深圳大学数字信号处理实验7
数字信号处理实验报告8

实验报告学院(系)名称:计算机与通信工程学院 姓名 学号 专业班级实验项目实验七 音乐信号处理课程名称 数字信号处理 课程代码实验时间2013年06月07日实验地点 主校区计算机基础实验室批改意见成绩教师签字:一,实验目的1、了解现代音乐信号制作时的时域处理方法。
2、了解现代音乐信号制作时的频域处理方法。
3、处理MATLAB 的常用函数来实现音乐信号的时域及频域的处理。
二,实验原理现代音乐的处理和加工基本上是采用数字处理技术来完成的,大概分以下几个步骤:首先在一个隔音的舞台上,把乐队中各个乐器的声音分别录制在一个多磁道的磁带中的各个独立的磁道上;然后再把各个磁道上的信号进行单独处理,即加入特定的声音效果;最后在一个混音系统中把这些信号进行合成,即录制在一个立体声的双磁道的磁带上。
这里简单地验证语音信号的时域处理方法和频域处理方法。
1. 时域处理方法在音乐厅中听到的悦耳音乐,主要是一次反射声音和混响造成的,而这两种声音实质上都是回声形成的。
在隔音舞台上录制的声音听起来会不自然,这时就需要用数字滤波器来人为地改变录制的信号,以增加回声,使其接近于音乐厅的效果。
回声可以用延迟单元来形成。
直接声音和它延迟了R 个周期的单个回声可以用如下的差分方程来表示:()()()y n x n x n R α=+-,1αp其中1αp 表示回声的衰减系数。
上述的差分方程的传递函数为:()1RH z z α-=+它可以作为一个FIR 滤波器来实现,它实际上是一个梳状的滤波器,其结构图如图4.3.1(a )所示。
为了生成间隔为R 个周期的多重回声,上式应该改写成: ()()12211...N RRRN H z zzzααα-----=++⋅++⋅=RNRN --•-•z1z -1αα 其结构图如图4.3.1(b )所示。
如果反射的次数很多,则N α→0,则多重回声可以用一个IIR 滤波器来实现。
其传递函数为:R z z H -•-=α11)(,|α|<1set(gcf,'color','w');%置图形背景色为白色从图中可以看出,调节K可以改变低频端幅度特性的提升程度,调节α则用来控制低频滤波器的边界频率。
数字信号处理实验7

数字信号处理实验题目数字音频信号的分析与处理班级姓名学号日期 2015.12 一、实验目的1.复习巩固数字信号处理的基本理论; 2.利用所学知识研究并设计工程应用方案。
二、实验原理数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。
分频器即为其中一种音频工程中常用的设备。
人耳能听到的声音频率范围为20Hz~20000Hz ,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。
下图是一个二分频的示例。
图8.1 二分频示意图高通滤波器和低通滤波器可以是FIR 或IIR 类型,其中FIR 易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR 阶数低,但易出现相位失真及稳定性问题。
对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示:图8.2 分频器幅度特性由于IIR 的延时短,因此目前工程中大量应用的还是Butterworth 、Bessel 、Linkwitz-Riley 三种IIR 滤波器。
其幅频特性如图8.3所示:分频器低频放大高频放大声音输High -passLow-pass图8.3 三种常用IIR分频器的幅度特性巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用 MATLAB 函数很方便的计算得到,但 Bessel、Linkwitz-Riley 数字滤波器均无现成的 Matlab 函数。
为了使设计的 IIR 滤波器方便在 DSP 上实现,常将滤波器转换为二阶节级联的形式。
设计好分频器后,为验证分频后的信号是否正确,可用白噪声信号作为输入信号,然后对分频后的信号进行频谱分析。
三、仪器设备计算机、matlab软件四、实验内容1. 任意选取两段声音信号(一段为语言或音乐信号,另一段为白噪声信号),分别作以下分析和处理:(1)分析信号的采样率、量化比特数;(2)画出时域波形图;(3)画出幅频特性和相频特性。
数字信号处理实验课内容

数字信号处理实验课内容一、实验要求1、每个实验完成一份实验报告;2、实验报告内容包括:实验目的、实验原理、实验过程、实验结果及分析、实验体会;3、报告中要求:格式统一、图表清晰,如果有公式一定要用公式编辑器编写;4、实验报告不能雷同附:封面格式数字信号处理实验报告实验一:频谱分析与采样定理班级:姓名:学号:二、实验内容实验一频谱分析与采样定理一、实验目的1.观察模拟信号经理想采样后的频谱变化关系。
2.验证采样定理,观察欠采样时产生的频谱混叠现象3.加深对DFT算法原理和基本性质的理解4.熟悉FFT算法原理和FFT的应用二、实验原理根据采样定理,对给定信号确定采样频率,观察信号的频谱三、实验内容和步骤实验内容在给定信号为:1.x(t)=cos(100*π*at)2.x(t)=exp(-at)3.x(t)=exp(-at)cos(100*π*at)其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。
实验步骤1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。
2.复习FFT算法原理和基本思想。
3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序四、实验设备计算机、Matlab软件五、实验报告要求1.整理好经过运行并证明是正确的程序,并且加上详细的注释。
2.对比不同采样频率下的频谱,作出分析报告。
实验二卷积定理一、实验目的通过本实验,验证卷积定理,掌握利用DFT和FFT计算线性卷积的方法。
二、实验原理时域圆周卷积在频域上相当于两序列DFT的相乘,因而可以采用FFT的算法来计算圆周卷积,当满足121L N N≥+-时,线性卷积等于圆周卷积,因此可利用FFT 计算线性卷积。
三、实验内容和步骤1.给定离散信号()h n,用图解法求出两者的线性卷积和圆周卷积;x n和()2.编写程序计算线性卷积和圆周卷积;3.比较不同列长时的圆周卷积与线性卷积的结果,分析原因。
数字信号处理实验报告

