固体物理重点计算题详细解答
固体物理复习题目解答

一、名词解释:1、晶体:是由离子、原子或分子(统称为粒子)有规律地排列而成的,具有周期性和对称性。
2、非晶体:有序度仅限于几个原子,不具有长程有序性和对称性。
3、点阵:格点的总体称为点阵。
4、晶格:晶体中微粒重心,做周期性的排列所组成的骨架,称为晶格5、格点:微粒重心所处的位置称为晶格的格点(或结点)。
6、晶体的周期性:晶体中微粒的排列按照一定的方式不断的做周期性重复,这样的性质成为晶体结构的周期性。
7、晶体的对称性:晶体经过某些对称操作后,仍能恢复原状的特性。
(有轴对称、面对称、体心对称即点对称)。
8、密勒指数:某一晶面分别在三个晶轴上的截距的倒数的互质整数比称为此晶面的Miller 指数9、倒格子:设一晶格的基矢为→1a ,→2a ,→3a ,若另一格子的基矢为→1b ,→2b ,→3b ,与→1a ,→2a ,→3a 存在以下关系:⎩⎨⎧≠===∙ji j i a b ij j i 022ππδ (i,j=1,2,3)。
则称以→1b ,→2b ,→3b 为基矢的格子是以→1a ,→2a ,→3a 为基矢的格子的倒格子。
(相对的可称以→1a ,→2a ,→3a 为基矢的格子是以→1b ,→2b ,→3b 为基矢的格子的正格子)。
10、配位数:可以用一个微粒周围最近邻的微粒数来表示晶体中粒子排列的紧密程度,称为配位数。
11、致密度:晶胞内原子所占体积与晶胞总体积之比称为点阵内原子的致密度。
12、固体物理学元胞:体积最小的晶胞,格点只在顶角上,内部和面上都不包含其他格点,整个元胞只包含一个格点。
是反映晶体周期性的最小结构单元。
13、结晶学元胞:格点不仅在顶角上,同时可以在体心或面心上;晶胞的棱也称为晶轴,其边长称为晶格常数、点阵常数或晶胞常数;体积通常较固体物理学元胞大。
反映晶体周期性和对称性的最小结构单元。
14、布拉菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合,而且每个格点周围的情况都一样。
固体物理考试要点及部分答案

名词解释1、什么是简单晶格和复式晶格?答:简单晶格:如果晶体由完全相同的一种原子组成,且每个原子周围的情况完全相同,则这种原子所组成的网格称为简单晶格。
复式晶格:如果晶体的基元由两个或两个以上原子组成,相应原子分别构成和格点相同的网格,称为子晶格,它们相对位移而形成复式晶格。
5、晶体包含7大晶系,14种布拉维格子,32个点群?试写出7大晶系名称;并写出立方晶系包含哪几种布拉维格子。
答:七大晶系:三斜、单斜、正交、正方、六方、菱方、立方晶系。
24、引入玻恩卡门条件的理由是什么?答:(1)方便于求解原子运动方程.由本教科书的(3.4)式可知, 除了原子链两端的两个原子外, 其它任一个原子的运动都与相邻的两个原子的运动相关. 即除了原子链两端的两个原子外, 其它原子的运动方程构成了个联立方程组. 但原子链两端的两个原子只有一个相邻原子, 其运动方程仅与一个相邻原子的运动相关, 运动方程与其它原子的运动方程迥然不同. 与其它原子的运动方程不同的这两个方程, 给整个联立方程组的求解带来了很大的困难.(2)与实验结果吻合得较好.对于原子的自由运动, 边界上的原子与其它原子一样, 无时无刻不在运动. 对于有N个原子构成的的原子链, 硬性假定的边界条件是不符合事实的. 其实不论什么边界条件都与事实不符. 但为了求解近似解, 必须选取一个边界条件. 晶格振动谱的实验测定是对晶格振动理论的最有力验证(参见本教科书§3.2与§3.4).玻恩卡门条件是晶格振动理论的前提条件. 实验测得的振动谱与理论相符的事实说明, 玻恩卡门周期性边界条件是目前较好的一个边界条件.固体物理复习要点名词解释1、基元、布拉伐格子、简单格子。
2、基矢、原胞3、晶列、晶面4、声子5、布洛赫定理(Bloch定理)6、能带能隙、晶向及其标志、空穴7、紧束缚近似、格波、色散关系8、近自由近似9、振动模、10、施主,N型半导体、受主,P型半导体11、本征光吸收;本征吸收边12、导带;价带;费米面简单回答题 1、 倒格子是怎样定义的?为什么要引入倒格子这一概念? 2、如果将等体积的刚球分别排成简单立方、体心立方、面心立方结构,则刚球所占体积与总体积之比分别是多少?3、在讨论晶格振动时,常用到Einstein 模型和Debye 模型,这两种模型的主要区别是什么?以及这两种模型的局限性在哪里?6、 叙述晶格周期性的两种表述方式。
固体物理习题与及解答

固体物理习题与及解答固体物理习题与及解答⼀、填空题1. 晶格常数为a 的⽴⽅晶系 (hkl>晶⾯族的晶⾯间距为/a该(hkl>晶⾯族的倒格⼦⽮量hkl G ρ为 k al j a k i a h ρρρπππ222++ 。
2. 晶体结构可看成是将基元按相同的⽅式放置在具有三维平移周期性的晶格的每个格点构成。
3. 晶体结构按晶胞形状对称性可划分为 7 ⼤晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。
