厦门大学高数试卷及答案
(整理)厦门大学年下学期高等数学期中考试卷及答案

-------------1. (10分) 求抛物线2=2y x与其上一点1(,1)2A 处的法线围成的平面图形的面积. 解:先求出抛物线2=2y x 在点1(,1)2A 处的法线方程.2=1=11()=12y y dx d y dydy =, ---------2分 所求的法线方程为11=(1)()2y x ---,即3=2y x -. ---------3分则法线与抛物线的两个交点分别为19(,1)(3)22-,, ---------2分于是所围平面图形的面积为112233-33131116[()]d =()=222263S y y y y y y -=----⎰. ---------3分 2. (10分) 半径为R (单位为:米)的半球形水池充满了水(单位为:吨),要把池内的水全部吸尽,需作多少功?解:取坐标系如图,考察区间[,+d ]x x x 所对应的 小薄层,此薄层水重为22()d R x x π-(吨),将此层 水提高到水池外面的距离是x ,因此所作的微功为22d ()d W R x x x π=-, ---------6要将水池内的水全部吸尽,所作的总功为22401()d 4R W R x x x R ππ=-=⎰(吨.米) ---------4分 3. (10分) 某战斗机型在机场降落时,为了缩短滑行距离,在触地的瞬间,飞机尾部张开降落伞,以增大阻力,使飞机迅速减速并停下。
现有一质量为9000kg(公斤)的飞机,着陆时的水平速度为700km/h (千米/时).假设减速伞厦门大学《高等数学》课程 期中试卷答案 (2011.4.16)主考教师:理工类教学组 试卷类型:(A 卷)打开后飞机所受的总阻力与飞机的速度成正比(比例系数为k=6.0⨯106 kg/h).问从着陆点算起,飞机滑行的最长距离是多少?解:由题设知 m=9000 kg ,着陆时的水平速度0=700v km/h ,从飞机接触跑道开始计时,设t 时刻飞机滑行的距离为x(t ),速度为v(t )。
厦门大学《高等数学(AC)》课程试卷07年

一、填空:(每小题4分,共20分) 1、22(21)t t ∆-+= 。
2、微分方程25cos2x y y y e x '''-+=待定特解的形式为 。
3、已知12t t y C C a =+是差分方程21320t t t y y y ++-+=的通解,则a = 。
4、级数21(2)(1)9nnnn x n ∞=--⋅∑的收敛域为 。
5、微分方程20ydx xdy y xdx -+=的通解为 。
二、判断下列级数的敛散(每小题5分,共10分):1、1!n n n n ∞=∑2、nn ∞=三、求下列方程的通解或特解:(每小题7分,共28分)1、求微分方程()0ydx y x dy +-= 满足(0)1y = 的特解。
2、求差分方程1363tt t y y +-=通解。
3、设()f x 二阶可导,并且()20()()(1)x t f x f u du dt x =+-⎰⎰,求()f x 。
4、求微分方程28cos y a y bx ''+= 的通解,其中,a b 为正常数。
四、计算下列各题:(每小题7分,共28分)1、求曲面积分()()()y z dydz z x dzdx x y dxdy ∑-+-+-⎰⎰其中∑为錐面(02)z z =≤≤的下侧。
2、将函数21()32f x x x =++展开成4x -()的幂级数。
3、求幂级数11(1)2n nn n x -∞=+∑的和函数,并求数项级数1(1)2n n n ∞=+∑的和。
4、设二阶连续导函数()f x 使曲线积分[2()3()5]()x LI f x f x e ydx f x dy ''=-+++⎰与路径无关,且有1(0)0,(0)4f f '==,试求曲线积分 (1,2)(0,0)[2()3()5]()x f x f x e ydx f x dy ''-+++⎰的值。
厦门大学 高等数学试卷 多元函数的积分

一、空间区域的确定和表示确定空间区域的方法有两种:1)直观作图法。
2)解析法。
一般情况下是两种方法相结合。
1)直观作图法,就是根据区域的边界曲面作草图,从草图可直观确定空间区域的形状、边界曲面的交线、在坐标面上的投影区域,最后给出空间区域的表示。
2)解析法,就是本着空间区域是有界实体这一事实,从而可知它在坐标面上的投影区域一定是由封闭曲线所围成,通过边界曲面方程来确定:①曲面在坐标面上的投影区域的边界曲线。
②边界曲面的交线在坐标面上的投影曲线。
③由坐标面上的边界曲线和投影曲线来确定它们所围成的封闭区域,该封闭区域就是空间区域在坐标面上的投影区域。
④由等量线的变化确定上下曲面。
