五年级奥数计数之对应法学生版
【精选】奥数:计数之对应法.学生版

前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.模块一、图形中的对应关系【例 1】 在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上. 第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯⨯=个.由于棋盘上⨯长方形,所以棋盘上横、竖共有13⨯长方形68296的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C =个三角形. 【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.【考点】计数之图形中的对应关系 【难度】4星 【题型】解答C D BA【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1.可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个.所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.A B 424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有421440060480⨯=(种). 【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。
小学数学 对应法

对应法在某些应用题中,必定存在着一些相关的对应量,我们利用这一特点,通过分析条件之间的某些数量的对应关系,根据某种运算意义,打开解题的中心环节。
这种思考方法,可称作对应法。
例1:建筑工地要运一批水泥,用一辆卡车运8次正好运完?运6次则少运7.2吨。
这批水泥共有多少吨?解析:在分析这道题目的时候,首先要找到卡车运的次数和吨数是怎样的对应关系。
要从题目的条件“用一辆卡车运8次,正好运完;运6次则少运7.2吨”中设法找到卡车运几次,它的对应量是几吨。
列表如下:1辆卡车运8次→运完1辆卡车运6次→少运7.2吨─────────────;2次←7.2吨从对应表中清楚地看出,1辆卡车少运2次,正好少运水泥7.2吨。
由此寻得了运2次的对应量是7.2吨,也就是说,这辆卡车2次能运水泥7.2吨,根据整小数除法意义,所得1辆卡车1次运的吨数是:7.2÷2=3.6(吨)求出了1辆卡车1次运3.6吨,就可以根据“8次运完”来计算水泥一共有多少吨。
3.6×8=28.8(吨)列综合式计算:7.2÷(8-6)×8=3.6×8=28.8(吨)答:这批水泥一共有28.8吨。
例2:小朋友分糖果,每人分6块,则少22块;每人分5块,则多14块,求小朋友人数和糖果块数?解析:在分析的时候,发现每人分的块数与所需糖果的块数是起着对应关系。
从题目的条件“每人分6块则少22块;每人分5块则多14块中没法找到每人才几块,它的对应量是所需糖果几块,列表如下:每人分6块→少22块每人分5块→多14块──────────1块→36块比较两种不同的分法,可以清楚地看出,每个小朋友少分1块,糖果块数就从少22块变为多14块,也就是每人少分1块,糖果相差36块,因此寻得每人分1块的对应量是糖果36块,也就是说,小朋友人数是:36÷1=36(人)求出小朋友人数,根据“每人分6块,则少22块”可以计算糖果一共有多少块。
3、小学奥数精讲精练系列之对应法解题

第三讲对应法解题知识、规律、方法:1、“对应”是解决数学问题时常用的一种方法。
有很多应用题,给定的量所对应的数量关系是变化的,为了使变化的数量看的更清楚些,可以把已知条件按照他们之间的对应关系排列出来,进行观察和比较,从而找到解题方法,这种解题方法叫“对应法”2、应用“对应法”解题时可以通过对应比较,分析对应的未知量变化的情况,设法消去其中的一个未知量,从而把一道数量关系复杂的题目变成较简单的题目,以便于解答。
范例、解析:例1:张云买了 4本练习本和2支钢笔,共用去12元,李华买了同样的4本练习本和3支钢笔,一共用去17元,钢笔和练习本单价各是多少元?解析可由条件中找出对应的数。
张云:4本练习本+2支钢笔=12元。
李华:4本练习本+3支钢笔=17元。
将对应的量及变化情况进行比较可发现,李华比张云多用去5元,是因为李华比张云多买了1支钢笔,由此可得钢笔为每支5元。
再代入上式可以求出练习本的单价。
例2:美术小组第一天买了3盒彩笔和1支毛笔,付款44.4元;第二天买了同样的5盒彩笔和3支毛笔,付款79.6元,求每盒彩笔和每支钢笔各多少元?解析由条件找出对应的关系。
3盒彩笔+1支毛笔=44.4元5盒彩笔+3支毛笔=79.6元但是在这两种买法中,彩笔的数量与毛笔的数量均为不相同,我们要设法将其中一个量转化为相同的。
将第一个式子中的每个数据扩大3倍为:9盒彩笔+3支毛笔=133.2元。
5盒彩笔+3支毛笔=79.6元。
这样就回到了例1的思路,得解。
例3:用一根绳子测量井的深度,如果绳子两折时,多5米;如果绳子3折时,差4米,问绳子长多少米?井深多少米?解析两折时多5米,总长多5×2=10米;三折时少4米,总长少4×3=12米。
三折与两折的差也就是井的深度。
两折时绳长=2个井深+多5×2三折时绳长=3个井深-少4×3比较两组得到:1个井深=(10+12)=22米。
例4:王航准备购买练习本、铅笔、橡皮三种学习用品。
五年级奥数专题 数列数表(学生版)

【题目】有7根竹竿排成一行.第一根竹竿长1米,其余每根长都是前一根的一半. 问:这7根竹竿的总长是几米?