4. 体⼼⽴⽅[]{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l k h 。
5. 与正格⼦晶列[hkl]垂直的倒格⼦晶⾯的晶⾯指数为(hkl> ,与正格⼦晶⾯[hkl] 。
6. 由N 个晶胞常数为a 的晶胞所构成的⼀维晶格,其第⼀布⾥渊区边界宽度为a /2π,电⼦波⽮的允许值为 Na /2π的整数倍。
7. 对于体积为V,并具有N 个电⼦的⾦属, 其波⽮空间中每⼀个波⽮所占的体积为 ()V /23π,费M 波⽮为 3/123???? ??=V N k F π。
8. 按经典统计理论,N 个⾃由电⼦系统的⽐热应为 B Nk 23 ,⽽根据量⼦统计得到的⾦属三维电⼦⽓的⽐热为F B T T Nk /22π,⽐经典值⼩了约两个数量级。
9.在晶体的周期性势场中,电⼦能带在布⾥渊区边界将出现带隙,这是因为电⼦⾏波在该处受到布拉格反射变成驻波⽽导致的结果。
10. 对晶格常数为a的简单⽴⽅晶体,与正格⽮R=a i+2a j+2a k正交的倒格⼦晶⾯族的⾯指数为 (122> , 其⾯间距为.11. 铁磁相变属于典型的⼆级相变,在居⾥温度附近,⾃由能连续变化,但其⼀阶导数<⽐热)不连续。
12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进⼀步划分为 230 个空间群。
13.等径圆球的最密堆积⽅式有六⽅密堆74%。
14. ⾯⼼⽴⽅⾯⼼⽴⽅⼩;原⼦形状因⼦反映⼀个原⼦对于衍射能⼒⼤⼩。
固体物理习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系. 证: 33121323,a aa a CA CB h h h h =-=- 容易证明12312300h h h h h h G CA G CB ⋅=⋅=112233G hb h b h b =++与晶面系123()hh h 正交。
固体物理试题解答

一.简答题(20)1、玻恩-卡门边界条件及其重要意义。
玻恩-卡门边界条件:设想在一长为Na 的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第j 个原子和第tN +j个原子的运动情况一样,其中t=1,2,3…。
书P109其重要意义:P992、说明淬火后的金属材料变硬的原因。
P143我们已经知道晶体的一部分相对于另一部分的滑移,实际是位错线的滑移,位错线的移动是逐步进行的,使得滑移的切应力最小。
这就是金属一般较软的原因之一。
显然,要提高金属的强度和硬度,似乎可以通过消除位错的办法来实现。
但事实上位错是很难消除的。
相反,要提高金属的强度和硬度,通常采用增加位错的办法来实现。
金属淬火就是增加位错的有效办法。
将金属加热到一定高温,原子振动的幅度比常温时的幅度大得多,原子脱离正常格点的几率比常温时大得多,晶体中产生大量的空穴、填隙缺陷。
这些点缺陷容易形成位错。
也就是说,在高温时,晶体内的位错缺陷比常温时多得多。
高温的晶体在适宜的液体中急冷,高温时新产生的位错来不及恢复和消退,大部分被保留了下来。
数目众多的位错相互交织在一起,某一方向的位错的滑移,会受到其他方向位错的牵制,使位错滑移的阻力大大增加,使得金属变硬。
3、杂化轨道理论。
P61为了解释金刚石中碳原子具有4个等同的共价键,1931年泡林(Pauling )和斯莱特(Slater )提出了杂化轨道理论。
碳原子有4个价电子2s ,2p x ,2p y ,2p z ,它们分别对应ϕ2s ,ϕ2px ,ϕ2py ,ϕ2pz 量子态,在构成共价键时,它们“混合”起来重新组成四个等价的轨道,其中每一个轨道包含有s 41和p 43的成分,这种轨道称为杂化轨道,分别对应4个新的量子态()z y x p p p 222s 2121ϕϕϕϕψ+++= ()z y x p p p 222s 2221ϕϕϕϕψ--+= ()z y x p p p 222s 2321ϕϕϕϕψ-+-= ()zy x p p p 222s 2421ϕϕϕϕψ+--= 4个电子分别占据ψ1,ψ2,ψ3,ψ4新轨道,在四面体顶角方向形成4个共价键。
固体物理习题解答参考答案晶体结构

r
( )
。由 R 所定义的也是一个点阵常数为
r
r r r ( i 2 的 SC 点阵,但相对于上面一个 SC 点阵位移了一个矢量 + j + k ) ,
这个点正好位于体心位置。 上面两个 SC 点阵穿套起来正好是一个 bcc 点阵,故 ni 或全为奇数,或全为偶数所定义的是一个 bcc 点阵。 (2)若
体心立方晶格原胞基矢 a1 = (−i + j + k ) a2 = (i − j + k ) a3 = (i + j − k ) 体心立方晶格原胞体积 倒格子基矢:
r
a 2
r
r
r r
ห้องสมุดไป่ตู้
a r 2
r
r r
a r 2
r
r
