运筹学实验指导书

合集下载

运筹学实验指导书(第1部分)

运筹学实验指导书(第1部分)

预备知识 WinQSB 软件操作指南[WinQSB 软件简介]QSB 是Quantitative Systems for Business 的缩写,早期的版本是在DOS 操作系统下运行的,后来发展成为在Windows 操作系统下运行的WinQSB软件,目前已经有 2.0 版。

该软件是由美籍华人Yih-Long Chang 和Kiran Desai 共同开发,可广泛应用于解决管理科学、决策科学、运筹学及生产管理等领域的问题。

该软件界面设计友好,使用简单,使用者很容易学会并用它来解决管理和商务问题,表格形式的数据录入以及表格与图形的输出结果都给使用者带来极大的方便,同时使用者只需要借助于软件中的帮助文件就可以学会每一步的操作。

[WinQSB 软件的基本操作]1. 安装与启动点击WinQSB 安装程序的Setup,指定安装目录后,软件自动完成安装。

读者在使用该软件时,只需要根据不同的问题,调用程序当中的不同模块,操作简单方便。

进入某个模块以后,第一项工作就是建立新问题或者打开已经存盘的数据文件。

在WinQSB 软件安装完成后,每一个模块都提供了一些典型的例题数据文件,使用者可以先打开已有的数据文件,了解数据的输入格式,系统能够解决什么问题,结果的输出格式等内容。

2.数据的录入与保存数据的录入可以直接录入,同时也可以从Excel 或Word 文档中复制数据到WinQSB。

首先选中要复制的电子表格中单元格的数据,点击复制,然后在WinQSB 的电子表格编辑状态下选择要粘贴的单元格,点击粘贴即可。

如果要把WinQSB 中的数据复制到office 文档中,选中WinQSB 表格中要复制的单元格,点击Edit/Copy,to clipboard 即可。

数据的保存,只需要点击File/Save as 即可,计算结果的保存亦相同,只是注意系统以文本格式(*.txt)保存结果,使用者可以编辑该文本文件。

实验1 线性规划问题的WinQSB应用[实验目的]1.了解WinQSB软件的集成环境,掌握WinQSB集成环境的基本操作方法;2.掌握利用WinQSB求解LP问题的最优解,并进行灵敏度分析;3.学会对利用WinQSB求得结果的解释。

运筹学课程试验指导书09级

运筹学课程试验指导书09级

运筹学》课程实验指导书实验一线性规划问题模型的建立及求解1.实验目的和要求理解线性规划模型的基本思想,熟悉运筹学软件的安装及基本使用方法,能够使用运筹学软件对线性规划问题进行求解。

2.实验前准备复习教材第一、二、三、四、五、六章相关内容。

3.实验条件每名同学使用一台计算机。

小组同学相邻,方便讨论。

4.实验内容(1)熟悉运筹学软件的安装及基本使用方法。

(2)练习教材第二章习题8a,b 的数学模型,使用运筹学软件求解,分析输出数据。

(3)选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。

5.实验报告完成本次实验的报告,写清实验步骤及实验结果。

指定问题:问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800 和900,三种工件的数量分别为400、600 和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?问题二:某厂每日8 小时的产量不低于1800 件。

为了进行质量控制,计划聘请两种不同水平的检验员。

一级检验员的标准为:速度25件/ 小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15 件/ 小时,正确率95%,计时工资3 元/小时。

检验员每错检一次,工厂要损失 2 元。

为使总检验费用最省,该工厂应聘一级、二级检验员各几名?问题三:某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500 人日,春夏季4000 人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1 元/ 人日,秋冬季收入为1.8 元/ 人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养动物时每头奶牛投资400 元,每只鸡投资3 元。

养奶牛时每头需拨出1.5 公顷土地种饲草,并占用人工秋冬季100 人日,春夏季为50人日,年净收入400元/ 每头奶牛。

运筹学试验指导书

运筹学试验指导书

《运筹学》实验指导书课程代码:0410073课程名称:运筹学/ Operational Research开课院实验室:经济与管理学院实验中心适用专业:工商管理、物流、信息管理等专业教学用书:《运筹学》(《运筹学》孙萍等编,中国铁道出版社出版)第一部分实验课简介一、实验的地位、作用和目的及学生能力标准运筹学是一门应用科学,在教学过程中通过案例分析与研究并与现代计算机技术相结合,力求实现理论与实践相结合,优化理论与经济管理专业理论相结合。

