知识讲解-直线与抛物线的位置关系(理)-基础

合集下载

抛物线课件-2025届高三数学一轮复习

抛物线课件-2025届高三数学一轮复习

A. 2
B. 3
[解析]

2
C. 4
2
D. 8

由题意,知抛物线的焦点坐标为( ,0),椭圆的焦点坐标为(±
2
所以 = 2 ,解得 p =8,故选D.
D )
2 ,0),
5. 已知抛物线 y 2=2 px ( p >0)的焦点为 F ,点 M (2,2 2 )为抛物线上一点,则
|MF|=(
A. 2
2
即 p =2,所以A选项正确.
= − 3( − 1),
对于B,不妨设 M ( x 1, y 1), N ( x 2, y 2), x 1< x 2,联立方程得 2
= 4,
1
消去 y 并整理得3 x 2-10 x +3=0,解得 x 1= , x 2=3.由抛物线的定义得,| MN|=
x 1+ x 2+ p =
B )
B. 3
C. 4
D. 5
[解析] 因为点 M (2,2 2 )为抛物线上一点,所以将点 M 的坐标代入抛物线的方程
y 2=2 px ( p >0),可得 p =2,所以抛物线的方程为 y 2=4 x ,可得其准线方程为 x =
-1.根据抛物线的定义,得| MF |=2-(-1)=3.故选B.
三、知识点例题讲解及方法技巧总结
1

S △ AOB = ×| AB |× ×
2
2
由(2)的推导过程可得,
sin
1
||


2

= 2 ,
1−cos
1+cos
si
1
2

α= × 2 × ×
2
si
2

2025届高中数学一轮复习课件《抛物线(二)》ppt

2025届高中数学一轮复习课件《抛物线(二)》ppt

x1,3,x2 三个数构成等差数列,则线段|AB|的长为( )
A.9
B.8
C.7
D.6
答案
高考一轮总复习•数学
第23页
解析:如图,设准线 l 与 x 轴交于点 M,过点 A 作准线 l 的垂线 AD,
交 l 于点 D.由抛物线的定义知|AD|=|AF|=4.因为点 F 是线段 AC 的中点,
所以|AD|=2|MF|=2p,所以 2p=4,解得 p=2.所以抛物线的方程为 y2=4x. 设 A(x1,y1),B(x2,y2),则|AF|=x1+p2=x1+1=4,所以 x1=3,所以 A(3,2 3).又 F(1,0),所以 kAF=32-31= 3,所以直线 AF 的方程为 y= 3(x-1),将此方程与 抛物线方程 y2=4x 联立后消去 y 并整理,得 3x2-10x+3=0,所以 x1+x2=130,所以|AB|=x1 +x2+p=130+2=136.故选 C.
y1y=px1+x→过A的切线, 由yy221y==2ppxx12,+x→过B的切线,
y22=2px2,
得两切线交点 Qy21py2,y1+2 y2,又由 y1y2=-p2 知 xQ
=-p2,即 Q 点轨迹方程为准线 x=-p2. 易验证 kQA·kQB=-1,即 QA⊥QB.
高考一轮总复习•数学
高考一轮总复习•数学
第4页
理清教材 强基固本
高考一轮总复习•数学
第5页
直线与抛物线的位置关系 联立yy2==k2xp+x,m, 得 k2x2+2(mk-p)x+m2=0. ①相切:k≠0,Δ=0; ②相交:k≠0,Δ>0 或 k=0; ③相离:k≠0,Δ<0.
高考一轮总复习•数学
第6页

