第十八章勾股定理全章导学案
人教版八年级下册数学导学案 第十八章 勾股定理

第十八章 勾股定理第一课时 勾股定理的内容、应用1.我国古人把非等腰的直角三角形称为勾股形,他们把较短的直角边称为“勾”,把较长的直角边称为 。
斜边称为: 。
2.我们现在学习的勾股定理在西方数学中称为: 定理,因为他们以为这个定理是由古西腊数学家 先发现在,但我国古人先于西方两百多年前在<<周髀算经>>中就发现了直角三角形的一种特殊的三边关系:称其为:“勾3股4弦5”3.真正对直角形三边关系有所正明的是我国汉代数学家 他在对<<周髀算经>>进行注解时,对这个关系进行了证明,他的这种对定理的证明方法被世界公认为400多种证明方法中最巧妙的方法之一。
4.赵爽弦图充分的体现了我们古人在对勾股定理的证明上做出的不可磨灭的贡献,当然它也是我们数学的标志,在2002年 数学家大会上,作为会徽出现,我们的每本中学数学课本的封面也是以它为体材,因此可见它在我们国人心中的位置是不可才替代的。
5.勾股定理:直角三角形 等于 。
几何语言表述:如图,在Rt ΔABC 中,∠C = 90°。
则:___________2+___________2=___________2若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为:___________________。
练习:如图,已知在Rt △ABC 中,∠C=90°, ①若a=3,b=4,则c=________ ②若a=5,c=13,则b=________③若b =1,c =4,则c=________ ④若4:3:=b a ,10=c ,则=a ,=b .5.同学们在学习的时候需注意:三角形的角和边的标记方法,在Rt △ABC 中,∠B=900,;则b 应该为斜边,而a 和c 应该为直角边。
一、选择题(每小题5分,共25分)1.在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ).A .26B .18C .20D .212.在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ).A .3B .4C .5D .73在△ABC 中,∠A=90°,则下列各式中不成立的是( )A .BC 2=AB 2+AC 2; B .AB 2=AC 2+BC 2; C .AB 2=BC 2-AC 2;D .AC 2=BC 2-AB 24.一直角三角形的斜边长比一条直角边大2,另一条直角边长为6,则斜边长为(• )A .4B .8C .10D .12a b c BC A5.下面四组数中是勾股数的有( )(1)1.5,2.5,2 (2)2,2,2(3)12,16,20 (4)0.5,1.2,1.3A .1组B .2组C .3组D .4组6.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,•小刘搬来一架高2.5米的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为(• )A .0.7米B .0.8米C .0.9米D .1.0米7.若一直角三角形两边的长为12和5,则第三边的长为( )A .13B .13或119C .13或15D .158.下列各组线段中,能构成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .4,6,79.如图18-8所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A .L 1B .L 2C .L 3D .L 45mBCA D10、如图,一只蚂蚁沿边长为a 的正方体表面从顶点A 爬到顶点B ,则它走过的路程最短为( )(A )a 3 (B )a )21(+ (C )a 3 (D )a 5二.填空题11、等腰Rt △ABC 中,底边长为2,则腰长为 ,面积为 。
18章勾股定理全章导学案

C ABD1、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为 。
2、一个直角三角形的两边长分别为5cm 和12cm,则第三边的为 。
3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25 C .斜边长为5 D .三角形面积为204、已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高. 求 ①AD 的长;②ΔABC 的面积.5、如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9。
(1)求DC 的长。
(2)求AB 的长。