实验,是《运筹学》课程中重要的实践环节。

通过实验,可弥补课堂理论教学中的不足,增加学生的感性知识;要使学生能掌握系统的管理科学中的整体优化和定量分析的方法,熟练运用运筹学程序,对实际问题和研究对象进行系统模拟。

二、试验内容应用Lindo6 .1版运筹学软件包,解决实际问题。

三、实验方式与基本要求1、实验方式:综合性实验预习要求:复习编程方法及线性规划、整数规划的算法,对实际问题和研究对象,构造数学模型,确定优化技术方法,设计出原始数据表格。

实验设备:台式电脑实验要求:按实验任务要求调试程序,程序执行结果应正确。

实验分组:1人/组2、基本要求①在实验室进行实验前,学生熟悉实验软件Lindo程序、操作方法等;②将程序调好后,将程序结果记录,并由实验教师检查后签字;③将数据及有关的参数等记录在已经设计好的原始数据表格中;④在一周内完成实验报告。

四、考核方式与实验报告要求学生进入实验室后签到,实验结束后,指导教师逐个检查并提问,根据学生操作、实验结果、回答问题情况及实验纪律及作风等方面给出学生成绩,再综合实验报告情况给出最后的成绩。

报告格式如附录。

第二部分Lindo背景及功能菜单简介一、Lindo简介1.Lindo简介:LINDO(Linear, INteractive, and Discrete Optimizer)是一种专门用于求解数学规划问题的软件包。

由于LINDO执行速度很快、易于方便输入、求解和分析数学规划问题。

运筹学实验指导书检查用

运筹学实验指导书检查用

工业工程专业运筹学实验指导书编著:曹阳华单位:机械与汽车学院2006.09实验一线性规划实验目的:使学生学会系统思考方法,掌握系统建模的方法,能够掌握对较简单的经济管理问题建立线性规划模型的技巧。

理解问题求解结果的经济意义,并能够应用运筹学软件求解实际问题。

实验要求:学生实验前应做好预习,明确实验目的和实验内容。

实验报告:实验报告包括以下内容:所建立的线性规划模型;上机计算结果,并附最终单纯形表。

实验内容:食用调和油生产计划食油厂精炼两种类型的原料油——菜籽油和花生油,并将精制油混合得到一种调和油产品。

生产流程如下图所示:菜籽油原料油来自两个产地,而花生原料油来自另外三个产地。

据预测,这5种原料油的价格从一至六月分别为:表1 五种原料油的价格(元/吨)成品调和油售价为11000元/吨。

菜籽油和花生油需要由不同的生产线来精炼。

菜籽油精练生产线的每月最大处理能力为200吨/月,花生油精炼生产线最大处理能力为250吨/月。

五种原料油都各自备有贮罐,每个产品食油的硬度有一定的技术要求,它取决于各种原料油的硬度以及混合比例。

产品食油的硬度与各种成分的硬度以及所占比例成线性关系(加权和)。

根据技术要求,产品食油的硬度必须不小于3.0而不大于6.0。

各种原料油的硬度见表2(精制过程不会影响硬度)。

表2 各种原料油的硬度(无量纲)假设在一月初,每种原料油都有500吨存贮而要求在六月底仍保持这样的贮备。

每月均在月初采购。

贮罐的容量均为1000吨,每吨原料油每月的存贮费用为300元(以月初罐里的油为计算标准,包括当月采购的油)。

而各种精制油以及产品无油罐可存贮。

精炼的加工费用可略去不计。

产品的销售没有任何问题。

问题1:根据表1预测的原料油价格,编制逐月各种原料油采购量、耗用量及库存量计划,使1~6月份的利润总和最大。

问题2:对于以下三种情况,分别编制逐月各种原料油采购量、耗用量及库存量计划,使本年内的利润最大。

1.如果每一个月所用的原料油不得多于三种。

运筹学winQSB实验指导书

运筹学winQSB实验指导书

实验指导书课程名称:运筹学实验总学时数:学时适用专业:物流工程专业一、安装指南一、运行中文件夹full中的文件,自动生成WinQSB应用程序,按照不同的需要选择子程序。

二、选用的子程序有:1)Linear and Integer Programming 线性计划与整数线性计划求解线性计划。

2)Network Modeling 网络模型求解运输问题、指派问题。

3)Dynamic Programming 动态计划求解动态计划问题,如最短路、背包问题、生产与存储问题。

二、具体步骤1、线性计划1)打开Linear and Integer Programming子程序,成立一个新文件,进入如下界面:2)选择相关选项,点击OK,进入输入界面,如:3)点击SOLVE PROBLEM,取得结果:4)分析结果,写实验报告。