高一数学复习考点知识专题讲解23---抛物线的简单几何性质

高一数学复习考点知识专题讲解23---抛物线的简单几何性质

高一数学复习考点知识专题讲解抛物线的简单几何性质学习目标 1.掌握抛物线的几何性质.2.掌握直线与抛物线的位置关系的判断及相关问题.知识点一 抛物线的简单几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R对称轴 x 轴 x 轴 y 轴 y 轴 焦点坐标F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 准线方程 x =-p 2x =p 2y =-p 2y =p 2顶点坐标 O (0,0) 离心率 e =1 通径长2p知识点二 直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程组⎩⎪⎨⎪⎧y =kx +b ,y 2=2px 解的个数,即二次方程k 2x 2+2(kb -p )x +b 2=0解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;若Δ=0,直线与抛物线有一个公共点;若Δ<0,直线与抛物线没有公共点.当k =0时,直线与抛物线的轴平行或重合,此时直线与抛物线有1个公共点.1.抛物线关于顶点对称.( × )2.抛物线只有一个焦点,一条对称轴,无对称中心.( √ ) 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.( √ )4.抛物线x 2=4y ,y 2=4x 的x ,y 的范围是不同的,但是其焦点到准线的距离是相同的,离心率也相同.( √ )5.“直线与抛物线有一个交点”是“直线与抛物线相切”的必要不充分条件.( √ )一、抛物线的几何性质的应用例1 (1)等腰直角三角形AOB 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是( )A .8p 2B .4p 2C .2p 2D .p 2 答案 B解析 因为抛物线的对称轴为x 轴,内接△AOB 为等腰直角三角形,所以由抛物线的对称性知,直线AB 与抛物线的对称轴垂直,从而直线OA 与x 轴的夹角为45°.由方程组⎩⎪⎨⎪⎧y =x ,y 2=2px得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =2p ,y =2p ,不妨设A ,B 两点的坐标分别为(2p ,2p )和(2p ,-2p ). 所以|AB |=4p ,所以S △AOB =12×4p ×2p =4p 2.(2)已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交于A ,B 两点,|AB |=23,求抛物线方程.解 由已知,抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上. 故可设抛物线方程为y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点A (x 1,y 1),B (x 2,y 2). ∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称, ∴点A 与B 关于x 轴对称, ∴|y 1|=|y 2|且|y 1|+|y 2|=23, ∴|y 1|=|y 2|=3,代入圆x 2+y 2=4, 得x 2+3=4,∴x =±1,∴A (±1,3)或A (±1,-3),代入抛物线方程, 得(3)2=±a ,∴a =±3.∴所求抛物线方程是y 2=3x 或y 2=-3x .反思感悟 把握三个要点确定抛物线的简单几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x 还是y ,一次项的系数是正还是负. (2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p ;过焦点垂直于对称轴的弦(又称为通径)长为2p ;离心率恒等于1. 跟踪训练1 (1)边长为1的等边三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A ,B 的抛物线方程是( ) A .y 2=36x B .y 2=-33x C .y 2=±36x D .y 2=±33x答案 C解析 设抛物线方程为y 2=ax (a ≠0).又A ⎝⎛⎭⎫±32,12(取点A 在x 轴上方),则有14=±32a ,解得a =±36,所以抛物线方程为y 2=±36x .故选C.(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,△AOB 的面积为3,则抛物线的焦点坐标为( ) A .(2,0) B .(1,0) C .(8,0) D .(4,0) 答案 B解析 因为c a =2,所以c 2a 2=a 2+b 2a 2=4,于是b 2=3a 2,则ba =3,故双曲线的两条渐近线方程为y =±3x . 而抛物线y 2=2px (p >0)的准线方程为x =-p2,不妨设A ⎝⎛⎭⎫-p 2,3p 2,B ⎝⎛⎭⎫-p 2,-3p 2,则|AB |=3p ,又三角形的高为p2,则S △AOB =12·p2·3p =3,即p 2=4.因为p >0,所以p =2,故抛物线焦点坐标为(1,0). 二、直线与抛物线的位置关系命题角度1 直线与抛物线位置关系的判断例2 已知直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C :只有一个公共点;有两个公共点;没有公共点.