北京大学 高等代数(I)期末考试 2011

合集下载

北京大学2022-2023-1实验班高等代数I年期中考试试题

北京大学2022-2023-1实验班高等代数I年期中考试试题

26
8北京大学2022-2023-1实验班高等代数I年期中考试试题
1.(8分)考虑实线性空间R2到自身的(非线性)映射
φ:R2ÑR2,φ(x,y)=(x+1,y).
对下面四种方式给出的子集SĂR2,分别回答:是否存在线性映射T:R2ÑR,使得T(S)=φ(S)?
(1)S=␣
(x,y)P R2;x´2=y´1,1ďxď2
(
,
(2)S=␣
(x,y)P R2;(x´2)2=(y´1)2
(
,
(3)S=␣
(x,y)P R2;(x´2)2+(y´1)2=1
(
,
(4)S=␣
(x,y)P R2;(x´2)2=y´1
(
.
fl:线性空间与线性变换
2.(8分)设F是任意域,n是正整数,称F nˆn的子空间M是“优美”的,如果它满
足:对任意A P F nˆn和B P M,总有AB P M.求F nˆn的“优美”子空间维数的所有可能值.fl:线性空间与线性变换
3.(8分)设F是任意域,n为正整数,A P F nˆn,B=A n,αP F nˆ1.假设B3α=B2α.
证明:B2α=Bα.fl:矩阵
4.(6分)考虑有限域F2上的线性空间F2022
2
.求满足如下条件的最小正整数k:存在
F2022 2的k个互不相同的2021维子空间W1,¨¨¨,W k,使得对F2022
2
的任意2021维
子空间M,总有
M=
kÿ
i=1
M X W i. fl:线性空间与线性变换。

北京大学数科学学院期末试题

北京大学数科学学院期末试题

北京大学数学科学学院期末试题2009 -2010学年第 1 学期考试科目 高等代数I 考试时间 2010 年 1 月 8 日 姓 名 学 号 注:本试题共 6 道大题,满分 100 分. 填空题答案抄在答题本上.一.(42分)填空题 (多选 ) .1.已知3阶矩阵A 的特征值为 1, 2, - 1, 相应的特征向量为[ 1 0 0 ] T , [ 0 1 0 ] T , [ 3 0 1 ] T , 则 A 9 = .2.设 A 是5阶矩阵. 若 A 2 = 5 A , 且 A 秩 = 2 , 则 A 的特征值 是 , 对应的特征子空间的维数分别是 .3.设 , 则 A T A 的秩为 , A T A 的特征值 为 , AA T 的特征值为 , ( AA T )-1 = .4. 若n 阶实对称矩阵A 满足条件 A 3 = - A , 则 | I + A 2 | = .5. 当t = 时, 二次型 x 2 + 2 y 2 + 3 z 2 + 2 t x y + 2 y z 正定; 当t = 2 时, 该二次型的正、负惯性指数分别是 .6. 以下诸矩阵分成几个相似等价类 , 它们分别是 ; 以下 四个矩阵中又有哪些与A 合同 , 哪些与D 相抵 .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001050100,100020202,210111012,100020002D C B A ⎥⎦⎤⎢⎣⎡=21001011A二.(10分)已知 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=402211111A , 解矩阵方程 A X A -1 + A X = I . 三.(10分)设 α1 = [ 2 0 1 3 ] T , α2 = [ 0 1 0 1 ] T , α3 = [ 2 0 1 3 ] T 与 α4 = [ 3 2 1 5 ] T . 求子空间V = < α1 , α2 , α3, α4> 的一组基底, 并判 断β = [ 4 3 1 6 ] T 是否在V 中; 如果在, 求β 在此基底下的坐标.四.(10分)求欧氏空间R 4 中一点 [ 0 0 0 1 ] T 到线性子空间 V = < α1 , α2 > 的最短距离. 这里α1 = [ 1 1 0 0 ] T , α2 = [ 1 0 1 1 ] T .五.(20分)设二次型 f = x 12 + x 32 + x 32 + 4 x 1 x 2 + 4 x 1 x 3 + 4 x 2 x 3 .(1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量;(2) 求正交矩阵C 及对角矩阵D , 使得A = C D C T .(3) 求函数 f ( x 1 , x 2 , x 3 ) 在单位球面 x 12 + x 22 + x 32 = 1 上取到的 最大、最小值, 并确定在何处取到.六.(8分)设2阶方阵A 在复数域上有两个相同特征值 λ , 且A ≠λ I . 证明: A 与矩阵 相似.⎥⎦⎤⎢⎣⎡λλ01。