二、运输问题和指派问题:1)打开Network Modeling子程序,成立一个新文件,进入如下界面:2)选择相关选项,点击OK,进入输入界面,如指派问题:3)点击SOLVE PROBLEM,取得结果:4)分析结果,写实验报告。

3、动态计划1)打开Dynamic Programming 动态计划,成立一个新文件,进入如下界面:2)选择相关选项,点击OK进入输入界面,如一个背包问题:3)点击Solve Problem,取得最优方案。

如上题目:4)分析结果,写实验报告。

三、实验题目1.线性计划问题:P11 例12.运输问题:P85例13.指派问题:P149 例124.背包问题:P218 例75.生产与存贮问题:P220 例86.最短路问题:P263 例11四、实验报告提交实验报告,格式文件。

附录:WINQSB软件指南QSB是Quantitative Systems for Business的缩写,该软件可应用于管理科学、决策科学、埃运筹学与生产运作管理等领域的问题求解,其主要功能模块如下:文件名程序功能ASA acceptance samling analysis 抽样分析AP aggregate planning 综合计划编制DA decision analysis 决策分析DP dynamic programming 动态计划FLL facility location and layout 设备场地布局FC forecasting and linear regression 预测与线性回归GP-IGP goal programming and integer linear goal programming 标计划与整数线性计划ITS inventory theory and systems 库存论与库存控制理论JOB job scheduling 作业调度、编制工作进度表LP-ILP linear programming and integer linear programming 线性计划与整数线性计划MKP Markov process 马尔可夫进程MRP material requirements planning 物料需求计划NET network modeling 网络模型NLP nonlinear programming 非线性计划PERT-CPM project scheduling 网络计划QP quadratic programming 二次计划QA queuing system simulation 排队分析QSS queuing system simulation 排队系统模拟QCC quality control charts 质量管理控制图WINQSB与OFFICE文档直接进行数据互换的方式1)从E xcel 或Word 文档中复制数据到WinQSB电子表中的数据可以复制到WinQSB中,方式是先选中要复制电子表中单元格的数据,点击复制,然后到WinQSB的电子表格编辑状态下选中要粘贴的单元格,点击粘贴完成复制。

运筹学实验指导书

运筹学实验指导书

Excel中规划求解宏模块的使用Excel自带的宏模块“规划求解”可用于求解线性规划、非线性规划、整数规划的最优解。

规划求解宏模块在Excel普通运行状况下一般不会启动,当需要调用时,可以从工具菜单条中加载宏来启动,其基本步骤如下。

(1)在工具菜单中选择“加载宏”选型。

(2)在加载宏对话框中选择“规划求解”选型。

图0-1加载“规划求解”宏(3)如果成功加载,则在工具菜单条中会出现“规划求解”选型。

由此,可以运用规划求解宏模块求解任何一个线性规划问题、整数规划问题、非线性规划问题,分别举例说明如下。

例1 营养配餐问题根据生物营养学理论,一个成年人每天要维持人体正常的生理健康需求,需要从食物中获取3000卡路里热量、55g蛋白质和800mg钙。

假定市场上可供选择的食品有猪肉、鸡蛋、大米和白菜,这些食品每千克所含热量和营养成分以及市场价格如表1-1所示。

如何选购才能在满足营养的前提下,使购买食品的总费用最小?表0-1 营养配餐问题数据表解,建立该问题的线性规划模型如下:假设x j (j=1,2,3,4)分别为猪肉、鸡蛋、大米和白菜每天的购买量,则其线性规划模型为:⎪⎪⎩⎪⎪⎨⎧=≥≥+++≥+++≥++++++=)4,3,2,1(0800500300200400551020605030002009008001200..24820min 4321432143214321j x x x x x x x x x x x x x t s x x x x z j 第一步:需要在Excel 中建立该问题的电子表格模型,如图0-2所示。

图0-2 营养配餐问题的Excel 表模型其中单元格B10:E10设置为决策变量单元格,F12设置为目标单元格,F4:F6设置为三个约束条件的左边项,即表示实际获得的营养。

目标单元格和约束条件左边项的函数如图0-3所示图0-3营养配餐问题中的公式设置函数sumproduct(区域1,区域2)为Excel 的常用函数,表示将区域1中对应元素与区域2中对应元素相乘后再相加。