【试题来源】
【题目】在100以内与77互质的所有奇数之和是多少?
【试题来源】
【题目】罗庚金杯少年数学邀请赛,第一届在1986年举行,第二届在1988年举行,第三届在1991年举行,以后每两年举行一届.第一届华杯赛所在年份的各位数字和是 =1+9+8+6=24.前二届所在年份的各位数字和是 =1+9+8+6+1+9+8+8=50.问:前50届华杯赛所在年份的各位数字和 等于多少?
【题目】求1至500中,所有能被7除余3的自然数的和是多少?
【试题来源】
【题目】求1---50以内,所有整除2或整除3的自然数之和?
【试题来源】
【题目】甲、乙两厂生产同一种玩具,甲厂生产的玩具数量每个月保持不变,乙厂生产的玩具数量每个月增加一倍.已知一月份甲、乙两厂生产玩具的总数是98件,二月份甲、乙两厂生产玩具的总数是106件,那么乙厂生产的玩具数量第一次超过甲厂生产的玩具数量在几月份?
【试题来源】
【题目】100这个数最多能写成多少个不同的非零自然数之和?
【Hale Waihona Puke 题来源】【题目】请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边);现在已经给出了其中8个方格中的数,并且知道A,B,C,D,E,F,G各不相同;那么,七位数 是.
45,45,44,46,45 (3)像上面的这些例子,按一定次序排列的一列数就叫做数列.数列中的每一个数都叫做这个数列的项,其中第1个数称为这个数列的第1项,第2个数称为第2项,…,第n个数就称为第n项.如数列(3)中,第1项是45,第2项也是45,第3项是44,第4项是46,第5项45。根据数列中项的个数分类,我们把项数有限的数列(即有有穷多个项的数列)称为有穷数列,把项数无限的数列(即有无穷多个项的数列)称为无穷数列,上面的几个例子中,(2)(3)是有穷数列,(1)是无穷数列。
五年级奥数几何计数(三)学生版

五年级奥数几何计数(三)学生版2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数 在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成 21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.E DC B A数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.教学目标 例题精讲知识要点7-8-3.几何计数(三)模块一、立体几何计数【例1】用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
(小学奥数)计数之对应法

7-6-3計數之對應法教學目標前面在講加法原理、乘法原理、排列組合時已經穿插講解了計數中的一些常用的方法,比如枚舉法、樹狀圖法、標數法、捆綁法、排除法、插板法等等,這裏再集中學習一下計數中其他常見的方法,主要有歸納法、整體法、對應法、遞推法.對這些計數方法與技巧要做到靈活運用.例題精講將難以計數的數量與某種可計量的事物聯繫起來,只要能建立一一對應的關係,那麼這兩種事物在數量上是相同的.事實上插入法和插板法都是對應法的一種表現形式.模組一、圖形中的對應關係【例 1】在8×8的方格棋盤中,取出一個由三個小方格組成的“L”形(如圖),一共有多少種不同的方法?【考點】計數之圖形中的對應關係【難度】3星【題型】解答【解析】注意:數“不規則幾何圖形”的個數時,常用對應法.第1步:找對應圖形每一種取法,有一個點與之對應,這就是圖中的A點,它是棋盤上橫線與豎線的交點,且不在棋盤邊上.第2步:明確對應關係從下圖可以看出,棋盤內的每一個點對應著4個不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:計算對應圖形個數由於在8×8的棋盤上,內部有7×7=49(個)交叉點,第4步:按照對應關係,給出答案故不同的取法共有49×4=196(種).評注:通過上面兩個範例我們知道,當直接去求一個集合元素的個數較為困難的時候,可考慮採用相等的原則,把問題轉化成求另一個集合的元素個數.【答案】196【例 2】在8×8的黑白相間染色的國際象棋棋盤中,以網格線為邊的、恰包含兩個白色小方格與一個黑色小方格的長方形共有多少個?【考點】計數之圖形中的對應關係【難度】3星【題型】解答【解析】首先可以知道題中所講的13⨯長方形中間的那個小主格為黑色,這是因為兩個白格不相鄰,所以不能在中間.顯然,位於棋盤角上的黑色方格不可能被包含在這樣的長方形中.