两种方法中,直观作图法只要作图正确,就不容易出错,其难点在于作图;解析法可以不作图,纯粹由曲面方程解析式入手,给出空间区域的表示,其难点在于封闭区域多个时,投影区域是哪一个?是一个,还是多个?上下曲面的如何选定?两种方法相结合效果更好。
二、空间区域的投影坐标面的选取:1)多个边界曲面的投影区域为整个坐标面,则该坐标面为优先考虑的投影坐标面。
2)当边界曲面个数多,其中有柱面(包括平面)时,①先考虑选取与非平面柱面的母线相垂直的坐标面为投影坐标面。
②选取与最多边界平面相垂直的坐标面为投影坐标面。
三、多元函数的积分,主要掌握下面几点: 1)积分区域的确定。
确定积分区域的思想和方法主要是投影的思想方法。
比如:空间区域Ω在xoy 坐标面的投影(平面区域D ),平面区域D 在x 轴(或y 轴)上的投影(轴上区间x I (或yI )),那么:)}()(,|),{(x y y x y I x y x D x 21≤≤∈=或 )}()(,|),{(y x x y x I y y x D y 21≤≤∈=)},(),(),()(,|),,{(y x z z y x z x y y x y I x z y x x 2121≤≤≤≤∈=Ω或)},(),(),()(,|),,{(y x z z y x z y x x y x I y z y x y 2121≤≤≤≤∈=Ω 空间区域Ω在yoz 坐标面的投影(平面区域D ),平面区域D 在y 轴(或z 轴)上的投影(轴上区间yI (或z I )),那么:)}()(,|),{(y z z y z I y z y D y 21≤≤∈=或 )}()(,|),{(z y y z y I z z y D z 21≤≤∈=)},(),(),()(,|),,{(z y x x z y x y z z y z I y z y x y 2121≤≤≤≤∈=Ω或)},(),(),()(,|),,{(z y x x z y x z y y z y I z z y x z 2121≤≤≤≤∈=Ω 空间区域Ω在zox 坐标面的投影(平面区域D ),平面区域D 在x 轴(或z 轴)上的投影(轴上区间x I (或z I )),那么:)}()(,|),{(x z z x z I x y x D x 21≤≤∈=或 )}()(,|),{(z x x z x I z y x D z 21≤≤∈=)},(),(),()(,|),,{(z x y y z x y x z z x z I x z y x x 2121≤≤≤≤∈=Ω 或)},(),(),()(,|),,{(z x y y z x y z x x z x I z z y x z 2121≤≤≤≤∈=Ω为求投影,必须先求空间曲面的交线及其在坐标面上的投影,或平面曲线的交点及其在轴上的投影(即交点坐标)。
【厦大习题集】高等数学习题及详细解答1

1. 求满足下列条件的平面方程:(1) 过点0(2,9,6)M -且与向量0OM u u u u u r垂直;解 所求平面的法线向量为2,9(6),n =-, 由平面的点法式方程,得所求平面的方程为 2299()()(66)0x y z -+---=, 即2961210x y z +--=.(2) 过点(3,0,1)-且与平面375120x y z -+-=平行;解 由于平行平面的法向量相同,法向量(3,7,5)n =-,故所求平面方程为()()()3370510,x y z ---++=, 即2751210x y z -+-=(3) 过点(1,0,1)-,且同时平行于向量2=++a i j k 和=-b i j ;解 法向量2113110=⨯==+--ij kn a b i j k ,所求平面方程为1(1)1(0)3(1)0x y z ⋅-+⋅--⋅+= 即 340x y z +--=(4) 过三点1(1,0,1)M -、2(1,3,2)M --和3(0,2,3)M ; 解 我们可以用→→3121M M M M ⨯作为平面的法线向量n . 因为→)6 ,4 ,3(21--=M M , →)1 ,3 ,2(31--=M M , 所以→→k j i kj i n -+=----=⨯=9141326433121M M M M .根据平面的点法式方程, 得所求平面的方程为 ()(1429(40))1x y z -++--=, 即 149150x y z +--=.(5) 求过点(1,1,1),且垂直于平面7x y z -+=和051223=+-+z y x 的平面方程.解 由条件,所求平面的法向量n 与平面7=+-z y x ,051223=+-+z y x 的法向量都垂直,因此 12111101553212=⨯=-=++-ij kn n n i j k 取(2,3,1)=n ,所求方程为 2(1)3(1)1(1)0⋅-+⋅-+⋅-=x y z 即 2360++-=x y z(6) 平行于xOy 面且经过点(2,5,3)-;解 所求平面的法线向量为(0,0,1)j , 于是所求的平面为 0205130,(.