《运筹学》课程实验指导书09级汇总

《运筹学》课程实验指导书09级汇总

《运筹学》课程实验指导书实验一线性规划问题模型的建立及求解1. 实验目的和要求理解线性规划模型的基本思想,熟悉运筹学软件的安装及基本使用方法,能够使用运筹学软件对线性规划问题进行求解。

2. 实验前准备复习教材第一、二、三、四、五、六章相关内容。

3. 实验条件每名同学使用一台计算机。

小组同学相邻,方便讨论。

4. 实验内容(1 熟悉运筹学软件的安装及基本使用方法。

(2 练习教材第二章习题8a,b 的数学模型,使用运筹学软件求解,分析输出数据。

(3 选择教师指定的实际问题,进行分析、建模和求解(实验报告内容)。

5. 实验报告完成本次实验的报告,写清实验步骤及实验结果。

指定问题:问题一:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。

假定这两台车床的可用台时数分别为800和900,三种工件的数量分别为400、600和500,且已知用三种不同车床加工单位数量不同工件所需的台时数和加工费用如下表。

问怎样分配车床的加工任务,才能既满足加工工件的要求,又使加工费用最低?问题二:某厂每日8小时的产量不低于1800件。

为了进行质量控制,计划聘请两种不同水平的检验员。

一级检验员的标准为:速度25件/小时,正确率98%,计时工资4元/小时;二级检验员的标准为:速度15件/小时,正确率95%,计时工资3元/小时。

检验员每错检一次,工厂要损失2元。

为使总检验费用最省,该工厂应聘一级、二级检验员各几名?问题三:某农场有100公顷土地及15000元资金可用于发展生产。

农场劳动力情况为秋冬季3500人日,春夏季4000人日,如劳动力本身用不了时可外出干活,春夏季收入为2.1元/人日,秋冬季收入为1.8元/人日。

该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。

种作物时不需要专门投资,而饲养动物时每头奶牛投资400元,每只鸡投资3元。

养奶牛时每头需拨出1.5公顷土地种饲草,并占用人工秋冬季100人日,春夏季为50人日,年净收入400元/每头奶牛。

运筹学实验指导与QSB软件包使用

运筹学实验指导与QSB软件包使用
对于具有九个目标和九项任务的小问题, 你可以选择显示
Hungarian方法的每一个步骤。同样,ASMP可以解决较大的问 题, 但不显示每一个步骤。
在问题已经解决以后,你可以显示或打印最终的结果。
在ASMP这个程序模块中,你可以定义具有直到6 个特征的 目标和任务的名称。缺省变量名为O1,O2....On 和T1,T2....Tn。
3、运输问题(TRP)程序系统简介: 这个程序系统可以解决具有直到50个发货点和50个目的地的 运输问题。假定发货地的供应量和目的地的需要量均为整数,成 本、利润系数为实值。
TPR提供了一个容易输入和修改数据的格式。一个TPR问题 可以存储在磁盘上或从磁盘上读出。
对于具有四个发货地和五个目的地的小问题,你可以选择显
位成本的存储能力和单位成本的生产能力和每一状态的对应成本 。
DP程序系统可以使你解决具有直至20个阶段、每一阶段具 有直至50种状态的动态规划问题。解决问题的程序使用从最后阶 段的反向递推方式,即从最接近目标的阶段到最开始的阶段。
假定这个程序系统中的阶段转移函数和返回函数是线性的。 DP问题可以贮存在磁盘上或从磁盘上读出。 在输入数据以后,你可以选择解决问题或显示结果。 如果你要想把当前屏幕的内容打印出来,请按功能键F8。
1 —— 线性规划 (Linear programming) 2 —— 整数规划 (Integer linear programming) 3 —— 运输问题 (Transportation problem) 4 —— 分配问题 (Assignment problem) 5 —— 网络模型 (Network modeling) 6 —— 关键路线法 (CPM) 7 —— 计划评审技术 (PERT) 8 —— 动态规划 (Dynamic programming 9 —— 库存论 (Inventory theory) A —— 排队论 (Queuing theory) B —— 排队系统仿真 (Queuing system simulation) C —— 决策论与概率论 (Decision/probability theory) D —— 马尔科夫过程 (Markov process) E —— 时间序列预测 (Time series forecasting) F —— 打印机类型设定 (Specify the type of printer) G ——退出 QSB
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学实验指导书-CAL-FENGHAI.-(YICAI)-Company One1实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。