下麵分兩種情況來分析:第一種情況,一個位於棋盤內部的黑色方格對應著兩個這樣的13⨯長方形(一橫一豎);第二種情況,位於邊上的黑色方格只能對應一個13⨯長方形.由於在棋盤上的32個黑色方格中,位於棋盤內部的18個,位於邊上的有12個,位於角上的有2個,所以共有1821248⨯+=個這樣的長方形.本題也可以這樣來考慮:事實上,每一行都有6個13⨯長方形,所以棋盤上橫、豎共有13⨯長方形68296⨯⨯=個.由於棋盤上的染色具有對稱性,因此包含兩個白色小方格與一個黑色小方格的長方形正好與包含兩個黑色小方格與一個白色小方格的長方形具有一一對應關係,這說明它們各占一半,因此所求的長方形個數為96248÷=個.【答案】48【巩固】用一張如圖所示的紙片蓋住66⨯方格表中的四個小方格,共有多少種不同的放置方法?【考點】計數之圖形中的對應關係【難度】3星【題型】解答【解析】如圖,將紙片中的一個特殊方格染為黑色,下麵考慮此格在66⨯方格表中的位置.易見它不能位於四個角上;若黑格位於方格表中間如圖淺色陰影所示的44⨯正方形內的某格時,紙片有4種不同的放法,共計44464⨯⨯=種;若黑格位於方格表邊上如圖深色陰影所示的方格中時,紙片的位置隨之確定,即只有1種放法,此類放法有4416⨯=種.所以,紙片共有641680+=種不同的放置方法.【答案】80種【例 3】 圖中可數出的三角形的個數為 .【考點】計數之圖形中的對應關係 【難度】4星 【題型】填空【解析】 這個圖不像我們以前數三角形那樣規則,粗看似乎看不出其中的規律,不妨我們取出其中的一個三角形,發現它的三條邊必然落在這個圖形中的三條大線段上,而每三條大線段也正好能構成一個三角形,因此三角形的個數和三條大線段的取法是一一對應的關係,圖中一共有8條大線段,因此有3856C =個三角形.【答案】56個三角形【例 4】 如圖所示,在直線AB 上有7個點,直線CD 上有9個點.以AB 上的點為一個端點、CD 上的點為另一個端點的所有線段中,任意3條線段都不相交於同一個點,求所有這些線段在AB 與CD 之間的交點數.【考點】計數之圖形中的對應關係 【難度】4星 【題型】解答C D BA【解析】 常規的思路是這樣的:直線AB 上的7個點,每個點可以與直線CD 上的9個點連9根線段,然後再分析這些線段相交的情況.如右圖所示,如果注意到下麵這個事實:對於直線AB 上的任意兩點M 、N 與直線CD 上的任意兩點P 、Q 都可以構成一個四邊形MNQP ,而這個四邊形的兩條對角線MQ 、NP 的交點恰好是我們要計數的點,同時,對於任意四點(AB與CD上任意兩點)都可以產生一個這樣的交點,所以圖中兩條線段的交點與四邊形有一一對應的關係.這說明,為了計數出有多少個交點,我們只需要求出在直線AB與CD 中有多少個滿足條件的四邊形MNQP就可以了!從而把問題轉化為:在直線AB上有7個點,直線CD上有9個點.四邊形MNQP有多少個?其中點M、N 位於直線AB上,點P、Q位於直線CD上.這是一個常規的組合計數問題,可以用乘法原理進行計算:由於線段MN有2721C=種選擇方式,線段PQ有2 936C=種選擇方式,根據乘法原理,共可產生2136756⨯=個四邊形.因此在直線AB與CD之間共有756個交點.【答案】756個交點模組二、數字問題中的對應關係【例 5】有多少個四位數,滿足個位上的數字比千位數字大,千位數字比百位大,百位數字比十位數字大?【考點】計數之數字問題中的對應關係【難度】4星【題型】解答【解析】由於四位數的四個數位上的數的大小關係已經非常明確,而對於從0~9中任意選取的4個數字,它們的大小關係也是明確的,那麼由這4個數字只能組成1個符合條件的四位數(題目中要求千位比百位大,所以千位不能為0,本身已符合四位數的首位不能為0的要求,所以進行選擇時可以把0包含在內),也就是說滿足條件的四位數的個數與從0~9中選取4個數字的選法是一一對應的關係,那麼滿足條件的四位數有41010987210 4321C⨯⨯⨯==⨯⨯⨯個.【答案】210個【巩固】三位數中,百位數比十位數大,十位數比個位數大的數有多少個?【考點】計數之數字問題中的對應關係【難度】4星【題型】解答【解析】相當於在10個數字中選出3個數字,然後按從大到小排列.共有10×9×8÷(3×2×1)=120種.實際上,前鋪中每一種劃法都對應著一個數.【答案】120種【例 6】數3可以用4種方法表示為一個或幾個正整數的和,如3,12+,21+,111++.問:1999表示為一個或幾個正整數的和的方法有多少種?【考點】計數之數字問題中的對應關係【難度】4星【題型】解答【解析】 我們將1999個1寫成一行,它們之間留有1998個空隙,在這些空隙處,或者什麼都不填,或者填上“+”號.例如對於數3,上述4種和的表達方法對應:1 1 1,1+1 1,1 1+1,1+1+1.