6、已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
图18.2-3 学习目标:1.进一步掌握勾股定理的逆定理,并会应用勾股定理的逆定理判断一个三角形是否是直角三角形,能够理解勾股定理及其逆定理的区别与联系,掌握它们的应用范围。
2.培养逻辑推理能力,体会“形”与“数”的结合。
重点:勾股定理的逆定理难点:勾股定理的逆定理的应用一、自学导航已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
归纳:求不规则图形的面积时,要把不规则图形 二、互动冲浪 1.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
三、当堂检测1、若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( )A .等腰三角形;B .直角三角形;C .等腰三角形或直角三角形;D .等腰直角三角形。
勾股定理导学案 整章(精品)

第十八章勾股定理第1课时——勾股定理(1一、教学目标:1、能用几何图形的性质和代数的计算方法探索勾股定理;2、知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示;3、能运用勾股定理理解用关直角三角形的问题。
二、教学重点:知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示。
教学难点:能用几何图形的性质和代数的计算方法探索勾股定理; 三、学习过程:(一导入:勾股定理的探究:1、利用几何图形的性质探索勾股定理: 探索一:剪4个与图1完全相同的直角三角形, 再将它们拼成如图2所示的图形。
大正方形的面积可以表示为: ; 又可以表示为。
∵两种方法都是表示同一个图形的面积∴ = 即 = ∴222=+(用字母表示2、将图2沿中间的正方形的对角线剪开, 得到如图所示的梯形:直角梯形的面积可以表示为: ;三个直角三角形的面积和可以表示为: ;利用“直角梯形的面积”与“三个直角三角形的面积和”的关系,可以得到:= + + ∴ = 即 = ∴222=+(用字母表示3、利用代数的计算方法探索勾股定理:探索一:如图一,观察图中用阴影画出的三个正方形(每一个小方格的边长为1∵21S S += ,3S = ; ∴ = 即:=+(用字母表示A 探索二:利用右图画出一个两条直角边分别为AC=3厘米、BC=4厘米的直角三角形, (1用刻度尺量出斜边的长AB= 厘米, (2计算: 22BC AC += = 2AB = = 即:=+(用字母表示3、勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么。
公式变形: c 2= , a2= , b2=(二讲授新课:勾股定理的应用: 例1. 在Rt △ABC 中,∠C =90°.(1 已知a =6, b =8,求c ; (2 已知a =2, c =5, 求b . 解:(1在ABC Rt ∆ 中,根据勾股定理,c2= = =∴c =(2在ABC Rt ∆ 中,根据勾股定理,b2= = =∴b =(三课堂练习:1、在Rt △ABC 中,∠C =90°.(1 已知 a =3,b =4,求c ; (2 已知c =10, a =6,求b. 解:(1在ABC Rt ∆ 中,根据勾股定理, (2在ABC Rt ∆ 中,根据勾股定理, ∴c 2= = = ∴b 2= = = ∴c = ∴ b = 2.求下列图中直角三角形的未知边。
第十八章勾股定理全章导学案

新世纪教育网精选资料版权全部@新世纪教育网第十八章勾股定理勾股定理( 1)主备人:初审人:终审人:【导学目标】1. 能用几何图形的性质和代数的计算方法研究勾股定理.2. 知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3. 能运用勾股定理理解用关直角三角形的问题.【导学要点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法考证勾股定理.【学法指导】研究、发现 .【课前准备】查阅相关勾股定理的文化背景资料.【导学流程】一、体现目标、明确任务1. 认识勾股定理的文化背景,体验勾股定理的研究过程.2. 认识利用拼图考证勾股定理的方法.3. 利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1. 着手画画、着手算算、动脑想一想.在纸上作出边长分别为:(1) 3、 4、5(2) 6、 8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)察看课本 P64 页图,思虑:等腰直角三角形有什么性质吗?你是如何获得的?