要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。

二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。

三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。

近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。

2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。

该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。

20000辆和22000辆。

为1600万元。

根据以上情况,该公司应如何制定1999年度总体经济效益最优的生产计划方案(二)线性规划建模设X j表示生产M j型摩托车的数量(j=1,2,…,9),则总利润最大的摩托车产品生产计划数学模型为:MaxZ=×+×+×+×+×+×+×+×+×=++++++++满足 X1+X2+X3≤50000 (1)X4+X5+X6≤60000 (2)X7+X8+X9≤10000 (3)++++++++≤4000×5 (4)X3≤20000 (5)X6≤22000 (6)×(X1+X2+X3)+×(X4+X5+X6)+×3(X7+X8+X9)≤3000 (7)++++++++≤1600(8)X j≥0(j=1,2,3,4…9)模型说明:约束(1)、(2)、(3)分别表示三种系列摩托车的最大生产能力限制;约束(4)表示摩托车的生产受流动资金的限制;约束(5)和(6)表示M3和M6两种车产量受发动机供应量限制;约束 (7)表示未销售的产量受库存能力的限制;约束(8)表示未销售产品占用资金的限制。

(三)模型求解由管理运筹学软件包中可知最优解为X=(0,26000,20000,0,0,22000,0,0,0)T,最优值Z=万元。

说明一下,摩托车生产数量是整数,应该用整数规划来求解,但由于摩托车生产数量较大,故采用线性规划求解,四舍五入取整,误差很小。

(四)结果分析1)根据计算结果,能够使年利润达到最大化的产品生产计划是:M2型车生产26000辆,M3型车生产20000辆,M6型车生产22000辆,共计68000辆。

目标利润为万元。

2)由以上求解结果可知,三种系列的摩托车生产能力均有富余,尤其是三轮摩托车未安排生产,生产能力完全剩余;摩托车生产的流动资金完全用完,M3和M6两种车型的发动机也完全用完;库存容量和库存车占用的生产资金额度也有富余。

由影子价格也可看出,流动资金、M3和M6两种车型的发动机是希缺的,若增加这三种资源,可提高总利润,并且增加流动资金可使总利润提高最快。

因此上述产品生产计划在实践中应作出适当调整。

(五)方案调整分析1)增加流动资金一是流动资金总量不变,加速资金周转,比如年周转次数由5次增至6次,其它条件不变,求解二是在资金周转加速的基础上,增加流动资金总量,比如增加1000万元,由流动资金的影子价格可看出,总利润有更大提高,求解2)增加M3和M6两种车型的发动机若M3和M6两种车型的发动机各增加5000台,在上述条件基础上,求解3)合理安排生产品种为保持公司各种系列摩托车有一定的市场占有率,需对上述结果作出修改,要保证三轮摩托车达到一个最低生产量。

比如M9型车生产不少于2000辆,即增加约束X9≥2000,求解4)适当增加库存能力为保证三轮摩托车生产线的开动,公司整个摩托车的产量和目标利润受到较大影响,由于三轮摩托车占用的库存量较大,库存容量资源影子价格很高,可适当增加库存容量,以提高目标利润。

比如增加库存容量500个单位,求解四、实验参考选题:1.某工厂生产A、B两种产品,均需经过两道工序,每生产一吨产品A需要经第一道工序加工2小时,第二道工序加工3小时;每生产一吨产品B需要经第一道工序加工3小时,第二道工序加工4小时。

可供利用的第一道工序为12小时,第二道工序为24小时。

生产产品B的同时产出副产品C,每生产一吨产品B,可同时得到2吨产品C而毋需外加任何费用;副产品C一部分可以盈利,剩下的只能报废。

出售产品A每吨能盈利400元、产品B每吨能盈利1000元,每销售一吨副产品C能盈利300元,而剩余要报废的则每吨损失200元。

经市场预测,在计划期内产品C最大销量为5吨。

根据以上资料该工厂应如何制定生产方案,使工厂总的利润最大。

2.某公司在5年内考虑下列投资,已知:项目A可从第一年至第四年的年初投资,并于次年末收回本利共115%;项目B在第三年的年初投资,到第五年的年末收回本利135%,但规定投资额不能超过4万元;项目C在第二年的年初投资,到第五年的年末收回本利145%,但规定投资额不能超过3万元;项目D每年年初购买债券,年底归还,利息是。