可見,將1999表示成和的形式與填寫1998個空隙處的方式之間是一一對應的關係,而每一個空隙處都有填“+”號和不填“+”號2種可能,因此1999可以表示為正整數之和的不同方法有1998199822222⨯⨯⨯=个相乘種. 【答案】19982種【例 7】 請問至少出現一個數碼3,並且是3的倍數的五位數共有多少個?【考點】計數之數字問題中的對應關係 【難度】4星 【題型】解答【關鍵字】小學數學競賽【解析】 五位數共有90000個,其中3的倍數有30000個.可以採用排除法,首先考慮有多少個五位數是3的倍數但不含有數碼3.首位數碼有8種選擇,第二、三、四位數碼都有9種選擇.當前四位的數碼確定後,如果它們的和除以餘數為0,則第五位數碼可以為0、6、9;如果餘數為1,則第五位數碼可以為2、5、8;如果餘數為2,則第五位數碼可以為1、4、7.可見只要前四位數碼確定了,第五位數碼都有3種選擇,所以五位數中是3的倍數但不含有數碼3的數共有8999317496⨯⨯⨯⨯=個.所以滿足條件的五位數共有300001749612504-=個.【答案】12504個模組三、對應與階梯型標數法【例 8】 遊樂園的門票1元1張,每人限購1張.現在有10個小朋友排隊購票,其中5個小朋友只有1元的鈔票,另外5個小朋友只有2元的鈔票,售票員沒有準備零錢.問有多少種排隊方法,使售票員總能找得開零錢?【考點】計數之對應與階梯型標數法 【難度】5星 【題型】解答【解析】 與類似題目找對應關係.要保證售票員總能找得開零錢,必須保證每一位拿2元錢的小朋友前面的若干小朋友中,拿1元的要比拿2元的人數多,先將拿1元錢的小朋友看成是相同的,將拿2元錢的小朋友看成是相同的,可以利用斜直角三角模型.在下圖中,每條小橫線段代表1元錢的小朋友,每條小豎線段代表2元錢的小朋友,因為從A 點沿格線走到B 點,每次只能向右或向上走,無論到途中哪一點,只要不超過斜線,那麼經過的小橫線段都不少於小豎線段,所以本題相當於求下圖中從A到B有多少種不同走法.使用標數法,可求出從A到B有42種走法.A B424228145141494553221111111但是由於10個小朋友互不相同,必須將他們排隊,可以分成兩步,第一步排拿2元的小朋友,5個人共有5120=!種排法;第二步排拿到1元的小朋友,也有120種排法,所以共有5514400⨯=!!種排隊方法.這樣,使售票員能找得開零錢的排隊方法共有4214400604800⨯=(種).【答案】604800種【例 9】學學和思思一起洗5個互不相同的碗(順序固定),思思洗好的碗一個一個往上摞,學學再從最上面一個一個地拿走放入碗櫃摞成一摞,思思一邊洗,學學一邊拿,那麼學學摞好的碗一共有種不同的摞法.【考點】計數之對應與階梯型標數法【難度】5星【題型】解答【關鍵字】學而思杯,5年級,第7題【解析】方法一:如下所示,共有42種不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----,12345----。
五年级奥数专题 数的进制(学生版)

学科培优 数学 “数的进制” 学生姓名授课日期 教师姓名授课时长 知识定位 所谓二进制,就是只用0与1两个数字,在计数与计算时必须是“满二进一”。
即每两个相同的单位组成一个和它相邻的较高的单位(所以任意一个二进制只需要“0”与“1”表示就够了)。
例如:2在二进制中是10;3写成二进制数是11;4写成二进制数便是100,那么5呢?应该是101随着科学计数的发展,数字电子计算机的使用日益普遍,计算器内部进行的运算就使用的是二进制数。
我们经常和计算器打交道,应该懂一些二进制方面的知识。
知识梳理一、二进制按照“逢二进一”的法则,很容易得到一下两种进制的数字的对照表: 十进制 二进制 十进制 二进制 1 2 3 4 5 6 7 8 1 10 11 100 101 110 111 1000 9 10 11 12 13 14 15 16 100110101011110011011110111110000二进制的最大优点是:每个数的各个数位上只有两种状态——0或1。
这样,我们便可以通过简单的方法,例如白与黑、虚与实、负与正、点与划、小与大、暗与亮等等手段加以表示。
当然,二进制也有不足,同一个数在二进制中要比在十进制中位数多得多。
二、十进制与二进制的互相转化当我们写上一个数目1997时,实际上意味着我们使用了“十进制”数,即也就是说:1997中含有一个1000,九个100,九个10与七个1.199111000910091071=⨯+⨯+⨯+⨯在上表中可以看到,二进制数10表示十进制2;二进制数100表示十进制数4;二进制数1000表示十进制数8;二进制数10000表示十进制数16;……可以看出规律:二进制数100000应该表示十进制数32,……。