(3))()x y z z ⋅-+⋅++⋅-==即. (7) 过点(3,1,2)--和y 轴解 所求平面可设为0Ax Cz +=. 因为点(3,1,2)--在此平面上, 所以 320A C --=,将23C A =-代入所设方程得 230Ax Az -=, 所以所求的平面的方程为230x z -= 2. 指出下列平面的特殊位置:⑴ 0y =; ⑵ 310x -=; ⑶ 3260x y --=; ⑷ 0x y -=; ⑸ 1y z +=; ⑹ 230x y z -+= 解 (1) xOz 平面.(2) 垂直于x 轴的平面, 它通过x 轴上的点1(, 0, 0)3.(3) 平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是23-和. (4) 通过z 轴的平面, 它在xOy 面上的投影的斜率为1. (5) 平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6) 通过原点的平面.3.求平面2230x y z -++=与各坐标面的夹角的余弦.解 此平面的法线向量为(1,2,2)n =-. 此平面与yOz 面的夹角的余弦为 ^22111cos cos(, )||||32(2)1α⋅====⋅+-+n i n i n i ;此平面与zOx 面的夹角的余弦为321)2(22||||) ,cos(cos 122^-=+-+-=⋅⋅==j n j n j n β; 此平面与xOy 面的夹角的余弦为 ^22122cos cos(, )||||32(2)1γ⋅====⋅+-+n k n k n k .4. 分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面;(2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m , 解之得 97=l ,913=m ,937=n .(2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l =-.5. 求平面011=-+y x 与083=+x 的夹角;解 设011=-+y x 与083=+x 的夹角为θ, 则 32cos 223θ==⨯所以 4πθ=.6. 求点(1,1,2)到平面2230x y z ++-=的距离. 解 利用点到平面的距离公式可得222211122343212d ⨯+⨯+⨯-==++ 7. 已知(5,11,3)A --, (7,10,6)B -和(1,3,2)C ---,求平行于ABC ∆所在的平面且与它的距离等于2的平面的方程.解 设所求平面的法向量为n因为n AB ⊥u u u r, n AC ⊥u u u r , (12,21,9)AB =-u u u r , (6,8,5)AC =-u u u r则 AB AC ⨯=u u u r u u u r1221933630685-=-+--i j ki j k所以取n (11,2,10)=-,则设所求的平面方程为 112100x y z D -++=由已知条件得2221112(3)10(2)211(2)10D⨯-⨯-+⨯-+=+-+330D -=, 1233,27D D ==-所以所求平面方程为11210330x y z -++= 或 11210270x y z -+-=习题6.41. 求下列各直线方程:⑴ 通过点1(1,2,2)M -和2(2,1,1)M -的直线解 所求直线的方向向量为12(1,3,3)s M M ==-u u u u u u r, 所求的直线方程为122133x y z -+-==-. ⑵ 过点(3,2,1)-且平行于直线121123x y z -++==-的直线 解 所求直线的方向向量为(1,2,3)s =-所求的直线方程为321123x y z --+==-. ⑶ 过点(1,3,2)A -且和x 轴垂直相交的直线因为直线过A 点和x 轴垂直相交,所以交点为(1,0,0),B 取(0,3,2),BA s −−→==-所求直线方程⑷ 通过点(1,0,2)且与两直线11111x y z -+==-和11110x y z -+==-垂直的直线. 解 所求直线的方向向量为12111211=⨯=-=----ij ks n n i j k , 所以,直线方程为:12112--==x y z . (5) 通过点(1,2,1)M -且与z y x ,,三轴分别成︒︒︒120,45,60的直线;解 所求直线的方向向量为:()121cos 60,cos 45,cos120,,222︒︒︒⎛⎫=- ⎪ ⎪⎝⎭,故直线方程为:121112x y z --+==-. 