牛吃草问题公式.docx

合集下载

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题经常使用到四个基本公式, 分别是:之答禄夫天创作(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度.这四个公式是解决牛吃草问题的基础.一般设每头牛每天吃草量不变, 设为"1", 解题关键是弄清楚已知条件, 进行比较分析, 从而求出每日新长草的数量, 再求出草地里原有草的数量, 进而解答题总所求的问题.例1一个牧场长满青草, 牛在吃草而草又在不竭生长, 已知牛27头, 6天把草吃尽, 同样一片牧场, 牛23头, 9天把草吃尽.如果有牛21头, 几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变动.设1头牛1天吃的草为"1", 由条件可知, 前后两次青草的问题相差为23×9-27×6=45.为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的, 所以每天生长的青草为45÷3=15现从另一个角度去理解, 这个牧场每天生长的青草正好可以满足15头牛吃.由此, 我们可以把每次来吃草的牛分为两组, 一组是抽出的15头牛来吃当天长出的青草, 另一组来吃是原来牧场上的青草, 那么在这批牛开始吃草之前, 牧场上有几多青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组, 15头去吃生长的草, 其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份, 每天长出来的草为y份, 每头牛每天吃草1份.那么可以列方程:x+6y=27×6x+9y=23×9解得x=72,y=15若放21头牛, 设n天可以吃完, 则:72+15n=21nn=12例2一水库原有存水量一定, 河水每天入库.5台抽水机连续20天抽干, 6台同样的抽水机连续15天可抽干, 若要6天抽干, 要几多台同样的抽水机?摘录条件:5台 20天原有水+20天入库量6台 15天原有水+15天入库量?台 6天原有水+6天入库量小学解答:设1台1天抽水量为"1", 第一次总量为5×20=100, 第二次总量为6×15=90每天入库量(100-90)÷(20-15)=220天入库2×20=40, 原有水100-40=6060+2×6=7272÷6=12(台)初中解答:假设原来有的水为x份, 每天流进来的水为y份, 每台机器抽出的水是1个单元.那么可以列方程:x+20y=20×5x+15y=6×15解得x=60,y=2若要6天抽完, 设n台机器可以抽完, 则:60+6×2=6 nn=12。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式Document number:NOCG-YUNOO-BUYTT-UU986-1986UT牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头天原有草+天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1 ",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草问题经常使用到四个大体公式

牛吃草问题经常使用到四个大体公式

牛吃草问题经常使用到四个大体公式,别离是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一样设每头牛天天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对照分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,一样一片牧场,牛23头,9天把草吃尽。

若是有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这种问题关键是要抓住牧场青草总量的转变。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

什么缘故会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,因此天天生长的青草为45÷3=15现从另一个角度去明白得,那个牧场天天生长的青草正好能够知足15头牛吃。

由此,咱们能够把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原先牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207天天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原先有的草为x份,天天长出来的草为y份,每头牛天天吃草1份。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

牛吃草问题公式

牛吃草问题公式

六年级奥数牛吃草问题练习题牛吃草问题公式(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数(3)吃的天数=原有草量÷(牛头数-草的生长速度)(4)牛头数=原有草量÷吃的天数+草的生长速度(1)牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃9周。

如果牧草每周匀速生长,可供21头牛吃几周?(2)有一口水井,如果水位降低,水就不断地匀速涌出,且到了一定的水位就不再上升。

现在用水桶吊水,如果每分吊4桶,则15分钟能吊干,如果每分钟吊8桶,则7分吊干。

现在需要5分钟吊干,每分钟应吊多少桶水?(3)有一片牧草,每天以均匀的速度生长,现在派17人去割草,30天才能把草割完,如果派19人去割草,则24天就能割完。

如果需要6天割完,需要派多少人去割草?(4)有一桶酒,每天都因桶有裂缝而要漏掉等量的酒,现在这桶酒如果给6人喝,4天可喝完;如果由4人喝,5天可喝完。

这桶酒每天漏掉的酒可供几人喝一天?(5)一水库存水量一定,河水均匀入库。

5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。

若要6天抽干,需要多少台同样的抽水机?(6)自动扶梯以均匀速度由下往上行驶,小明和小红要从扶梯上楼,已知小明每分钟走20梯级,小红每分钟走14梯级,结果小明4分钟到达楼上,小红用5分钟到达楼上,求扶梯共有多少级?(7)两只蜗牛由于耐不住阳光照射,从井顶走向井底,白天往下走,一只蜗牛一个白天能走20分米,另一只只能走15分米;黑夜里往下滑,两只蜗牛下滑速度相同,结果一只蜗牛5昼夜到达井底,另一只却恰好用了6昼夜。

问井深是多少?(8)一块1000平方米的牧场能让12头牛吃16个星期,或让18头牛吃8个星期,那么一块4000平方米的牧场6个星期能养活多少头牛?(9)有一只船有一个漏洞,水用均匀的速度进入船内,发现漏洞时已经进了一些水。