解 联立⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,(*)式只有一个解x =14,∴y =1,∴直线l 与C 只有一个公共点⎝⎛⎭⎫14,1, 此时直线l 平行于x 轴.当k ≠0时,(*)式是一个一元二次方程, Δ=(2k -4)2-4k 2=16(1-k ). ①当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时直线l 与C 相交;②当Δ=0,即k =1时,l 与C 有一个公共点,此时直线l 与C 相切; ③当Δ<0,即k >1时,l 与C 没有公共点,此时直线l 与C 相离. 综上所述,当k =1或0时,l 与C 有一个公共点; 当k <1,且k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点. 命题角度2 直线与抛物线的相交问题例3 已知抛物线方程为y 2=2px (p >0),过此抛物线的焦点的直线与抛物线交于A ,B 两点,且|AB |=52p ,求AB 所在的直线方程. 解 由题意知焦点F ⎝⎛⎭⎫p 2,0,设A (x 1,y 1),B (x 2,y 2), 若AB ⊥x 轴,则|AB |=2p ≠52p ,不满足题意.所以直线AB 的斜率存在,设为k , 则直线AB 的方程为y =k ⎝⎛⎭⎫x -p2,k ≠0. 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得y 1+y 2=2pk ,y 1y 2=-p 2.所以|AB |=⎝⎛⎭⎫1+1k 2·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p ⎝⎛⎭⎫1+1k 2=52p ,解得k =±2.所以AB 所在的直线方程为2x -y -p =0 或2x +y -p =0. 延伸探究本例条件不变,求弦AB 的中点M 到y 轴的距离.解 如图,过A ,B ,M 分别作准线x =-p2的垂线交准线于点C ,D ,E .由定义知|AC |+|BD |=52p ,则梯形ABDC 的中位线|ME |=54p ,∴M 点到y 轴的距离为54p -p 2=34p .反思感悟 直线与抛物线的位置关系(1)设直线方程时要特别注意斜率不存在的直线应单独讨论,求解交点时不要忽略二次项系数为0的情况.(2)一般弦长:|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (3)焦点弦长:设焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p . 跟踪训练2 (1)过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( ) A .4条 B .3条 C .2条 D .1条 答案 B解析 如图,过P 可作抛物线的两条切线,即y 轴和l 1均与抛物线只有一个公共点,过P 可作一条与x 轴平行的直线l 2与抛物线只有一个公共点.故过点P 与抛物线只有一个公共点的直线共3条,故选B.(2)设抛物线C :x 2=4y 焦点为F ,直线y =kx +2与C 交于A ,B 两点,且||AF ·||BF =25,则k 的值为( )A .±2B .-1C .±1D .-2 答案 A解析 设A (x 1,y 1),B (x 2,y 2),将直线y =kx +2代入x 2=4y , 消去x 得y 2-(4+4k 2)y +4=0, 所以y 1·y 2=4,y 1+y 2=4+4k 2,抛物线C :x 2=4y 的准线方程为y =-1, 因为||AF =y 1+1,||BF =y 2+1,所以||AF ·||BF =y 1·y 2+(y 1+y 2)+1=4+4+4k 2+1=25⇒k =±2.1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .-43 B .-1 C .-34 D .-12答案 C解析 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,所以-p 2=-2,解得p =4,所以y 2=8x ,所以焦点F 的坐标为(2,0),故直线AF 的斜率k =3-0-2-2=-34.2.(多选)以y 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D. x 2=-8y答案 CD解析 设抛物线方程为x 2=2py 或x 2=-2py (p >0), 依题意得y =p2,代入x 2=2py 或x 2=-2py 得|x |=p ,∴2|x |=2p =8,p =4.∴抛物线方程为x 2=8y 或x 2=-8y .3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) 答案 B解析 由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0. 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B.4.抛物线y 2=4x 的弦AB ⊥x 轴,若|AB |=43,则焦点F 到直线AB 的距离为________. 答案 2解析 由抛物线的方程可知F (1,0),由|AB |=43且AB ⊥x 轴得y 2A =(23)2=12,∴x A =y 2A4=3,∴所求距离为3-1=2.5.