2. 求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 先求直线上的一点. 取1x = 有 ⎩⎨⎧=+--=+232z y z y .解此方程组, 得2y =-, 0z =, 即(1,2,0)-就是直线上的一点.再求这直线的方向向量s . 以平面1x y z ++=-和234x y z -+=的法线向量的向量积作为直线的方向向量s : ()(23)11143213=++⨯-+==---ij ks i j k i j k i j k因此, 所给直线的对称式方程为 31241-=-+=-zy x .令tz y x =-=-+=-31241, 得所给直线的参数方程为⎪⎩⎪⎨⎧-=--=+=tz t y t x 3241.132.032x y z -+-==-3. 求过点(1,2,3)-且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方程.解 所求平面的法线向量n 可取为直线⎩⎨⎧=+-+=-+-012530742z y x z y x 的方向向量, 即k j i kj i n 111416253421)2 ,5 ,3()4 ,2 ,1(++-=--=-⨯-=.所平面的方程为()()()1611421130,x y z --+++-=,即161411110---=x y z . 4. 求直线l :21111-=-=-z y x 与平面π:032=--+z y x 的交点坐标和夹角. 解直线l 的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,代入得03)21()1()(2000=-+-++-⨯t t t , 10-=t ,从而交点为101-(,,). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ, 所以 6πθ=.5. 判别下列直线与平面的位置关系:⑴ 34273x y z++==-- 和 42230x y z ---= ⑵ 121327x y z -+-==- 和 641450x y z -+-= ⑶ 53250210x y z x y z -+-=⎧⎨---=⎩ 和 43770x y z -+-=⑷ 2994x t y t z t =⎧⎪=-+⎨⎪=-⎩和 347100x y z -+-=解 (1)所给直线的方向向量为(2,7,3)=--s , 所给平面的法线向量为(4,2,2)=--n . 因为()()(247232)()0⨯=-+--+⨯⨯-=⨯s n , 所以 ⊥s n ,从而所给直线与所给平面平行. 又因为直线上的点(3,4,0)--不满足平面方程4223--=x y z , 所以所给直线不在所给平面上.(2) 所给直线的方向向量为, 所给平面的法线向(3,2,7)s =-量为(6,4,14)n =-.因为P s n , 所以所给直线与所给平面是垂直的.(3)直线的方向向量为:1253259211=⨯=-=++--i j ks n n i j k ,平面的法向量为437=-+n i j k ,而(59)(437)0⋅=++⋅-+=s n i j k i j k , 所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上. (4)直线的方向向量为(1,2,9)=-s ,因为 097)2(413≠⨯+-⨯-⨯ 所以直线与平面相交但不垂直.6. 求下列各平面的方程:⑴ 通过点(2,0,1)M -,且又通过直线32121-=-=+z y x 的平面; 解 (1) 解 所求平面的法线向量与直线32121-=-=+z y x 的方向向量1(2,1,3)s =-)垂直. 因为点(2,0,1)-和(1,0,2)-都在所求的平面上, 所以所求平面的法线向量与向量2(1,0,2)(2,0,1)(3,0,3)s =---=-也是垂直的. 因此所求平面的法线向量可取为12213533=⨯=-=++-ij k n s s i j k .所求平面的方程为251)),(0(x y z -+++= 即015=-++z y x⑵ 通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=-+-=+-+01012z y x z y x 平行的平面; 解 直线⎩⎨⎧=-+-=+-+01012z y x z y x 的方向向量为k j i kj i s 32111121)1 ,1 ,1()1 ,2 ,1(1--=--=-⨯-=,所求平面的法线向量可取为121231323151=⨯=--=-----i j kn s s i j k ,又平面过点(2,3,1)--,由平面点法式方程得,所求平面的方程为 ()()13223310()x y z ---+-+= 即 1323170.x y z ++-=7. 