它们(2)在 P65 页图中的三个直角三角形中,能否仍知足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展现沟通阅读 P65 页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.研究 P66 页“研究 1”.在 Rt△ ABC中,依据勾股定理AC2 = 2 + 2 因为AC=5 ≈2.236,所以AC木板宽,所以木板从门框内经过 .2.议论《配套练习》 P24 页选择填空题 .五、部署预习预习“研究2”,达成 P68页的练习 .【教后反省】勾股定理( 2)主备人:初审人:终审人:【导学目标】1. 能运用勾股定理的数学模型解决现实世界的实质问题.2. 经过例题的剖析与解决,感觉勾股定理在实质生活中的应用.【导学要点】运用勾股定理解决实质问题.【导学难点】勾股定理的灵巧运用.【学法指导】察看、概括、猜想.【课前准备】数轴的知识【导学流程】一、体现目标、明确任务1. 能运用勾股定理的数学模型解决现实世界的实质问题.2. 经过例题的剖析与解决,感觉勾股定理在实质生活中的应用.二、检查预习、自主学习1.展现 P66 页“研究 2”,达成填空 .2.研究 P68 页“研究 3”.提示:两直角边为 1 的等腰直角三角形,斜边长为多少?斜边为 5 的等腰直角三角形,直角边能够为多少?三、问题导学、展现沟通1.展现上边的研究成就 .2. 研究 P68 页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1. 达成练习题 .2. 填空题⑴在 Rt△ABC,∠C=90°,a =8,b =15,则c =.⑵在 Rt△,∠ =90°, a =3,b =4,则c =.ABC B⑶在 Rt△ABC,∠C=90°,c =10,a: b=3:4,则a = , b = .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为.⑸已知直角三角形的两边长分别为3cm和 5cm,,则第三边长为.3.达成《配套练习》 P25 页选择填空题 .六、部署预习预习习题 18.1 中 1— 5 题.【教后反省】练习课主备人:初审人:终审人:【导学目标】1. 持续运用勾股定理的数学模型解决实质问题.2. 经过例题的剖析与解决,感觉勾股定理在实质生活中的应用.【导学要点】运用勾股定理解决实质问题.【导学难点】勾股定理的灵巧运用.【学法指导】察看、概括、猜想.【课前准备】数的开方运算.【导学流程】一、体现目标、明确任务持续运用勾股定理的数学模型解决实质问题.二、检查预习、自主学习分小组展现预习成就.三、教师指引解说习题 18.1 中 10 题 .1.一个剖面图,如何抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为 x ,还能够表示哪些线段?5.在这个直角三角形中利用勾股定理能够列一个如何的式子?四、问题导学、展现沟通1.展现上边的议论结果 .2.议论达成 7,8 题 .五、点拨升华、当堂达标议论 9题.六、部署预习预习下一节,阅读例 1 前面的课文,达成练习 1.【教后反省】勾股定理的逆定理( 1)主备人:初审人:终审人:【导学目标】1.领会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.研究勾股定理的逆定理的证明方法.3.理解原命题、抗命题、逆定理的观点及关系.【导学要点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等 .【导学流程】一、体现目标、明确任务1.领会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.研究勾股定理的逆定理的证明方法.3.理解原命题、抗命题、逆定理的观点及关系.二、检查预习、自主学习下边的三组数分别是一个三角形的三边长 a ,b, c .5、12、13 7、24、258、15、17( 1)这三组数知足a2 b 2 c2吗?( 2)分别以每组数为三边长作出三角形,用量角度量一量,它们都是直角三角形吗?假如三角形的三边长 a 、b、 c ,知足a2 b 2 c2 ,那么这个三角形是三角形 . 问题二:命题1:, 命题 2:.命题 1 和命题 2 的和正好相反,把像这样的两个命题叫做命题,假如把此中一个叫做,那么另一个叫做.三、教师指引1.说出以下命题的抗命题,这些命题的抗命题建立吗?⑴同旁内角互补,两条直线平行 .⑵假如两个实数的平方相等,那么两个实数平方相等.⑶线段垂直均分线上的点到线段两头点的距离相等.⑷直角三角形中30°角所对的直角边等于斜边的一半.四、问题导学、展现沟通自学 P74 页例 1.五、点拨升华、当堂达标1.达成习题 18.2 中 1—3 题 .2.以下三条线段不可以构成直角三角形的是()A.8,15,17 B .9, 12,15C5,3,2 D.a: b :c =2 3 4.::3.