数字信号处理实验报告引言数字信号处理(Digital Signal Processing,DSP)是一门研究数字信号的获取、分析、处理和控制的学科。
在现代科技发展中,数字信号处理在通信、图像处理、音频处理等领域起着重要的作用。
本次实验旨在通过实际操作,深入了解数字信号处理的基本原理和实践技巧。
实验一:离散时间信号的生成与显示在实验开始之前,我们首先需要了解信号的生成与显示方法。
通过数字信号处理器(Digital Signal Processor,DSP)可以轻松生成和显示各种类型的离散时间信号。
实验设置如下:1. 设置采样频率为8kHz。
2. 生成一个正弦信号:频率为1kHz,振幅为1。
3. 生成一个方波信号:频率为1kHz,振幅为1。
4. 将生成的信号通过DAC(Digital-to-Analog Converter)输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的正弦信号和方波信号的图片)实验分析:通过示波器的显示结果可以看出,正弦信号在时域上呈现周期性的波形,而方波信号则具有稳定的上下跳变。
这体现了正弦信号和方波信号在时域上的不同特征。
实验二:信号的采样和重构在数字信号处理中,信号的采样是将连续时间信号转化为离散时间信号的过程,信号的重构则是将离散时间信号还原为连续时间信号的过程。
在实际应用中,信号的采样和重构对信号处理的准确性至关重要。
实验设置如下:1. 生成一个正弦信号:频率为1kHz,振幅为1。
2. 设置采样频率为8kHz。
3. 对正弦信号进行采样,得到离散时间信号。
4. 对离散时间信号进行重构,得到连续时间信号。
5. 将重构的信号通过DAC输出到示波器上进行显示。
实验结果如下图所示:(插入示波器显示的连续时间信号和重构信号的图片)实验分析:通过示波器的显示结果可以看出,重构的信号与原信号非常接近,并且能够还原出原信号的形状和特征。
这说明信号的采样和重构方法对于信号处理的准确性有着重要影响。
最新数字信号处理实验报告

最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
数字信号处理课后实验程序及结果图

第 8 章
上 机 实 验
(4) 如果输入信号为无限长序列, 系统的单位脉冲
响应是有限长序列, 可用分段线性卷积法求系统的响应,
具体方法请参考DFT一章的内容。
如果信号经过低通滤波器, 则信号的高频分量被滤掉,
时域信号的变化减缓, 在有阶跃处附近产生过渡带。 因此,
当输入矩形序列时, 输出序列的开始和终了都产生了明显
的过渡带, 见第一个实验结果的波形。
第 8 章
上 机 实 验
8.2 实验二: 时域采样与频域采样
8.2.1
1. 时域采样理论与频域采样理论是数字信号处理中的重要
理论。 要求掌握模拟信号采样前后频谱的变化, 以及如何
选择采样频率才能使采样后的信号不丢失信息; 要求掌握频 域采样会引起时域周期化的概念, 以及频率域采样定理及 其对频域采样点数选择的指导作用。
1 X a ( j jn s ) T n
第 8 章
上 机 实 验
(2) 采样频率Ωs必须大于等于模拟信号最高频率的两倍
以上, 才能使采样信号的频谱不产生频谱混叠。
ˆ ( j ) 并不方便, 下面我们导出另 利用计算机计算 X
外一个公式, 以便在计算机上进行实验。 理想采样信号
%内容3:
un=ones(1, 256); n=0: 255; xsin=sin(0.014*n)+sin(0.4*n) ; %产生正弦信号 %产生信号un
第 8 章
上 机 实 验
A=[1, -1.8237, 0.9801];
B=[1/100.49, 0,-1/100.49]; %系统差分方程系数向量B和A y31n=filter(B, A, un); %谐振器对un的响应y31n y32n=filter(B, A, xsin); %谐振器对正弦信号的响应y32n figure(3) subplot(2, 1, 1); y=′y31(n)′; tstem(y31n, y) title(′(h) 谐振器对u(n)的响应y31(n)′) subplot(2, 1, 2); y=′y32(n)′; tstem(y32n, y); title(′(i) 谐振器对正弦信号的响应y32(n)′)
数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验报告