求点(2,1,0)-在平面10.+-+=x y z 上的投影.解 平面的法线向量为(1,1,1)n =-. 过点(1,2,0)-并且垂直于已知平面的直线方程为21111-+==-x y z. 将此方程化为参数方程2,1,x t y t z t =+=-+=-,代入平面方程10.+-+=x y z 中, 得 2(1)10++-++=t t t 解得23=t . 再将23=t 代入直线的参数方程, 得83=x , 13=-y , 23=-z . 于是点(2,1,0)-在平面10.+-+=x y z 上的投影为点812(, -, -)333.8. 求点1(2,)1,-P 到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离.解 直线⎩⎨⎧=-+-=+-+04201z y x z y x 的方向向量为k j kj i s 33112111)1 ,1 ,2()1 ,1 ,1(--=--=-⨯-=.过点P 且与已知直线垂直的平面的方程为 313()(0)2y z -+--=, 即10y z +-=. 解线性方程组⎪⎩⎪⎨⎧=-+=-+-=+-+0104201z y z y x z y x ,得1x =, 21-=y , 23=z .点1(2,)1,-P 到直线⎩⎨⎧=-+-=+-+04201z y x z y x 的距离就是点1(2,)1,-P 与点)23,21 ,1(-间的距离,即 222136(21)(1)(1)222=-+-++-=d . 9. 设0M 是直线外一点, M L 是直线L 上任意一点, 且直线的方向向量为s , 试证: 点0M 到直线L 的距离 →||||0s s ⨯=M M d .证 设点0M 到直线L 的距离为的方向L 向量→MN =s , 根据向量积的几何意义, 以和→MN 为邻→M M 0边的平行四边形的面积为→→→||||00s ⨯=⨯M M MN M M ,又以→M M 0和→MN 为邻边的平行四边形的面积为→||||0s s ⨯=⋅M M d . 因此 →||||0s s ⨯=⋅M M d →||||0s s ⨯=M M d .10. 求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面2210--+=x y z 上的投影直线的方程.解 设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即 01)1()1()1(=-++-+-++λλλλz y x 这平面与已知平面2210--+=x y z 垂直的条件是(1)2(1)(1)(1)(2)0+⋅+-⋅-+-+⋅-=λλλ,解之得3=-λ代入平面束方程中得2220-++=x y z 投影平面方程为,所以投影直线为22202210-++=⎧⎨--+=⎩x y z x y z .习题6.51. 求以点122-(,,)为球心,且通过坐标原点的球面方程.解 球的半径2221(2)23=+-+=R , 球面方程为 222()()(9)122-+++-=x y z即 2222440.++-+-=x y z x y z2. 方程22224220+++-++=x y z x y z 表示什么曲面? 解 由已知方程得2222()()(1212)++-++=x y z所以此方程表示以1,21(,)--为球心, 以2为半径的球面.3. 将yOz 坐标面上的抛物线2y z =绕z 轴旋转一周,求所生成的旋转曲面的方程解 将方程中的y 换成22±+y x 得旋转曲面的方程222+=y x z4. 将xOz 坐标面上的椭圆22936+=x z 分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程.解 椭圆绕x 轴旋转而得的旋转曲面的方程为2229(36.)++=x y z 即 222222 1.622++=x y z椭圆绕z 轴旋转而得的旋转曲面的方程为22236.)(9++=x y z 即 222222 1.662++=x y z5. 指出下列方程在平面解析几何和空间解析几何中分别表示什么图形.⑴1=x ; ⑵2=-+y x ; ⑶ 224x y +=; ⑷ 224x y -=解 (1) 在平面解析几何中, 1=x 表示平行于y 轴的一条直线; 在空间解析几何中,1=x 表示一张平行于yOz 面的平面.(2) 在平面解析几何中, 2=-+y x 表示一条斜率是1-, 在y 轴上的截距也是2的直线; 在空间解析几何中,2=-+y x 表示一张平行于z 轴的平面.