北京大学数学科学学院高等代数(II)期末考试题

北京大学数学科学学院高等代数(II)期末考试题

试题1(北京大学高等代数(I)期末考试题)一、(本题共40分)给定有理数域Q 上的多项式42()3 3.f x x x =++1.(本题5分)证明()f x 为Q 中的不可约多项式.2.(本题5分)设α是()f x 在复数域C 内的一个根,定义[]{}2012.Q a a a a αα=++证明:对于任意的[]()g x Q x ∈,有[]()g Q αα∈;又对于任意的[],Q βγα∈,有[]Q βγα∈.3.(本题5分)接上题,证明:若[]Q βα∈,0β≠,则存在[]Q γα∈,使得1βγ=.4.(本题5分)找出()f x 的一个sturm 序列, 判断()f x 有几个实根.5.(本题5分)求下面三阶方阵在有理数域Q 上的最小多项式:0 031 000 13A -⎛⎫⎪= ⎪ ⎪-⎝⎭. 二、(本题10分)在欧氏空间4R 内求下列齐次线性方程组123412412342303220390x x x x x x x x x x x ++-=⎧⎪+-=⎨⎪++-=⎩的解空间的正交补空间的一组标准正交基.三、(本题15分)给定数域P 上的多项式3()f x x px q =++.设()f x 在复数域C 内的三个根是123,,ααα.求P 上的首1三项式()F x ,它以222123,,ααα为三个根. 四、(本题15分)设σ是n 维酉空间V 内的一个Hermite 变换.1.(本题5分)证明i σε-可逆,这里i 为虚单位.2.(本题10分)证明1()()i i τσεσε-=-+为酉变换.五、(本题10分)设σ是n 维酉空间V 内的一个线性变换.如果σ的特征向量都是*σ的特征向量,证明σ是正规变换.六、(本题5分) 证明在n 维欧氏空间V 中两两夹钝角(即夹角大于2π)的向量不能多于1n +个.七、(本题5分)考察复数域上全体n 阶方阵所成的集合()n M C ,它关于矩阵的加法及实数与矩阵的数乘组成实数域R 上的线性空间.设M 为其子空间,且满足:(i )若,A B M ∈,则,A B M ∈;(ii )若,0A M A ∈≠ ,则A 可逆,且1A M -∈.1.证明:任给A M ∈,则()A aE a R =∈或A aE B =+,这里a R ∈,且2(,0)B b E b R b =∈<. 2.令{}2|,,0N A M A bE b R b =∈=∈<,证明N 是M 的子空间.。

高等代数期末考试试卷

高等代数期末考试试卷

一、填空题(每小题2分,共10分)1.多项式22009320101()(2)()2f x x x =+-的常数项为 。

2.设,,a b c 是方程30x px q ++=的三个根,则a bcb c a c a b = 。

3.线性方程组m n A x b ⨯=有无穷多解的充要条件是______________________。

4.设矩阵123012001A ---⎛⎫ ⎪-- ⎪ ⎪-⎝⎭=,则1A -的秩为 。

5.设实二次型123(,,)f x x x 的矩阵是111t ⎛⎫⎪⎝⎭,则123(,,)f x x x 是正定二次型的充要条件是 。

二、单选题(每小题2分,共10分)1.实数域上次数大于1的多项式()f x 有一实根是()f x 在实数域上可约的( )。

a) 必要非充分条件 b) 充分必要条件 c) 充分非必要条件 d) 既非充分又非必要条件2.行列式111213212223313233a a a a a a d a a a =,则332313322212312111a a a a a a a a a =( )。

a) d - b) d c) 0 d) 不确定3.λ=( ),非齐次线性方程组12323232132(3)(4)(2)x x x x x x x λλλλλλ+-=-⎧⎪-=-⎨⎪-=--+-⎩有无穷多解。

a) 1 b) 2 c) 3 d) 4 4.若矩阵A 满足20A A E ++=,则9A =( )。

a) A b) A - c) E d) 05.矩阵( )合同与200010005-⎛⎫ ⎪⎪ ⎪⎝⎭ 。

a) 4000100010⎛⎫⎪⎪ ⎪⎝⎭b) 300020005⎛⎫⎪ ⎪ ⎪-⎝⎭c) 100010001-⎛⎫⎪- ⎪ ⎪⎝⎭d) 200020001⎛⎫⎪ ⎪ ⎪⎝⎭三、判断题(每小题2分,共10分)1.若()()()h x f x g x ,则()()h x f x 或()()h x g x 。