那么我们写下一个二进制数10110,则应表示它含有一个16,一个4与一个2,也就是明白了上面所说的两点,则二进制与十进制之间的转化的道理就容易懂了。
为了叙述的方便,我们约定:用表示括号内写的是二进制数,如;用表示括号中写的数是十进制数,如。
小学奥数对应法例题讲解

小学奥数对应法例题讲解一、引言小学奥数通常以数学竞赛为主要形式,旨在培养学生的逻辑思维能力和解决问题的能力。
其中,对应法是奥数中经常用到的一种解题方法。
本文将选取一些小学奥数中常见的对应法例题进行讲解,帮助学生更好地理解和掌握对应法的运用。
二、什么是对应法对应法是一种通过找出两组事物之间的对应关系来解决问题的方法。
在奥数中,对应关系通常用字母、符号或数字等表示。
通过对应关系的发现和运用,可以在给定条件下推导出未知量的值,从而解决问题。
三、对应法的基本应用1. 全比对应全比对应是对应法中最基本的应用之一。
在全比对应中,两组事物之间的对应关系可以用相同的比例关系表示。
例题1:小明骑车去图书馆,速度是每小时20公里。
小红骑车去同一个地方,速度是每小时16公里。
如果两人同时出发,小红到达目的地需要多长时间?解:设小红到达目的地所需的时间为x小时。
根据速度和时间的关系,可以得到下面的比例关系: $\\frac{20}{16}$ = $\\frac{x}{1}$ 通过等式两边的乘法和约简,我们可以求解得到 x = 1.25 小时。
2. 分差对应分差对应是对应法中另一种常见的应用。
在分差对应中,两组事物之间的对应关系可以表示为一个固定的差值。
例题2:甲、乙两人在一场游戏中比赛。
在比赛前,甲已经得到了90分,乙得到了120分。
比赛开始后,甲每得10分,乙就得到15分,最终甲比乙多得了250分。
求这场比赛共进行了多少轮?解:设比赛共进行了x轮。
根据分差对应的原理,我们可以得到下面的等式:$\\frac{x}{1}$ = $\\frac{250}{15-10}$ 通过等式两边的乘法和约简,我们可以求解得到 x = 50 轮。
四、对应法的进阶应用1. 分组对应当研究的事物可以被分成多个组时,可以借助分组对应来解决问题。
在分组对应中,不同组之间的对应关系可以表示为一个固定的倍数关系。
例题3:一辆汽车每分钟行驶的速度是50米,一辆摩托车每分钟行驶的速度是40米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级奥数计数之对应法学生版将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式. 模块一、图形中的对应关系【例 1】 在8×8的方格棋盘中,取出一个由三个小方格组成的“L ”形(如图),一共有多少种不同的方法?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答【解析】 注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形 每一种取法,有一个点与之对应,这就是图中的A 点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系 从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L ”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数 由于在 8×8的棋盘上,内部有7×7=49(个)交叉点, 第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【答案】196【例 2】 在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【考点】计数之图形中的对应关系 【难度】3星 【题型】解答例题精讲教学目标7-6-3计数之对应法【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形,所以棋盘上横、竖共有13⨯长方形68296⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【答案】48【巩固】用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【考点】计数之图形中的对应关系【难度】3星【题型】解答【解析】如图,将纸片中的一个特殊方格染为黑色,66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【答案】80种【例 3】图中可数出的三角形的个数为.