公司现有资金10万元,问如何投资,才能使第五年年末拥有的资金最多3.某企业在今后三年内有四种投资机会。

第一种是在三年内每年年初投资,年底可回收本利和120%;第二种是在第一年年初投资,第二年年底可回收本利和150%,但该项投资不得超过2万元;第三种是在第二年年初投资,第三年年底回收本利和160%,但该项投资不得超过万元;第四种是在第三年年初投资,该年年底可回收本利和140%,该项投资不得超过1万元。

现在该企业准备拿出3万元资金,问如何制订投资计划,使到第三年年末本利和最大4.某公司有钢材、铝材、铜材1200吨,800吨和650吨,拟调往物资紧张的地区甲、乙、丙。

已知甲、乙、丙对上述物资的总需求为:900吨,800吨和1000吨,各种物资在各地销售5.某工厂生产A,B,C三种产品,现根据订货合同及生产状况制定5月份的生产计划。

已知合同甲为:A产品1000件,单件价格为500元,违约金为100元/件;合同乙为:B产品500件,单件价格为400元,违约金为120元/件;合同丙为:B产品600件,单件价格为420元,违约金为130元/件;C产品600件,单件价格为400元,违约金为90元/件;有关各产品生产工序1工序2工序3原材料1原材料其它成本/件产品A2323410产品B1132310产品C2124210总工时(原材料)460040006000100008000工时原材料单位成本(元)1510102040实验二、对偶理论和灵敏度分析实验一、实验目的与要求:进一步熟悉对偶规划及灵敏度分析的有关基本概念;掌握写对偶线性规划,灵敏度分析和参数分析的使用方法及操作步骤;理解其输出结果。

二、实验内容与步骤:1.选择线性规划模型从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划模型。

2.写出对偶线性规划模型3.理解灵敏度分析4.进行参数分析三、实验题:1.已知线性规划模型如下:MaxZ=X1+2X2+4X3+X4满足 3X1+9X3+5X4≤156X1+4X2+X3+7X4≤304X1+3X3+4X4≤205X1+3X2+8X3+3X4≤40X j≥0 (j=1,2,3,4)1)写出对偶线性规划,变量用Y表示;2)求原问题及对偶问题的最优解;3)分别写出价值系数C j及右端常数b i的最大允许变化范围;4)目标函数系数改为C=(4,2,6,1),同时常数改为=(20,40,20,40),求最优解;5)删除第四个约束同时删除第三个变量,求最优解;6)增加一个变量X5,系数为(C5,a15,a25,a35,a45)=(6,5,4,2,3),求最优解;7)目标函数为MaxZ=(1+)X1+(2+3)X2+4X3+(1-)X4,分析参数的变化区间及对应解的关系,绘制参数与目标值的关系图。

2. 已知线性规划模型如下:MaxZ=4X1+2X2+3X3满足 2X1+2X2+4X3≤1003X1+X2+6X3≤1003X1+X2+2X3≤120X j≥0 (j=1,2,3)1)写出对偶线性规划,变量用Y表示;2)求原问题及对偶问题的最优解;3)分别写出价值系数C j及右端常数b i的最大允许变化范围;4)目标函数系数改为C=(5,3,6),同时常数改为=(120,140,100),求最优解;5)在原模型基础上增加一个约束6X1+5X2+X3≤200,同时增加一个变量X4,系数为(C4,a14,a24,a34,a44)=(7,5,4,1,2),求最优解;6)在5)的模型中删除第二个约束,求最优解;7)原模型的右端常数改为b =(100+,100+3,120+),分析参数的变化区间及对应解的关系,绘制参数与目标值的关系图。

3. 已知线性规划模型如下:Max Z=X1+5X2+3X3+4X4满足 2X1+3X2 +X3+2X4≦8005X1+4X2+3X3+4X4≦12003X1+4X2+5X3+3X4≦1000X j≧0 (j=1,2,3,4)1)写出对偶线性规划,变量用y表示;2)求原问题及对偶问题的最优解;3)分别写出价值系数C j及右端常数的最大变化范围;4)目标函数系数改为C=(5,4,4,5),同时右端常数改为b=(800,1200,850),求最优解;5) 在原模型基础上增加一个约束条件4X1+4X2+2X3+2X4≤700,同时增加一个决策变量X5,其系数为(C5,a15,a25,a35,)=(5,2,,5,3),求最优解;6) 在5)的模型中删除第一个约束条件,求最优解;7)原模型的右端常数改为b=(800+t,1200+3t,1000+t),分析参数的变化区间及对应解的关系,绘制参数与目标值的关系图。

相关文档
最新文档