高等代数期末考试试卷及答案

高等代数期末考试试卷及答案

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分)1、线性空间[]Px 的两个子空间的交()()11L x L x -+=2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是4、设3阶方阵A 的3个行列式因子分别为:()21,,1,λλλ+则其特征矩阵E A λ-的标准形是5、线性方程组AX B =的最小二乘解所满足的线性方程组是:二、 单项选择题(每小题3分,共15分)1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构:(A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。

2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。

3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0;A AB A λλ≠是一个非零常数;()()C A λ是满秩的;()()D A λ是方阵。

4、( )设实二次型f X AX '=(A 为对称阵)经正交变换后化为:2221122...n n y y y λλλ+++, 则其中的12,,...n λλλ是:()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。

北京大学数学科学学院《高等代数I》期末试题及答案【完整版】

北京大学数学科学学院《高等代数I》期末试题及答案【完整版】

北京大学数学科学学院期末试题考试科目 高等代数I 考试时间 姓 名 学 号一.(10分)设F 4 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111, F 2 = ⎥⎦⎤⎢⎣⎡-1111, D 2 = ⎥⎦⎤⎢⎣⎡i 001.1) 求矩阵C , 使得 ⎥⎦⎤⎢⎣⎡-2222D I D I ⎥⎦⎤⎢⎣⎡22F 00F C = F 4 ; 2) 求F 4 的逆矩阵.解: 1) 比较 ⎥⎦⎤⎢⎣⎡-2222D I D I⎥⎦⎤⎢⎣⎡22F 00F =⎥⎦⎤⎢⎣⎡-=222222F D F F D F ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i i 111111i i 111111 与 F 4 得 C =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000001001000001. 2) 由 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------i 1i 11111i 1i 11111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=4000040000400004知 414F 41F =-.二. (10分)设n 阶方阵A n = ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡010010100110010 . 记θ = π / ( n+1 ) .1) 对1 ≤ j ≤ n, 证明 α j = [ sin( j θ ) sin( 2 j θ ) . . . sin( n j θ ) ] T是A n 的特征向量 ;2) 对 a ∈ R , 求矩阵a I + A n 的行列式. 解: 1) 对每个 1 ≤ j ≤ n, 我们有⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡)θj n sin()θj 3sin()θj 2sin()θj sin(θ)2cos(j )θj 1)(n sin()θj 4sin()θj 2sin()θj 3sin()θj sin()θj sin(2)θj n sin()θj 3sin()θj 2sin()θj sin(01001010011001即 A n α j = 2cos( j θ ) α j .于是α j ( 1 ≤ j ≤ n ) 是A n 的特征向量, 它们对应的特征值2cos( j θ ) ( 1 ≤ j ≤ n )互异.2) a I + A n 的特征值为a + 2cos( j θ ) ( 1 ≤ j ≤ n ) , 故| a I + A n | = ( a + 2cos θ ) ( a + 2cos( 2θ ) ) ...( a + 2cos( n θ ) ) .三. (10分)设A : XA X 是R 4到R 3的线性映射, 其中A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110110101101.1) 求A 的秩 r 及可逆矩阵P , Q , 使得 A = P ⎥⎦⎤⎢⎣⎡0I rQ , 这里 I r 是r 阶单位矩阵.2) 求R 4的一组基α 1 , α 2 , α 3 , α 4 与 R 3的一组基β 1 , β 2 , β 3 ,使得 A α i = β i , ∀ 1 ≤ i ≤ r 且 A α i = 0 , ∀ i > r . 解: 1)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1000010010101101000000100001101010001000010101101101010001110110101101于是A 的秩为 2 , 可取 P = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001, Q = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010010101101. 2) 在上式两边右乘Q -1 =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1000010*********, 得A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000001000011010100011000010010101101. 令α 1 , α 2 , α 3 , α 4 依次为Q -1的列向量, β 1 , β 2 , β 3 依次为P 的列向量, 则有 A α 1 = β 1 , A α 2 = β 2 , A α 3 = 0 , A α 4 = 0 . 三.(32分)填空题 .1.设 B, C, D 是n 阶矩阵, 其中D 可逆, 则⎥⎦⎤⎢⎣⎡-D CB C D B 1的秩 = n . ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D C 00D C B C D B I 0D B I 11,⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-D 000I D C 0ID C 0012. 当t < - 1/4 时, 二次型 f = 5 t x 2 + t y 2 – z 2 + 2 t xy + 2 x z 负定 ; 当t >0 时, 二次型 f 的正、负惯性指数分别是 2 与 1 . 