【考点】计数之图形中的对应关系【难度】4星【题型】填空【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C=个三角形.【答案】56个三角形【例 4】 如图所示,在直线AB 上有7个点,直线CD 上有9个点.以AB 上的点为一个端点、CD 上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB 与CD 之间的交点数.【考点】计数之图形中的对应关系 【难度】4星 【题型】解答C D BA【解析】 常规的思路是这样的:直线AB 上的7个点,每个点可以与直线CD 上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB 上的任意两点M 、N 与直线CD 上的任意两点P 、Q 都可以构成一个四边形MNQP ,而这个四边形的两条对角线MQ 、NP 的交点恰好是我们要计数的点,同时,对于任意四点(AB 与CD 上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB 与CD 中有多少个满足条件的四边形MNQP 就可以了!从而把问题转化为:在直线AB 上有7个点,直线CD 上有9个点.四边形MNQP 有多少个?其中点M 、N 位于直线AB 上,点P 、Q 位于直线CD 上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN 有2721C =种选择方式,线段PQ 有2936C =种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB 与CD 之间共有756个交点.【答案】756个交点模块二、数字问题中的对应关系【例 5】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个. 【答案】210个【巩固】 三位数中,百位数比十位数大,十位数比个位数大的数有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【答案】120种【例 6】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,11+1,1+1+1.可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【答案】19982种【例 7】 请问至少出现一个数码3,并且是3的倍数的五位数共有多少个?【考点】计数之数字问题中的对应关系 【难度】4星 【题型】解答【关键词】小学数学竞赛【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个.所以满足条件的五位数共有300001749612504-=个.【答案】12504个模块三、对应与阶梯型标数法【例 8】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB 424228145141494553221111111 但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【答案】604800种【例 9】 学学和思思一起洗5个互不相同的碗(顺序固定),思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【考点】计数之对应与阶梯型标数法 【难度】5星 【题型】解答【关键词】学而思杯,5年级,第7题【解析】 方法一:如下所示,共有42种不同的摞法:54321----,45321----,35421----,53421----,34521----,54231----,45231----,25431----,52431----,24531----,52341----,25341----,23541----,23451----,54312----,45312----,53412----,35412----,34512----,54132----,45132----,15432----,51432----,14532----,51342----,15342----,13542----,13452----,54123----,45123----,15423----,51423----,14523----,12543----,51243----,15243----,12453----,12354----,12534----,15234----,51234----, 12345----。