达成练习 2.六、部署预习1.达成《配套练习》 P29 页选择填空题 .2.预习下一节,弄懂方向角的表示.3.达成练习 3.【教后反省】勾股定理的逆定理( 2)主备人:初审人:终审人:【导学目标】1.灵巧应用勾股定理及逆定理解决实质问题.2.进一步加深性质定理与判断定理之间关系的认识.【导学要点】灵巧应用勾股定理及逆定理解决实质问题. 【导学难点】灵巧应用勾股定理及逆定理解决实质问题.【学法指导】抽象、迁徙 . 【课前准备】勾股定理的逆定理 . 【导学流程】一、体现目标、明确任务1.灵巧应用勾股定理及逆定理解决实质问题 .2.进一步加深性质定理与判断定理之间关系的认识.二、检查预习、自主学习2. 边长分别是 a, b, c 的△ ABC ,以下命题是假命题的是( ) .A 、在△ ABC 中,若∠B =∠C - ∠ A ,则△ ABC 是直角三角形;B 、若 a 2b c b c ,则△ ABC 是直角三角形;C 、若∠ A ︰∠ B ︰∠ C =5︰ 4︰ 3,则△ ABC 是直角三角形;D 、若 a : b : c 5 : 4 : 3 ,则△ ABC 是直角三角形 .3. 在△ ABC 中,∠ C =90°,已知 a : b 3 : 4 , c 15 ,求 b 的值 .4. 展现练习 3. 三、教师指引 例 1(P75 例 2) 剖析:⑴认识方向角,及方向名词;⑵依题意画出图形;⑶依题意可得 PR =12× 1.5=18 , PQ =16× 1.5=24 , QR =30;⑷由于 24 22 2 2 2 2的逆定理,知∠ QPR =90°; +18 =30 ,PQ +PR =QR ,依据勾股定理 ⑸∠ PRS =∠ QPR -∠ QPS =45° .四、问题导学、展现沟通一根 30 米长的细绳折成 3 段,围成一个三角形,此中一条边的长度比较短边长 7 米,比较长边短 1 米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长; ⑵设未知数列方程,求出三角形的三边长5、12、 13;⑶依据勾股定理的逆定理,由 52+122=132,知三角形为直角三角形 .五、点拨升华、当堂达标o,AB =3,1. 如图, AB ⊥ BC 于点 B ,DC ⊥ BC 于点 C ,点 E 是 BC 上的点,∠ BAE =∠ CED =60 CE =4. A 求:① AE 的长 . ② DE 的长 . ③ AD 的长(提示:先证△____是直 角三角形) .2. 达成《配套练习》 P30 页选择填空题 .六、部署预习BDC【教后反省】练习课主备人: 初审人:终审人:【导学目标】1. 掌握勾股定理及其逆定理, 并会运用定理解决简单问题, 会运用勾股定理的逆定理判断直角三角形;2. 认识抗命题、逆定理的观点,知道原命题建立其抗命题不必定建立.【导学要点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】认识抗命题、逆定理的观点,知道原命题建立其抗命题不必定建立 .【学法指导】抽象、迁徙 . 【课前准备】勾股定理的逆定理 . 【导学流程】一、体现目标、明确任务1. 掌握勾股定理及其逆定理, 并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2. 认识抗命题、逆定理的观点,知道原命题建立其抗命题不必定建立二、检查预习、自主学习 分小组展现预习成就 .三、教师指引如图,在四边形 ABCD 中,∠ D =90°,AB =12,CD =3,DA =4,=13, 求 S 四边形 ABCD .BC剖析:D由于∠ =90°,可连结AC 构成直角形,由勾股定理求D出 AC ,这样在△ ABC 中,三边均知道大小,利用勾股定理可 以判断三角形的形状, 再用两个三角形的面积求出 S.四边形 ABCD四、问题导学、展现沟通 议论上边的问题,再展现沟通 .五、点拨升华、当堂达标议论《配套练习》 P29 页 5— 7 题和 P31 页 6, 7 题 . 六、部署预习.CBA1. 议论《配套练习》节余题目.2.预习复习题十八, 1—3 题 .【教后反省】小结( 1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判断直角三角形;2. 认识抗命题、逆定理的观点,知道原命题建立其抗命题不必定建立.【导学要点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】认识抗命题、逆定理的观点,知道原命题建立其抗命题不必定建立.【学法指导】转变和数形联合.【课前准备】复习本章内容.【导学流程】一、体现目标、明确任务1. 用勾股定理及其逆定理解决简单问题;2. 认识抗命题、逆定理的观点.二、检查预习、自主学习展现预习成就.