牛吃草问题常用到四个基本公式

牛吃草问题常用到四个基本公式

牛吃草问题牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决牛吃草问题的基础。

一般设每头牛每天吃草量不变,设为"1",解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

例1一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。

如果有牛21头,几天能把草吃尽?摘录条件:27头 6天原有草+6天生长草23头 9天原有草+9天生长草21头?天原有草+?天生长草小学解答:解答这类问题关键是要抓住牧场青草总量的变化。

设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9-27×6=45。

为什么会多出这45呢?这是第二次比第一次多的那(9-6)=3天生长出来的,所以每天生长的青草为45÷3=15现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。

由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(27-15)×6=72那么:第一次吃草量27×6=162第二次吃草量23×9=207每天生长草量45÷3=15原有草量(27-15)×6=72或162-15×6=7221头牛分两组,15头去吃生长的草,其余6头去吃原有的草那么72÷6=12(天)初中解答:假设原来有的草为x份,每天长出来的草为y份,每头牛每天吃草1份。

(完整word版)牛吃草问题

(完整word版)牛吃草问题

牛吃草问题一片草地,可供23头牛吃9周或供27头牛吃6周。

假设草地上的草均速生长,若设一头牛一周吃一份草。

那么草生长的速度是每周多少份?而要使得草永远吃不完,最多可以放养多少头牛?有一片草地可供16头牛吃20周或供20头牛吃12周。

假设草地上的草匀速生长,若设一头牛一周吃一份草,那么草生长的速度是每周多少份?要使得草永远吃不完,最多可以放养多少头牛?牧场上一片青草,每天牧草都匀速生长,这片牧草可供10头牛吃20天或者可供15头牛吃10天。

假设一头牛1天吃1份草,问原来草地上的草量有多少份?牧场上一片青草,每天牧草都匀速生长,这片牧草可供20头牛吃10天或者可供24头牛吃6天,若设1头牛1天吃1份草,问原来草地上的草有多少份?牧场上一片青草,每天牧草都匀速生长,这片牧草可供25头牛吃6天,或者可供30头牛吃4天,那么它可供几头牛吃5天?有一片草地可供16头牛吃20周,或供20头牛吃12周。

假设草地上的草匀速生长,那么它可供几头牛吃15周?有一片草地可供16头牛吃20周,或者供20头牛吃15周。

假设草地上的草原速生长,那么它可供14头牛吃几周?有一片草地可供5头牛吃40天,或供6头牛吃30天。

假设草地上的草匀速生长,那么可供14头牛吃几天?一个水库原有存水量一定,河水每天均匀入库,5台抽水机连续20天可抽干,6台同样的抽水机连续15天可抽干,要求6天抽干。

需要多少台同样的抽水机?一条船有一个漏洞,水以均匀的速度进入船内,发现漏洞时已经进了一些水。

如果用14人排水5小时可以排完,如果用9人排水10小时可以排完,现在想要在2.5小时排完,要安排多少人排水?太原南站,在检票前若干分钟就有人排队。

假设每分钟来的旅客人数一样多,若同时打开3个检票口,则40分钟检票队伍检票完毕;若同时打开5个检票口,则20分钟检票队伍建设完毕;若同时打开9个检票口,则多少分钟检票队伍检票完毕?画展8:30开门,但早就有人排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队,如果开5个入场口,8:45就没有人排队,求第一个观众到达的时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛吃草问题公式
•(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数)

•(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数

•(3)吃的天数=原有草量÷(牛头数-草的生长速度)

•(4)牛头数=原有草量÷吃的天数+草的生长速度
小学奥数教程:牛吃草问题公式汇总
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。

由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。

解决牛吃草问题常用到四个基本公式,分别是:
设定一头牛一天吃草量为“1”
公式1.草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
公式2.原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
公式3.吃的天数=原有草量÷(牛头数-草的生长速度);
公式4.牛头数=原有草量÷吃的天数+草的生长速度。

这四个公式是解决消长问题的基础。

由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。

牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。

正是由于这个不变量,才能够导出上面的四个基本公式。

牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。

由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

•解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

•这类问题的基本数量关系是:
• 1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

• 2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

•解多块草地的方法
•多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。

•例题:有三块草地,面积分别是5,15,24亩。

草地上的草一样厚,而且长得一样快。

第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
•这是一道牛吃草问题,是比较复杂的牛吃草问题。

•把每头牛每天吃的草看作1份。

•因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份•所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份
•因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份
•所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份
•所以45-30=15天,每亩面积长84-60=24份
•所以,每亩面积每天长24÷15=1.6份
•所以,每亩原有草量60-30×1.6=12份
•第三块地面积是24亩,所以每天要长1.6×24=38.4份,原有草就有24×12=288份
•新生长的每天就要用38.4头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=3.6头牛
•所以,一共需要38.4+3.6=42头牛来吃。

相关文档
最新文档