同理: 可见由 为基矢构成的格子为面心立方格子。
面心立方格子原胞基矢: 面心立方格子原胞体积: 倒格子基矢: 同理 可见由 为基矢构成的格子为体心立方格子。
(2) 体心立方(书P3,图1-3)
r 取 原 子 球 相 切 时 的 半 径 ( 体 对 角 线 的 1/4 ) , r= 3a / 4 ,n=2, V = a 3 所 以
ρ=
n 4π r 3 3 = 3π / 8 V
(3) 面心立方(书P4,图1-7)
r 取 原 子 球 相 切 时 的 半 径 ( 面 对 角 线 的 1/4 ) r= 2a / 4 ,n=4, V = a 3 , 所 以
则由 ε = AxT ε Ax 得
固体物理学习题解答

《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理习题解答

1231.布喇菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合,而且每个格点周围的情况都一样。
(Bravais 格子)氯化钠结构:面心立方Na +布氏格子和面心立方Cl -的布氏格子套构而成的复式格子。
金刚石晶胞中由于位于四面体中心的原子和顶角原子价键的取向各不相同(即中心原子和顶角原子周围的情况不同),所以是复式格子,这种复式格子是两个面心立方格子套构而成的。
2.倒格子:设一晶格的基矢为→1a ,→2a ,→3a ,若另一格子的基矢为→1b ,→2b ,→3b ,与→1a ,→2a ,→3a 存在关系:⎩⎨⎧≠===•ji j i a b ij j i 022ππδ (i,j=1,2,3)则称以→1b ,→2b ,→3b 为基矢的格子是以→1a ,→2a ,→3a 为基矢的格子的倒格子。
自原点O 引晶面族ABC 的法线ON ,在法线上截取一段OP=ρ,使ρd=2π,d 是晶面族ABC 的面间距,对于每一族晶面都有一点P ,使得OP 成为该方向的周期,把P 平移可以得出一个新的点阵,这个新格子称为原来晶格的倒格子。
设正格子基矢为→1a ,→2a ,→3a ,则→1a →2a ,→2a →3a ,→3a →1a 晶面族 的面间距分别为d 3,d 1,d 2。
分别作OP 垂直于三个晶面族,在三个垂线上截取33/2d b π=,11/2d b π=,22/2d b π=,这样得出的三个矢量→1b ,→2b ,→3b 就取为倒格子的基矢。
又因为正格子元胞的体积为:)()()(213132321→→→→→→⨯=⨯=⨯=Ωa a d a a d a a d ,即:Ω⎪⎭⎫ ⎝⎛⨯•==→→→323122a a d b ππ,Ω⎪⎭⎫ ⎝⎛⨯•==→→→132222a a d b ππ,Ω⎪⎭⎫⎝⎛⨯•==→→→211322a a d b ππ3.证明体心立方格子和面心立方格子互为正倒格子。
面心立方格子基矢: )(2)(2)(2321→→→→→→→→→+=+=+=j i a a i k a a k j a aB 0 →1a→3a→2aAC NP利用公式:Ω⎪⎭⎫ ⎝⎛⨯•=→→→3212a a b π,Ω⎪⎭⎫ ⎝⎛⨯•=→→→1322a a b π,Ω⎪⎭⎫ ⎝⎛⨯•=→→→2132a a b π可求出其倒格子基矢为: )(2)(2)(2321→→→→→→→→→→→→-+=+-=++-=k j i ab k j i a b k j i a b πππ体心立方格子基矢: )(2)(2)(2'3'2'1→→→→→→→→→→→→-+=+-=++-=k j i a a k j i a a k j i a a 利用公式可求出其倒格子基矢为: )(2)(2)(2'3'2'1→→→→→→→→→+=+=+=j i a a i k a a k j a a πππ,所以体心立方格子与面心立方格子互为正倒格子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩rr r r r r r r r 由倒格子基矢的定义:1232()b a a π=⨯Ωr r r 31230,,22(),0,224,,022a a a a a a a a a a Ω=⋅⨯==r r r Q ,223,,,0,()224,,022i j k a a a a a i j k a a ⨯==-++r r r r r r r r 213422()()4a b i j k i j k a aππ∴=⨯⨯-++=-++r r r r r r r 同理可得:232()2()b i j k a b i j k aππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢相同。
所以,面心立方的倒格子是体心立方。