三、教师指引本章知识构造:实质问题勾股定理(直角三角形连长计算)互逆定理实质问题勾股定理的逆定理(判断直角三角形)四、问题导学、展现沟通1.直角三角形三边的长有什么关系?2. 已知一个三角形的三边,可否判断它是直角三角形?举例说明.3. 假如一个命题建立,那么它的抗命题必定建立吗?举例说明.4.如图,已知 P 是等边三角形 ABC内上点, PA=5,PB=4, PC=3,求∠ PBC. A四、问题导学、展现沟通提示:假如三角形的三条边分别是三、四、五,那么这个三角形必定是直角三角形. 但此题长为3,4,5 的三条线P段不在同一个三角形中,联想到等边三角形的性质,可以将△ APC绕点 C旋转获得△ BCP′.B C五、点拨升华、当堂达标1. 议论达成“复习题18”中 4—7题 .P'4 题,可先设每份为k ,再用勾股定理的逆定理.5 题,不建立的需举反例 .6 题,能够数单位面积的正方形个数.7 题,直接用勾股定理 .2.议论 8,9 题.六、部署预习预习下一章 .。
勾股定理导学案

人 教 版 八 年 级(下)数 学 导 学 案学校:凤凰一中 授课教师:班 组 学生姓名课题:§18.1 勾股定理(1)1、 了解毕达哥拉斯及《勾股定理》的内容,学会用多种拼图方法验证勾股定理,感受解决同一个问题方法的多样性。
2、 通过实例进一步了解勾股定理,能应用勾股定理进行简单的计算,感受勾股定理的应用价值。
1、 准备四个全等的直角三角形纸片(标出两直角边a 、b 和斜边c ),并专心阅读课本P62——P66内容.2、 利用所准备的三角形纸片进行拼图,从面积相等的角度列出等式,对该等式进行变形得出一个最简结果,尝试对该结果用语言进行表述.3、 看看自已的同伴有哪些拼图?有哪些可以借鉴的地方?三、知识导航与回顾:(用学过的知识完成下列填空)①含有一个 的三角形叫做直角三角形. ②已知R t △ABC 中的两条直角边长分别为a 、b ,则S △ABC = . ③已知梯形上下两底分别为a 和b ,高为(a +b ),则该梯形的面积为 . ④完全平方公式:(a ±b )2= .⑤在R t △ABC 中,已知∠A =30°,∠C =90°,直角边BC =1,则斜边AB = . 四、体验学习、课本导学(请认真阅读课本P 62~P 66的内容,围绕学案中的问题互学、群学,讨论、 探究吧!记住:知识不会施舍给懒汉哦!)★思考与探究1、右边这个人是 (公元前572—前492年),他是古希腊著名的 .2、我国古代所讲的“勾、股、弦”分别指的是 R t △的. 3、2002年在北京召开的国际数学家大会的会徽形如以下三个图中的 ,它是由四个 的 所围成的正方形图案﹝赵爽弦图....﹞.显然4个 的面积+中间小正方形的面积=该图案的面积. 即4×21× +﹝ ﹞2=c 2,化简后得到 . 这一结果用文字表达为 . 二、怎样学习?一、今天学什么? 1B 30° □A C4、利用图2,图3或其它拼图仿上述推导,能否得到相同的结果?和同学一起动手试试看!★回顾与归纳1、勾股定理的内容是: .2、勾股定理的作用是: .3、证明勾股定理的主要方法是: . ★尝试与练习1、 如图一,求出斜边AB 的长度= ;如图二,求出斜边AB 的长度= ;直角边B C 的长度= .2、 在Rt △ABC 中,∠ACB=90°,A C =3k ,B C =4 k ,求出A B = .3、 已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。
八年级数学第十八章勾股定理教案与学案人教版

第十八章“勾股定理”教材分析:本章主要内容是勾股定理及其逆定理。
首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。
在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。
本章教学时间约需8课时,具体安排如下:18.1勾股定理 4 课时18.2勾股定理的逆定理3课时数学活动小结1课时(一)、教科书内容和课程学习目标本章知识结构框图:直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。
本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。
勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。
它不仅在数学中,而且在其他自然科学中也被广泛地应用。
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。
这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。
在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。
勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
在教科书中,图-3(1)中的图形经过割补拼接后得到图-3(3)中的图形。
由此就证明了勾股定理。
通过推理证实命题1的正确性后,教科书顺势指出什么是定理。
八下数学科第十八章 勾股定理教案

勾股定理二
应用勾股定理:数形结合 设计者: 审查者: 日期:2016 年 3 月 7 日
八 年级__数学 课题: 《
科第 十八 单元(章)导学案 勾股定理三 》
二、合作交流 解读探究 例 1(教材 P74 页探究 1)明确如何将实际问题转化为 数学问题, 注意条件的转化; 学会如何利用数学知识、 思想、 方法解决实际问题。 个性设计
1、知识与技能:灵活应用勾股定理及逆定理解决实际问题。
教 学 目 标
2、数学思考:进一步加深性质定理与判定定理之间关系的认识
⑷因为 242+182=302,PQ2+PR2=QR2,根据勾股定理 的逆定理,知∠QPR=90°; ⑸∠PRS=∠QPR-∠QPS=45°。
3、解决问题:判断一个三角形是否为直角三角形
四、小结
假命题是(
)
A.如果∠C-∠B=∠A,则△ABC 是直角三角形。 B.如果 c2= b2—a2,则△ABC 是直角三角形,且∠C=90°。 C.如果(c+a) (c-a)=b2,则△ABC 是直角三角形。 D.如果∠A:∠B:∠C=5:2:3,则△ABC 是直角三角形。
板书设计:
勾股定理的逆定理
教学 重点 难点 课时安排 教学过程:
1、重点:勾股定理的简单计算 例 2、已知直角三角形的两边长分别为 5 和 12,求第三边。 2、难点:勾股定理的灵活运用 分析:已知两边中较大边 12 可能是直角边,也可能是斜边, 个性设计 因此应分两种情况分别进形计算。 让学生知道考虑问题要全 面,体会分类讨论思想
1、知识与技能:会用勾股定理解决简单的实际问题
教 学 目 标
2、数学思考:实际问题与勾股定理的联系
A
3、解决问题:树立数形结合的思想
十八章导学案

振兴初中八年级数学(下)导学案课题:勾股定理课型:新课课时:主备人:李英审核人:编号:SH-8【学习目标】1.了解勾股定理的文化背景,体验勾股定理的探索过程。
2.了解利用拼图验证勾股定理的方法。
3.利用勾股定理,已知直角三角形的两边求第三边的长。
【重点难点】重点:探索和体验勾股定理。
难点:用拼图的方法验证勾股定理。
【导学指导】毕达哥拉斯是古希腊著名的数学家,相传2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性。
是什么呢?我们来研究一下吧。
阅读教材P64-P66内容,思考、讨论、合作交流后完成下列问题。
1.请同学们观察一下,教材P64图18.1-1中的等腰直角三角形有什么特点?请用语言描述你发现的特点。
2.等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足这种特点?你能解决教材P65的探究吗?由此你得出什么结论?3.我们如何证明你得出的结论呢?你看懂我国古人赵爽的证法了吗?动手摆一摆,想一想,画一画,证一证吧。
【课堂练习】1.教材P69习题18.1第1题。
2.求下图字母A,B所代表的正方形的面积。
3.在直角三角形ABC中,∠C=90°,若a=4,c=8,则b= .【要点归纳】本节课你学到了什么知识?还存在什么困惑?与同伴交流一下。
【拓展训练】1.直角三角形的两边长分别是3cm,5cm,试求第三边的长度。
2.你能用下面这个图形证明勾股定理吗?振兴初中八年级数学(下)导学案课题:勾股定理的应用(1) 课型:新课 课时: 主备人:李英 审核人: 编号:SH-8【学习目标】1. 能熟练的叙述勾股定理的内容,能用勾股定理进行简单的计算。
2. 运用勾股定理解决生活中的问题。
【重点难点】重点:运用勾股定理进行简单的计算。
难点:应用勾股定理解决简单的实际问题。
【导学指导】 复习旧知:1. 什么是勾股定理?它描述了直角三角形中的什么的关系?2. 求出下列直角三角形的未知边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章勾股定理勾股定理(1)主备人:初审人:终审人:【导学目标】1.能用几何图形的性质和代数的计算方法探索勾股定理.2.知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.3.能运用勾股定理理解用关直角三角形的问题.【导学重点】知道直角三角形中勾、股、弦的含义,能说出勾股定理,并用式子表示.【导学难点】用拼图的方法验证勾股定理.【学法指导】探究、发现.【课前准备】查阅有关勾股定理的文化背景资料.【导学流程】一、呈现目标、明确任务1.了解勾股定理的文化背景,体验勾股定理的探索过程.2.了解利用拼图验证勾股定理的方法.3.