六只燕,共重一斤(等于16 两)雀重燕轻.互换其中一只,恰好一样重”, 则雀、燕的重量各为多少两?
例8:算筹是中国古代用来记数、列式和进行各种数与式 演算的一种工具.在算筹计数法中,以“立”,“卧”两 种排列方式来表示单位数目,表示多位数时,个位用立 式,十位用卧式,百位用立式,千位用卧式,以此类推. 《九章算术》的“方程”一章中介绍了一种用“算筹图” 解决一次方程组的方法.如图1,从左向右的符号中,前 两个符号分别代表未知数x,y的系数.因此,根据此图 可以列出方程:x+10y=26.请你根据图2列出方程 组 .
2、鸡兔同笼 今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
今有雉 兔同笼, 上有三十五头, 鸡头+兔头=35 下有九十四足, 鸡脚+兔脚=94 问鸡兔各几何?
(鸡)

法 2: 解:设鸡有x只,则兔有(35- x )只,由题意可列方程 为:
2x+4 (35 - x ) = 94 解此方程得: X=23 35 - x=12
12、清明巡园
解:设大船有x只, 则小船有(8- x )只, 由题意得 6x+4 (8- x )=38
清明巡园,共坐八船,
大船乘6人 小船乘4人
大船满六,满四小船,
38 学子, 满船坐观。
请问客家,大小几船?
学后深思
1、你认为列方程解古代算题的
障碍是什么?
答:读不懂文言文。
2、你认为列方程解应用题的 关键是什么?
古代数学类应用题
《周 髀 算 经》
《 九 章 算 术》
《孙 子 算 经》
《海 岛 算 经》
例:《百僧百馒》
一百馒头一百僧,大僧三个更无争, 小僧三人分一个,大小和尚得几丁?
意思是:
100个和尚分100个馒头, 大和尚 1人分 3个馒头, 小和尚 3人分 1个馒头。 大、小和尚各有多少人?
大和尚 25;小 和尚75.
解:良田买了 x 亩,则薄田买了(100-x)亩,根据题意列方程,得
500 300x+ (100-x)=10000 7
解这个方程,得
x=12.5
100-x=100-12.5=87.5(亩) 答:良田买了 12.5 亩,薄田买了 87.5 亩.
法2: 解:设购买善田X亩 ,购买恶田Y亩
X+y=100
解:设有 x 人,根据题意列方程,得 8x-3=7x+4 解这个方程,得 x=7 8x-3=8 7-3=53(钱) 答:有 7 人,物品的价格是 53 钱.
例6:今有善田一亩,价三百;恶田七亩,价五 百.今并买一顷,价钱一万,问善田、恶田各几 何?
分析:用300钱可以买1亩良田,用500钱可以买7亩薄田. 现在用10000钱买了1顷土地,问良田、薄田各买了多少亩? 等量关系:买良田用的钱+买薄田用的钱=10000
将x=36代入方程左边,得井深=8 尺 。
答:绳长36尺,井深8尺。
探究新解法
等量关系: (井深+4)× 3=绳长 (井深+1)× 4=绳长
解:设 井深 x尺,则由题意得 3(x +4)=4(x +1) x=8 将x=8代入方程左边得绳长=36 答:绳长36尺,井深8尺。
例4 、
《勤妇荡杯》
妇女河上荡杯,津吏问“杯何以多?” 妇人曰: “有客。”津吏曰:“客几何?” 妇人曰:“两 人共饭,三人共羹,四人共肉,凡用杯六十五。不 知客几何?”
题 目 大 意 是 :
一个妇女在河边洗碗,河官问:“洗多少碗? 有多少客 ?”妇女答:“洗 65 只碗,客人 二人共用一只饭碗,三人共用一只汤碗,四 人共用一只肉碗。你说有多少客人用餐?”
60
例5:今有共买物,人出八,盈三;人出七, 不足四。问人数、物价几何?
分析:几个人一起去购买物品,如果每人出8钱,则剩 余3钱;如果每人出7钱,则差4钱。问有多少人,物品 的价格是多少?
例:周瑜寿属 而立之年督东吴,早逝英年两位数; 十比个位正小三,个位六倍与寿符; 哪位同学算得快,多少年寿属周瑜?
设个位数字为x,十位数字y
x-y=3 6x=x+10y 36
例10:《九章算术》中卷八第一题:“今有上禾 三秉,中禾二秉,下禾一秉,实三十九斗;上禾 二秉,中禾三秉,下禾一秉,实三十四斗;上禾 一秉,中禾二秉,下禾三秉,实二十六斗.问上 中下禾实一秉各几何?
清明巡园,共坐八船, 大船满六,满四小船,
大船乘6人 小船乘4人
38 学子, 满船坐观。
请问客家,大小几船?
寺庙朗朗,溪流畅畅, 龟鹤共舞,4 0 头 扬, 鹤腿龟腿,1 1 2 偎。 请问裟家,龟鹤几何?
11、龟鹤共 舞 解:设鹤有x只,
则龟有(40-x)只, 由题意得 2x+4(40-x)=112
设:上禾一秉为x斗 中禾一秉为y斗 下禾一秉为z斗
3x+2y+z=39 2x+3y+z=34 X+2y+3z=26
反思
1、列方程(方程组)解古算应用题, 第一步应该做什么? 2、你能总结列方程 (方程组) 解应用 题的一般步骤吗?
3、你认为列方程 (方程组) 解应用题 最关键的一步是什么?
寺庙朗朗,溪流畅畅, 龟 鹤共舞,4 0 头 扬, 鹤腿龟腿, 1 1 2 偎。 请问裟家,龟鹤几何?
答:笼中有鸡23只,兔12只。
例 3:
《折绳测井》
以绳测井。若将绳三折测之,绳多四 尺;若将绳四折测之,绳多一尺。绳 长、井深各几何?
题 目 大 意 是 :
用绳子测水井深度,如果将绳子折成 三等份,井外余绳4尺;如果将绳子折 成四等份,井外余绳1尺。问绳长、井 深各是多少尺?
等量关系:
1 绳长的 3 — 4 = 井深 1 绳长的 4 — 1 = 井深 解:设绳长x尺,则由题意得 x x — 4= — 1 3 4 x = 36
答:找等量关系
相关文档
最新文档