(2)体心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩rr r r r r r r r r r r 由倒格子基矢的定义:1232()b a a π=⨯Ωr r r 3123,,222(),,2222,,222a a a a a a a a a a a a a -Ω=⋅⨯=-=-r r r Q ,223,,,,()2222,,222i j k a a a a a a j k a a a ⨯=-=+-r r r r r r r 213222()()2ab j k j k a aππ∴=⨯⨯+=+r r r r r同理可得:232()2()b i kab i jaππ=+=+r rrr r r即体心立方的倒格子基矢与面心立方的正格基矢相同。
所以,体心立方的倒格子是面心立方。
1.6、对于简单立方晶格,证明密勒指数为(,,)h k l的晶面系,面间距d满足:22222()d a h k l=++,其中a为立方边长.解:简单立方晶格:123a a a⊥⊥r rv,123,,a ai a aj a ak===vv vv v v由倒格子基矢的定义:2311232a aba a aπ⨯=⋅⨯r rrr r r,3121232a aba a aπ⨯=⋅⨯r rrr r r,1231232a aba a aπ⨯=⋅⨯r rrr r r倒格子基矢:123222,,b i b j b ka a aπππ===v v v vv v倒格子矢量:123G hb kb lb=++v v vv,222G h i k j l ka a aπππ=++vv v v晶面族()hkl的面间距:2dGπ=v2221()()()h k la a a=++22222()adh k l=++2.1、证明两种一价离子组成的一维晶格的马德隆常数为(2ln 2=α)。
证明:设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有(1)11112[...]234j ij r r r r r rα±'==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为234(1) (34)n x x x x x x +=-+-+Q l 当X=1时,1111...2234n -+-+=l 2.3、若一晶体的相互作用能可以表示为 ()m n u r r r αβ=-+试求:(1)平衡间距0r ;(2)结合能W (单个原子的);(3)体弹性模量; (4)若取02,10,3,4m n r A W eV ====,计算α及β的值。
解:(1)求平衡间距r 0 由0)(0==r r dr r du ,有:m n n m n m m n n m r r n r m --++⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⇒=-1101.0100αββαβα结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w 表示)(2)求结合能w (单个原子的)题中标明单个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。
显然结合能就是平衡时,晶体的势能,即U min 即:n m r r r U W 000)(βα-+=-= (可代入r 0值,也可不代入)(3)体弹性模量 由体弹性模量公式:0220209r r U V r k ⎪⎪⎭⎫ ⎝⎛∂∂= (4)m = 2,n = 10,οA r 30=, w = 4eV ,求α、β22n α∴=l818105210⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=αβαβr ① )5(54)(802010.200代入αβαβα=-=+-=r r r r r U K K KeV r r U W 454)(200==-=⇒α ② 将οA r 30=,J eV 1910602.11-⨯=代入①②211523810459.910209.7mN m N ⋅⨯=⋅⨯=⇒--βα 详解:(1)平衡间距r 0的计算 晶体能()()2m n N U r r rαβ=-+ 平衡条件00r r dU dr ==,11000m n m n r r αβ++-+=,10()n m n r m βα-= (2)单个原子的结合能01()2W u r =-,00()()m n r r u r r r αβ==-+,10()n m n r m βα-= 1(1)()2m n m m n W n m βαα--=- (3)体弹性模量0202()V U K V V ∂=⋅∂ 晶体的体积3V NAr =,A 为常数,N 为原胞数目 晶体能()()2m n N U r r rαβ=-+ U U r V r V ∂∂∂=∂∂∂1121()23m n N m n r r NAr αβ++=- 221121[()]23m n U N r m n V V r r r NAr αβ++∂∂∂=-∂∂∂ 022222000001[]29m n m n V V UN m n m n V V r