利用勾股定理,已知直角三角形的两边求第三边的长.二、检查预习、自主学习1.动手画画、动手算算、动脑想想.在纸上作出边长分别为:(1)3、4、5(2)6、8、10的直角三角形,且动笔算一下,三条边长的平方有什么样的关系,你能猜想一下吗?2.借图说明(1)观察课本P64页图,思考:等腰直角三角形有什么性质吗?你是怎样得到的?它们满足上面的结论吗?(2)在P65页图中的三个直角三角形中,是否仍满足这样的关系?若能,试说明你是如何求出正方形的面积?3.有什么结论?三、问题导学、展示交流阅读P65页用拼图法证明勾股定理的内容,弄懂面积关系.四、点拨升华、当堂达标1.探究P66页“探究1”.在Rt△ABC中,根据勾股定理AC2 = 2+ 2因为AC=5≈2.236,因此AC木板宽,所以木板从门框内通过.2.讨论《配套练习》P24页选择填空题.五、布置预习预习“探究2”,完成P68页的练习.【教后反思】勾股定理(2)主备人:初审人:终审人:【导学目标】1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数轴的知识【导学流程】一、呈现目标、明确任务1.能运用勾股定理的数学模型解决现实世界的实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.二、检查预习、自主学习1.展示P66页“探究2”,完成填空.2.探究P68页“探究3”.提示:两直角边为1的等腰直角三角形,斜边长为多少?三、问题导学、展示交流1.展示上面的探究成果.2.研究P68页的课文,弄懂无理数在数轴上的表示方法.四、点拨升华、当堂达标1.完成练习题.2.填空题⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= .⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= .⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .⑸已知直角三角形的两边长分别为3cm和5cm,,则第三边长为 .3.完成《配套练习》P25页选择填空题.六、布置预习预习习题18.1中1—5题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.继续运用勾股定理的数学模型解决实际问题.2.通过例题的分析与解决,感受勾股定理在实际生活中的应用.【导学重点】运用勾股定理解决实际问题.【导学难点】勾股定理的灵活运用.【学法指导】观察、归纳、猜想.【课前准备】数的开方运算.【导学流程】一、呈现目标、明确任务继续运用勾股定理的数学模型解决实际问题.二、检查预习、自主学习分小组展示预习成果.三、教师引导讲解习题18.1中10题.1.一个剖面图,怎样抽象成一个几何图形?2.直角三角形在什么地方?3.在直角三角形中,已知哪些边长?4.若设芦苇的长为x,还可以表示哪些线段?5.在这个直角三角形中利用勾股定理可以列一个怎样的式子?四、问题导学、展示交流1.展示上面的讨论结果.2.讨论完成7,8题.五、点拨升华、当堂达标讨论9题.六、布置预习预习下一节,阅读例1前面的课文,完成练习1.【教后反思】勾股定理的逆定理(1)主备人:初审人:终审人:【导学目标】1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系.【导学重点】掌握勾股定理的逆定理及证明.【导学难点】勾股定理的逆定理的证明.【学法指导】发现法、练习法、合作法【课前准备】三角形全等.【导学流程】一、呈现目标、明确任务1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法.3.理解原命题、逆命题、逆定理的概念及关系. 二、检查预习、自主学习下面的三组数分别是一个三角形的三边长a ,b ,c .5、12、13 7、24、25 8、15、17 (1)这三组数满足222c b a =+吗?(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形.问题二:命题1: ,命题2: .命题1和命题2的 和 正好相反,把像这样的两个命题叫做 命题,如果把其中一个叫做 ,那么另一个叫做 .三、教师引导1.说出下列命题的逆命题,这些命题的逆命题成立吗? ⑴同旁内角互补,两条直线平行.⑵如果两个实数的平方相等,那么两个实数平方相等. ⑶线段垂直平分线上的点到线段两端点的距离相等. ⑷直角三角形中30°角所对的直角边等于斜边的一半. 四、问题导学、展示交流 自学P74页例1.五、点拨升华、当堂达标 1.完成习题18.2中1—3题.2.下列三条线段不能组成直角三角形的是( )A . 8, 15, 17B . 9, 12,15C .5,3,2 D .a :b :c =2:3:43.完成练习2. 