数字信号处理实验报告实验报告
实验题目:数字信号处理实验
实验日期:XXXX年XX月XX日
实验目的:
1. 了解数字信号处理的基本概念和原理;
2. 掌握数字信号的采样、量化和编码方法;
3. 学习数字信号处理的基本算法和应用。
实验内容:
1. 采样与重建
1.1 采样定理的验证
1.2 重建信号的实现
2. 量化与编码
2.1 量化方法的比较
2.2 编码方法的选择与实现
3. 数字滤波器设计与实现
3.1 FIR滤波器设计方法
3.2 IIR滤波器设计方法
实验步骤:
1. 使用示波器对输入的模拟信号进行采样,记录采样频率和采样点数。
2. 使用恢复信号方法,将采样得到的数字信号重建为模拟信号,并进行对比分析。
3. 对重建的信号进行量化处理,比较不同量化方法的效果,选择合适的方法进行编码。
4. 设计并实现数字滤波器,比较FIR和IIR滤波器的性能和实
现复杂度。
实验结果与分析:
1. 采样与重建实验结果表明,在满足采样定理的条件下,采样频率越高,重建信号的质量越高。
2. 量化与编码实验结果表明,在相同位数下,线性量化方法优于非线性量化方法,而编码方法可以根据信号特性选择,例如
差分编码适用于连续变化的信号。
3. 数字滤波器实验结果表明,FIR滤波器相对于IIR滤波器在时域和频域上更易于设计和理解,但实现复杂度较高。
实验结论:
数字信号处理是对模拟信号进行采样、量化和编码等处理,具有较高的灵活性和可靠性。
在实际应用中,应根据需要选择合适的采样频率、量化位数和编码方式,并根据信号特性选择合适的滤波器设计方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理实验(编写 初萍)
实验7: DSP综合应用实验
一、 实验目的
1)感受完整系统的数字信号处理过程,能完成对数字信号的频谱分析、滤波、输出等功能的matlab程序编写。
2)学习、感受和理解滤波的器的作用及使用。
3)学习、感受IIR滤波器和FIR滤波器的区别。
二、 数字信号处理系统
综合本学期的数字信号处理课程,下面给出最基本的数字信号处理系统的框图:
输入DSP处理器的数字信号x(n)通常是混入了噪声的信号,进入DSP处理器后首先对输入信号进行频谱分析,观察有用信号的频率范围,然后对应频谱分析结果选择适当的滤波器对输入信号进行滤波,尽可能滤除噪声信号,并将滤波的结果输出。
三、 试验内容
本次实验旨在理解数字信号处理系统的概念,并通过对语音信号的处理的matlab程序设计编写来加深对系统的认识,要求自行设计编写matlab程序完成对自己语音的分析、加噪、处理等过程,具体任务如下:
1)录一段自己的语音信号(时间长度在5s左右),内容统一为:姓名+学号+专业(如:张三,2008130001,电子信息工程),并将所录声音格式转化成matlab可以读取的格式(如:wav格式);
2)利用matlab读取声音文件,并播放,感觉原语音信号;
3)对自己的声音进行频谱分析,画出所录声音的时域信号及对应的频谱(FFT结果,要求横坐标为实际频率),并说明自己声音频率较集中的范围;(任务2),3)可参考实验1,实验4)
4)将读入的声音加入白噪声,播放加噪声后的声音,感受与原始声音信号的区别,对加噪声后的信号重复任务3),观察所画图的变化,并结合听到的声音效果说明原因;
提示: 加白噪声的例程(供参考):
snr=-30;%加入噪声的分贝数(自选不同参数,并观察不同参数对应的结果)
nois=wgn(N,1,snr);%生成白噪声
y1=y0+nois;% y0为原信号,y1为加入噪声的信号
5)滤除4)中加入的白噪声,分别采用IIR滤波、FIR滤波的形式,并区别两种滤波得到的结果,要求:(1)画出所采用的IIR、FIR滤波器的频率响应;(2)分别画出IIR滤波、FIR滤波后的声音信号及对应的频谱。
分别播放IIR、FIR滤波后得到的声音信号,结合画出的频谱进行分析IIR滤波、FIR滤波的区别;(本任务IIR滤波可参考实验1),FIR滤波可能涉及到的matlab函数有:fir1.
Matlab中FIR滤波器的使用(供参考):
b =fir1(10,0.15);
y1_fir=filter(b,1,y1);
6)将读入的声音加入高频正弦信号,播放加入正弦信号的声音,并对声音重复任务任务4),5)(其中滤波可选IIR或FIR一种即可);
加正弦信号程序参考:
t=(0:N-1)/fs;
s= cos(2*pi*f1*t)+ cos(2*pi*f2*t)+……;
y2=y0+s;
7)选做:完成录制声音的AM调制、解调,画出调制、解调得到的声音信号及其分别对应的频谱。
AM调制、解调简单原理参考:
设f(t)是调制信号,g(t)是原信号,调制信号选取正弦信号cos(2*pi*f1*t),则有
f(t)= g(t)* cos(2*pi*f1*t);
解调原理:
f(t)* cos(2*pi*f1*t)= g(t)* cos(2*pi*f1*t) * cos(2*pi*f1*t)= g(t)* [1+cos(4*pi*f1*t)]/2
合理设置滤波器参数,即可以完成解调,输出g(t)。