r r r αβαβ=∂=-+-+∂ 由平衡条件01120001()023m n V V UN m n V r r NAr αβ++=∂=-=∂,得00m n m n r r αβ=022*******[]29m n V V U N m n V V r r αβ=∂=-+∂ 02220001[]29m n V V UN m n m n V V r r αβ=∂=-+∂2000[]29m n N nm V r r αβ=--+ 000()2m n N U r r αβ=-+ 020220()9V V Umn U V V =∂=-∂ 体弹性模量009mn K U V = (4)若取02,10,3,4m n r A W eV ====10()n m n r m βα-=,1(1)()2m n m m n W n m βαα--=- 1002W r β=,20100[2]r W r βα=+ -95101.210eV m β=⨯⋅,1929.010eV m α-=⨯⋅3.2、讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M = m 时与一维单原子链的结果一一对应。
解:质量为M 的原子位于2n-1, 2n+1, 2n+3 ……;质量为m 的原子位于2n , 2n+2, 2n+4 ……。
牛顿运动方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=---&&&& N 个原胞,有2N 个独立的方程设方程的解[(2)]2[(21)]21i t na q n i t n aq n Ae Be ωωμμ--++==,代回方程中得到22(2)(2cos )0(2cos )(2)0m A aq B aq A M B βωβββω⎧--=⎪⎨-+-=⎪⎩ A 、B 有非零解,2222cos 02cos 2m aq aqM βωβββω--=--,则 12222()4{1[1sin ]}()m M mM aq mM m M ωβ+=±-+两种不同的格波的色散关系1222212222()4{1[1sin ]}()()4{1[1sin ]}()m M mM aq mM m M m M mM aq mM m M ωβωβ+-+=+-++=--+一个q 对应有两支格波:一支声学波和一支光学波.总的格波数目为2N.当M m =时4cos 24sin 2aq m aq m βωβω+-==, 两种色散关系如图所示:长波极限情况下0q →,sin()22qa qa ≈, (2)q m βω-=与一维单原子晶格格波的色散关系一致.3.3、考虑一双子链的晶格振动,链上最近邻原子间的力常数交错地为β和10β,令两种原子质量相等,且最近邻原子间距为2a 。
试求在0,q q a π==处的()q ω,并粗略画出色散关系曲线。
此问题模拟如2H 这样的双原子分子晶体。
(注 :课本中的c 即为此题中的β k 对应q)答:(1)浅色标记的原子位于2n-1, 2n+1, 2n+3 ……;深色标记原子位于2n , 2n+2, 2n+4 ……。
第2n 个原子和第2n +1个原子的运动方程:212222112121122112222()()n n n n n n n nm m μββμβμβμμββμβμβμ+-+++=-+++=-+++&&&& 体系N 个原胞,有2N 个独立的方程方程的解:1[(2)]221[(21)]221i t n aq n i t n aq n Ae Beωωμμ--++==,令221122/,/m m ωβωβ==,将解代入上述方程得: 11222222212121122222221212()()0()()0i aq i aq i aq i aq A ee B e e A B ωωωωωωωωωω--+--+=+-+-=A 、B 有非零的解,系数行列式满足: 11222222212121122222221212(),()0(),()i aq i aq i aq i aq e e ee ωωωωωωωωωω--+--+=+-+- 1111222222222222121212()()()0i aq i aq i aq i aq e e e e ωωωωωωω--+--++= 1111222222222222121212()()()0i aq i aq i aq i aq e e e e ωωωωωωω--+--++=因为1ββ=、210ββ=,令2222012010,10c c m mωωωω====得到 222400(11)(10120cos )0aq ωωω--+= 两种色散关系:220(1120cos 101)qa ωω=±+当0q =时,220(11121)ωω=±,0220ωωω+-==当q a π=时,220(1181)ωω=±,00202ωωωω+-==(2)色散关系图:44.2、写出一维近自由电子近似,第n 个能带(n=1,2,3)中,简约波数2k a π=的0级波函数。