六、布置预习1.完成《配套练习》P29页选择填空题.2.预习下一节,弄懂方位角的表示.3.完成练习3. 【教后反思】勾股定理的逆定理(2)主备人: 初审人: 终审人:【导学目标】1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.【导学重点】灵活应用勾股定理及逆定理解决实际问题. 【导学难点】灵活应用勾股定理及逆定理解决实际问题. 【学法指导】抽象、迁移. 【课前准备】勾股定理的逆定理. 【导学流程】一、呈现目标、明确任务1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识. 二、检查预习、自主学习2.边长分别是c b a ,,的△ABC ,下列命题是假命题的是( ).A 、在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形; B 、若()()c b c b a -+=2,则△ABC 是直角三角形;C 、若∠A ︰∠B ︰∠C =5︰4︰3,则△ABC 是直角三角形;D 、若3:4:5::=c b a ,则△ABC 是直角三角形.3.在△ABC 中,∠C =90°,已知4:3:=b a , 15=c ,求b 的值.4.展示练习3. 三、教师引导 例1(P75例2) 分析:⑴了解方位角,及方位名词; ⑵依题意画出图形;⑶依题意可得PR =12×1.5=18,PQ =16×1.5=24,QR =30;⑷因为242+182=302,PQ 2+PR 2=QR 2,根据勾股定理 的逆定理,知∠QPR =90°; ⑸∠PRS =∠QPR -∠QPS =45°. 四、问题导学、展示交流一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形. 五、点拨升华、当堂达标1.如图,AB ⊥BC 于点B ,DC ⊥BC 于点C ,点E 是BC 上的点,∠BAE =∠CED =60o,AB =3,CE =4.求:①AE 的长. ②DE 的长. ③AD 的长(提示:先证△____是直角三角形).2.完成《配套练习》P30页选择填空题. 六、布置预习预习这两节的《配套练习》中大题.AB D C【教后反思】练习课主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】抽象、迁移.【课前准备】勾股定理的逆定理.【导学流程】一、呈现目标、明确任务1.掌握勾股定理及其逆定理,并会运用定理解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.二、检查预习、自主学习分小组展示预习成果.三、教师引导如图,在四边形ABCD中,∠D=90°,AB=12,CD=3,DA=4,BC=13, 求S四边形ABCD.分析:因为∠D=90°,可连接AC构成直角形,由勾股定理求出AC,这样在△ABC中,三边均知道大小,利用勾股定理可以判断三角形的形状,再用两个三角形的面积求出S四边形ABCD.四、问题导学、展示交流讨论上面的问题,再展示交流.五、点拨升华、当堂达标讨论《配套练习》P29页5—7题和P31页6,7题.六、布置预习DB1.讨论《配套练习》剩余题目.2.预习复习题十八,1—3题.【教后反思】小结(1)主备人:初审人:终审人:【导学目标】1.掌握勾股定理及其逆定理,并能解决简单问题,会运用勾股定理的逆定理判定直角三角形;2.了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【导学重点】掌握勾股定理及其逆定理,并会运用定理解决简单问题.【导学难点】了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.【学法指导】转化和数形结合.【课前准备】复习本章内容.【导学流程】一、呈现目标、明确任务1.用勾股定理及其逆定理解决简单问题;2.了解逆命题、逆定理的概念.二、检查预习、自主学习展示预习成果.三、教师引导本章知识结构:四、问题导学、展示交流1.直角三角形三边的长有什么关系?2.已知一个三角形的三边,能否判定它是直角三角形?举例说明.3.如果一个命题成立,那么它的逆命题一定成立吗?举例说明.4.如图,已知P是等边三角形ABC内上点,PA=5,PB=4,PC=3,求∠PBC.四、问题导学、展示交流提示:如果三角形的三条边分别是三、四、五,那么这个三角形一定是直角三角形.但本题长为3,4,5的三条线段不在同一个三角形中,联想到等边三角形的性质,可以将△APC绕点C旋转得到△BCP′.五、点拨升华、当堂达标1.讨论完成“复习题18”中4—7题.4题,可先设每份为k,再用勾股定理的逆定理.5题,不成立的需举反例.6题,可以数单位面积的正方形个数.7题,直接用勾股定理.2.讨论8,9题.六、布置预习预习下一章.B CP'。