(3) 在平面解析几何中, 224+=y x 表示中心在原点, 半径是4的圆; 在空间解析几何中, 224+=y x 表示母线平行于z 轴, 准线为224+=y x 的圆柱面.(4) 在平面解析几何中, 224x y -=表示双曲线; 在空间解析几何中,224x y -=表示母线平行于z 轴的双曲面.6. 说明下列旋转曲面是怎样形成的:⑴2221994x y z ++=; ⑵ 222144-+=x z y ; (3) 222(1)-=+z x y 解 ⑴这是yOz 面上的椭圆22194+=y z 绕z 轴旋转一周而形成的, 或是xOz 面上的椭圆22194+=x z 绕x 轴旋转一周而形成的. ⑵ 这是xOy 面上的双曲线2214-=x y 绕y 轴旋转一周而形成的, 或是yOz 面上的双曲线2214-+=z y 绕y 轴旋转一周而形成的. (3) 这是zOx 面上的曲线22(1)-=z x 绕z 轴旋转一周而形成的, 或是yOz 面上的曲线22(1)-=z y 绕z 轴旋转一周而形成的.7. 指出下列各方程表示哪种曲面,并作图:⑴220+-=x y ax ; ⑵ 20-=y z ; ⑶ 22244+-=x y z ; ⑷ 2294=+x y z ;(1) 220+-=x y ax 表示母线平行z 轴的圆柱面。
厦门大学2011-2012学年第一学期高等数学(理工A类)期末试卷

(4)
(
1 cos 2 x | x | sin x)dx
x t 3 3t 1 2、 (10 分)设函数 y ( x) 由参数方程 确定,求曲线 y y ( x) 向上凸的 x 取值 3 y t 3t 1
范围. 3、 10 分) ( 设函数 f ( x),g( x) 在 x 0 的某个邻域内连续, lim 且
x 0
g( x ) f ( x) 1, lim 2 2 x 0 g ( x ) 1 cos x
试问: x 0 是否是 f ( x) 的极值点?如果是极值点,是极大还是极小?其极值为多少? 4、 (10 分)求函数 y ln x 的最大曲率. 5、 (10 分)求函数 f ( x) ln(1 x ) 的凹凸区间及拐点.
厦门大学《高等数学 A》课程期末试卷
____学院____系____年级____专业 主考教师:高等数学 A 教学组
V 1、求下列各题积分: (每题 5 分,共 20 分) (1)
试卷类型: 卷) (A
sin x 1+ cos x dx
1 1 2
(2)
ln 2 x x2 dx
(3)
1 x2 dx x2
2
6、 (10 分)求函数 f (x)=
ex 0
t 4 16 dt 的最小值. 1 t
7、 (10 分)设 f (x) 在 [0,1] 上可导,且 0 f (x)<1,x (0,1), f (0) 0 ,证明
[ f (x)dx]2 f 3 (x)dx .
0 0
1
1
8、 (10 分)已知函数 f (x) 连续,且 lim
14-15第一学期微积分I高等数学期末试卷及答案(A卷)

一、计算下列各题:(每小题4分,共36分)1.求极限)0(21lim 1>++++∞→p nn p pp p n 。
2.求2cos ()x t x f x e dt =⎰的导数。
3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。
4.计算广义积分20x x e dx +∞-⎰。
厦门大学《微积分I 》课程期末试卷试卷类型:(理工类A 卷) 考试日期 2015.1.215.计算定积分120sin 2x x dx π⎡⎤⎛⎫⎢ ⎪⎢⎝⎭⎢⎣⎰。
6.求方程2x ydy dx +=的通解。
7.求不定积分2(1)(1)xdx x x ++⎰。
8.求方程1y y x x'-=的通解。
9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。
二、计算下列各题:(每小题5分,共30分)1. 求极限20)(02sin limx dt e x x t x x ⎰-→⋅。
2.计算22sin 2cos x x dx x ππ-⎤⎥+⎦⎰。
3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dxdy 。
4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。
5.求曲线⎰=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。
6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。