通过成对行列变换, 二次型 f 的矩阵可化为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000t 0001t 41000t t 0t 1t 51010t t 1t t 5f 负定 ⇔ 4 t + 1 < 0 且t < 0 ⇔ t < – 1 / 4f 的正、负惯性指数分别是 2 与 1 ⇔ 4 t + 1 > 0 且t > 0 ⇔ t > 0 .3. 已知 A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--12222121231 是行列式为1的正交矩阵, 则线性变换X A X 是绕单位向量α = 的旋转, 旋转角为 .解特征方程组 ( A – I ) X = 0 , 得特征值1 的特征子空间基底 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011. 于是α = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡±01121. 取与α垂直的向量β = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-011, 由A β =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-41131 求得β与A β 夹角的余弦值为 ( β, A β )/ ( | β| | A β| )= 1/3 . 故旋转角为 arccos( 1 / 3 ).4. 在欧氏空间R 4中,子空间 < ( 1,0,0,0) T, ( 0,1,0,0 ) T> 到⎩⎨⎧==+1x 2x x 321的解集合的最小距离是 1 .四. (18分)设f ( x 1 , x 2 , x 3 ) = 8 x 12 –7 x 22 + 8 x 32 + 8 x 1 x 2 – 2 x 1 x 3 + 8 x 2 x 3 . (1) 将 f 写成 X T A X 的形式, 并求A 的特征值与特征向量; (2) 求正交矩阵 P 及对角矩阵D , 使得 A = P D P T .解: (1) []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==321321Tx x x 841474148x x x X A X f8λ4147λ49λ09λ8λ4147λ4148λ|A λI |---+-+--=---+---=-)9λ()9λ()3249λ()9λ(7λ4187λ4009λ22+-=---=---+--=A 的特征值为λ = 9 (二重), – 9 . 对λ = 9解齐次方程组 ( A – 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----0000001411414164141 通解为x 1 = 4 x2 - x3 , x 2 、x 3为自由变量. 解的向量形式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101x 014x x x x 4x x x x 323232321于是α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 构成λ = 9特征子空间的一组基. 对λ = -9解齐次方程组 ( A + 9 I ) X = 0 :⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--00041010100036901741000212174117414241417 通解为 x 1 = x 3 , x 2 = - 4 x 3 , x 3为自由变量. 解的向量形式:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡141x x 4x x x x x 3333321于是α3 = [ 1 -4 1 ] T 构成λ = -9特征子空间的一组基. (2) 将α1 = [ 1 0 -1 ] T , α2 = [ 4 1 0 ] T 正交化: 令 β1 = α1 ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-=21210124014β)β,β()β,α(αβ1111222 再单位化:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==21231β||β||1γ,10121β||β||1γ222111 将α3 = [ 1 -4 1 ] T 也单位化: .⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=141231γ3 γ1 , γ2 , γ3 构成R 3 的标准正交基, P = [ γ1 γ2 γ3 ] =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--23132212343102313221为正交矩阵, 且.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==T 3T 2T1321Tγγγ999]γγγ[P D P A五.(10分)设β是欧氏空间R n 的单位向量, V 是子空间 < β > 的正交补. (1) 求矩阵A , 使得对任意列向量X ∈ R n , AX 是X 向V 所作的正交投影; (2) 求正交矩阵B , 使得线性变换 X B X 是R n 关于V 的镜面反射. 解: (1) 对任意列向量X ∈ R n , X 在一维子空间 < β > 上的正交投影为 ( X , β ) β = β βT X .于是X 在正交补 < β >⊥上的正交投影为X – ( X , β ) β = X – β βT X = ( I – β βT ) X .故所求矩阵为A = I – β βT .(2) 向量X ∈ R n , 关于 < β >⊥ 的镜面反射为X – 2 ( X , β ) β = X – 2 β βT X = ( I – 2 β βT ) X . 故所求正交矩阵为B = I – 2 β βT .六.(10分)判断对错, 正确的请给出证明, 错误的举出反例.1) 若A 是实对称矩阵, B 是实反对称矩阵, 则A + i B 的特征多项式在复数域上的根都是实数. 正确.证明: 设λ是A + i B 在复数域上的特征值, α是属于λ的复特征向量, 即 ( A + i B ) α = λ α , α ≠ 0 .则有 αT ( A – i B ) = λ αT , TT αλ)B i A (α=+.于是 ααλα)B i A (αααλTTT=+=, 由α ≠ 0 知0ααT≠, 于是 λλ=, λ 为实数.2) 在数域K 上, 若 n 阶方阵A 有 n + 1 个特征向量, 且其中任意 n 个都线性无关, 则 A 一定是数量矩阵. 正确.若A 不是数量矩阵, 则A 的特征子空间维数都小于n. 又因为A 有 n 个 线性无关的特征向量, A 可对角化, 故A 的特征子空间的维数之和等于n. 任给n + 1 个特征向量, 必存在A 的一个特征子空间 V , 包含其中至少 dim V + 1≤ n 个特征向量, 这dim V + 1 个特征向量线性相关, 矛盾!。