三、计算下列各题:(每小题6分,共24分)1.求微分方程32()()1dy x x y x x y dx++-+=-的通解。
2.设0>a ,求直线231aa x y +-=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。
14-15厦门大学微积分I高等数学期末试卷(A卷)

一、计算下列各题:(每小题4分,共36分)1.求极限)0(21lim 1>++++∞→p nn p pp p n 。
2.求2cos ()x t x f x e dt =⎰的导数。
3.求由曲线3y x =-,1x =,2x =,0y =所围成的图形面积。
4.计算广义积分20x x e dx +∞-⎰。
厦门大学《微积分I 》课程期末试卷试卷类型:(理工类A 卷) 考试日期 2015.1.215.计算定积分120sin 2x x dx π⎡⎤⎛⎫⎢+ ⎪⎢⎝⎭⎢⎣⎰。
6.求方程2x ydy dx +=的通解。
7.求不定积分2(1)(1)xdx x x ++⎰。
8.求方程1y y x x'-=的通解。
9.已知11y =,21y x =+,231y x =+都是微分方程2222x y xy y '''-+=的解,求此方程的通解。
二、计算下列各题:(每小题5分,共30分)1. 求极限20)(02sin lim x dt e x x t x x ⎰-→⋅。
2.计算22sin 2cos x x dx x ππ-⎤⎥+⎦⎰。
3.设函数)(x y y =由方程1cos 020322=+⎰⎰dt t dt e x y t 决定,求dxdy 。
4. 求微分方程32y y ''=满足初始条件00|1,|1x x y y =='==的特解。
5.求曲线⎰=x t t x f 0d sin )(相应于π≤≤x 0的一段弧的长度。
6. 设物体作直线运动,已知其瞬时速度2()(/)v t t =米秒,其受到与运动方向相反的阻力()5()F t v t =(牛顿),求物体在时间间隔[]0,1(单位秒)内克服阻力所作的功。
三、计算下列各题:(每小题6分,共24分)1.求微分方程32()()1dy x x y x x y dx++-+=-的通解。
2.设0>a ,求直线231aa x y +-=与x 轴,y 轴所围三角形绕直线a x =旋转一周所得旋转体的体积。
厦门大学《高等数学(AC)》经管类(A卷)期末试卷及答案

一、解下列各题 (每小题6分,共42分)1、 220limarctan xt x x e dtx x-→-⎰. 2、设函数()f x 连续,且31()x f t dt x -=⎰,求(7)f .3、设(cos )ln(sin )f x dx x c '=+⎰,求()f x .4、已知点()3,4为曲线2y a =a , b .5、求函数2()2ln f x x x =-的单调区间与极值.6、设函数21()cos x f x x⎧+=⎨⎩0,0.x x ≤> 求2(1)f x dx -⎰.7、求曲线3330x y xy +-=的斜渐近线.二、计算下列积分(每小题6分,共36分)1、31sin cos dx x x ⎰.2、.3、523(23)x dx x +⎰.4、41cos 2xdx x π+⎰. 5、312⎰ 6、2220x x edx +∞-⎰,其中12⎛⎫Γ= ⎪⎝⎭.三、应用题(每小题6分,共12分)1、 假设在某个产品的制造过程中,次品数y 是日产量x 的函数为: 2100,102100.x x y xxx ⎧≤⎪=-⎨⎪>⎩并且生产出的合格品都能售出。
如果售出一件合格品可盈利A 元,但出一件次品就要损失3A元。
为获得最大利润,日产量应为多少? 2、设函数()f x 连续,(1)0f =,且满足方程1()()xf x xe f xt dt -=+⎰,求()f x 及()f x 在[]1,3上的最大值与最小值.四、证明题(每小题5分,共10分)1、当0x >时,证明:(1ln x x +>2、设函数)(x f 在[],a b 上连续,()0f x ≥且不恒为零,证明()baf x dx ⎰0>.一、解下列各题 (每小题6分,共42分)1、解:2220023200011lim lim lim arctan 33xxt t x x x x x e dtx e dte x x x x ---→→→---===⎰⎰ 2、 解:两边求导有233(1)1xf x -=,令2x =,得1(7)12f =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008—2009学年第一学期《高等数学》期中试卷解答
一、填空题 (每小题4分,共24分)
1、 当2→x 时,713→+=x y ,为了使001.07<-y ,则δ应不大于____