高等代数(北大版)第二学期考试卷2

高等代数(北大版)第二学期考试卷2

阜阳师范学院信息与计算科学 专业 一 2010 级 年级 二 高等代数 三 四——课程,共 3 页, 第 1 页,共印刷 五 六 七 30学年度第 二 学期考试卷份, 2011 年 06 月 29 日 8:00 — 9:40 考试,任课教师 八 九 十 十一 十二 刘俊同 总 分 拟题 教研室 备 注学号…………….……………..装……………………订………………..线……………题 得号 分阅卷教师签名一、判断题(每题 2 分,共 20 分) 1、 在一般数域内, 二次型的标准形是唯一的, 且与所作的非退化线性替换无关。

( 2、线性变换把线性无关的向量组变成线性无关的向量组。

( ) ) ) ) )5、如果 n 级矩阵 A 满足关系式__________,则称 A 为正交矩阵;欧氏空间 V 中的线性 变换  对   、 V满足关系式____________,则称  为对称变换。

3、若 n 阶实方阵 A 是正定矩阵,则 A 的主对角线上的元素均大于零。

( 4、若 V 1 与 V 2 都是线性空间 V 的子空间且 V1  V 2 ,则 V 1  V 2  V 2 。

5、若 W  A  P n  n | A T  A  ,则 dim W n ( n  1) 2( (  1   1, 0, 0   6、 P 中,  2   0, 0, 2  在     0,1, 0   3 3姓名是 P 3 中的一组基, 对任意向量   ( a1 , a 2 , a 3 ) ,  在基  1 ,  2 ,  3 则。

下的坐标为____________。

4 ) 7、在 P 中,已知 班6、特征向量是被特征值所唯一决定,但特征值不是被特征向量所唯一决定。

( 7、反对称实数矩阵的特征值皆为纯虚数。

8、若矩阵 A 与矩阵 B 有相同的特征多项式,则 A 与 B 相似。

高等代数北大编第1章习题参考答案

高等代数北大编第1章习题参考答案

第一章多项式一、习题及参考解答1 .用g(x)除了(x),求商g(x)与余式r(x):1 ) f (x) = x3 - 3x2 - x -1, g(x) = 3x2 - 2x +1;2 ) f(x) = x4 -2x + 5,g(x) = x2 - x + 2。

解1)由带余除法,可得q(x) =L-Z,“x) =-竺x-2 ;2)同理可得g(x) = / +x-l,r(x) = -5x + 7。

2. 〃?,PM适合什么条件时,有1 ) X2 +/?1¥-1 I X3 + px + c/ 92) x2 + nix + 11 x4 + px2 +q。

解1 )由假设,所得余式为0,即(〃 + l + 〃?2)x + (q-〃?) = O,所以当 1 + 。

时有 /+〃a-11 X* + px +g 0q _ in = 0 .2)类似可得= 于是当〃? = 0时,代入(2)可得〃=夕+ 1;q + 1 —〃一" = 0而当2- 〃 -J = 0时,代入(2)可得4 = 1 04 = ] _, 时,皆有 / + + 1 I X,+ px2 + 9。

综上所诉,当p + nr = 23 .求g(x)除f(x)的商q(x)与余式:1 ) /(x) = 2«?-5x3-8x,g(x) = x + 3 ;2) f(x) = x3-x2 - xg(x) = x-l + 2i o解[)q(x) = 2x4 - 6x3 +13x2 - 39A+ 109 ,r(x) = -327 '2)= x2 -2LV-(5+2/)r(x) = -9 + 8/ °4 .把/1(X)表示成x-%的方幕和,即表成c()+ G(X —“0)+。

2(X — X。

)~ + …+ C n(X — X。

)” + …的形式:1)/(x) = x',x()= 1 ;2) /(X)= X4-2X2+3,X0 =-2 ;3) f (x) = x4 + 2汉3 -(1 + i)x2 -3x + 7 + i,x0 =-i o解 1 ) 由综合除法,可得f(x) = l + 5(x-l) + 10(x-l)2 + 10(x-1)3+5(X-1)4 + (x-1)5 ;2 ) 由综合除法,可得X4-2X2+3=11-24(X + 2) + 22* + 2)2 -8(.r + 2)3 + (x + 2),;3)由综合除法,可得『+2立3_(1 +82_3工+ (7 +,)= (7 + 5i)-5(x + i) + (-l-i)(x + i)2 -2i(x + i)3 + (x + i),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档