2、 已知2)
3(lim 0=→x f x x ,则=→x x f x )2(lim 0__________ 3、 如果=+→)1ln(1
02)(cos lim x x x ____________
4、 当0→x 时,)(12122x o bx ax x +++=-,a ,b 分别是__________
5、 设a 是实数,函数⎪⎩
⎪⎨⎧=≠--=-1,01,11cos )1()(x x x x x f a ,则当)(x f 在1=x 处可导时,a 必定满足_____________
6、 设x x
x f )11()(+=,则=')5.0(f _______________
二、单项选择题 (每小题4分,共24分)
1、设函数111)(--⎪⎪⎭⎫ ⎝⎛-=x x e x f ,则( ) (A )x =0, x =1都是f (x )的第一类间断点。
(B )x =0, x =1都是f (x )的第二类间断点。
(C )x =0是f (x )的第一类间断点,x =1是f (x )的第二类间断点。
(D )x =0是f (x )的第二类间断点,x =1是f (x )的第一类间断点。
2、若函数)(x f 可导,且4)0()],1[sin(sin )(2=+='f x x f ,则)(x f 的反函数)(y g x =的导数)4(g '的值为( )
(A ))4(sin sin 12 (B ))
5(sin sin 12 (C ))1(sin sin 12 (D )0 3、设,sin 22y e x y =-则
=dx dy ( )
(A )y e y x 22cos 2+ (B )22cos 2x
y e x y
-+ (C )0 (D )222cos 2x e y x y -+ 4、设参数方程为⎩⎨⎧==t
b y t a x sin cos ,则二阶导数=22dx y d ( ) (A )t a b 2sin (B )t a b 32sin - (C )t a b 2cos (D )t
t a b 2cos sin - 5、设函数31
2)(-=x x f ,则( )
(A )在其有定义的任何区间),(21x x 内,必是单调减少的;
(B )在点1x 及2x 处有定义,且21x x <时必有)()(21x f x f >;
(C )在其有定义的任何区间),(21x x 内,必是单调增加的;
(D )在点1x 及2x 处有定义,且21x x <时必有)()(21x f x f <;
6、在区间[0,8]内,对函数328)(x x x f -=,罗尔定理的结论( )
(A )不成立 (B )成立,并且0)2(='f
(C )成立,并且0)4(='f (D )成立,并且0)8(='f
三、计算题:(每小题4分,共12分)
1、设x x y sin 2=,求)100(y
2、设)()(ln x f e x f y =,其中)(x f 可微,求dy
3、求极限x x x x x e e x x x 2arcsin )1ln()(tan )2cos 1)((lim tan 0+---→
四、证明题 (A 型题满分40分,B 型题满分28分)
(以下每一题中设有A 型题和B 型题,只需选定其中的一类题做)
1.(A )(8分)根据函数极限的定义证明:313lim
424n n n →∞+=- (B )(5分)根据函数极限的定义证明:21214lim 221x x x →--=+
2. (A)(8分)
设1103,1,2,n x x n +<<== ,证明数列{}n x 的极限存在,并求此极限。
(B)(6分)设11x =,11,(1,2,)1n n n x x n x +=+=+ ,证明证明数列{}n x 的极限存在,并求此极限。
3.(A)(8分)证明:若()f x 在[a,b]上连续,且()()1f a f b +=,则存在[,]a b ξ∈,使得1
()2f ξ=。
(B)(5分) 若()f x 在[a,b]上连续,且对[,]x a b ∀∈,()0f x ≠,则()f x 在[a,b]上恒正或恒负。
4.(A)(8分)设函数()f x 在(,)-∞+∞上满足()()()f xy f x f y =,且(1)
f '存在,求()(0)f x x '≠。
(B)(6分) 设函数()f x 在(,)-∞+∞上满足()()()f x y f x f y +=,且(0)1f '=,求()f x '。
5.(A)(8分)设()f x 可导,证明()f x 的两个零点之间一定有()f x +()f x '的零点。
(B)(6分) 设()f x 在[0,1]上可导,对于任意(0,1)x ∈都有()1f x '≠,0()1f x <<,且方程()f x x =在(0,1)上有实根,证明此实根是惟一的。