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 答案 0或1解析 当k =0时,直线与抛物线有唯一交点, 当k ≠0时,联立方程消去y ,得 k 2x 2+4(k -2)x +4=0, 由题意Δ=16(k -2)2-16k 2=0, ∴k =1.1.知识清单:(1)抛物线的几何性质.(2)直线与抛物线的位置关系.2.方法归纳:待定系数法、数形结合法、代数法.3.常见误区:四种形式的抛物线性质混淆;忽略直线的特殊情况.1.若抛物线y2=4x上一点P到x轴的距离为23,则点P到抛物线的焦点F的距离为()A.4 B.5 C.6 D.7答案 A解析由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为23,则P(3,±23),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选A.2.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线()A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在答案 B解析当斜率不存在时,x1+x2=2不符合题意.当斜率存在时,由焦点坐标为(1,0),可设直线方程为y=k(x-1),k≠0,由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0, ∴x 1+x 2=2k 2+4k 2=5,∴k 2=43,即k =±233.因而这样的直线有且仅有两条.3.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |等于( ) A .4 3 B .8 C .8 3 D .16 答案 B解析 由抛物线方程y 2=8x ,可得准线l :x =-2,焦点F (2,0),设点A (-2,n ), ∴-3=n -0-2-2,∴n =4 3.∴P 点纵坐标为4 3. 由(43)2=8x ,得x =6, ∴P 点坐标为(6,43),∴|PF |=|P A |=|6-(-2)|=8,故选B.4.抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|F A |+|FB |等于( ) A .2 B .3 C .5 D .7 答案 D解析 设A (x 1,y 1),B (x 2,y 2), 则|F A |+|FB |=x 1+x 2+2.由⎩⎪⎨⎪⎧y 2=4x ,2x +y -4=0得x 2-5x +4=0,∴x 1+x 2=5,x 1+x 2+2=7.5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( )A .18B .24C .36D .48答案 C解析 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F ⎝⎛⎭⎫p 2,0, ∵当x =p 2时,|y |=p , ∴|AB |=2p =12,∴p =6,又点P 到直线AB 的距离为p 2+p 2=p =6, 故S △ABP =12|AB |·p =12×12×6=36. 6.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为__________.答案 ⎝⎛⎭⎫18,±24 解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18,∴y =±24,∴此点坐标为⎝⎛⎭⎫18,±24. 7.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 是FN 的中点,则|FN |=________.答案 6解析 如图,过点M 作MM ′⊥y 轴,垂足为M ′,|OF |=2,∵M 为FN 的中点,|MM ′|=1,∴M 到准线距离d =|MM ′|+p 2=3, ∴|MF |=3,∴|FN |=68.已知点A 到点F (1,0)的距离和到直线x =-1的距离相等,点A 的轨迹与过点P (-1,0)且斜率为k 的直线没有交点,则k 的取值范围是________.答案 (-∞,-1)∪(1,+∞)解析 设点(x ,y ),依题意得点A 在以y 2=4x .过点P (-1,0)且斜率为k 的直线方程为y =k (x +1),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k ,得ky 2-4y +4k =0,当k =0时,显然不符合题意; 当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞).9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.解 设所求抛物线的标准方程为x 2=2py (p >0),设A (x 0,y 0),由题意知M ⎝⎛⎭⎫0,-p 2, ∵|AF |=3,∴y 0+p 2=3, ∵|AM |=17,∴x 20+⎝⎛⎭⎫y 0+p 22=17, ∴x 20=8,代入方程x 20=2py 0得, 8=2p ⎝⎛⎭⎫3-p 2,解得p =2或p =4. ∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知抛物线C :y =2x 2和直线l :y =kx +1,O 为坐标原点.(1)求证:l 与C 必有两交点.(2)设l 与C 交于A ,B 两点,且直线OA 和OB 斜率之和为1,求k 的值.(1)证明 联立抛物线C :y =2x 2和直线l :y =kx +1,可得2x 2-kx -1=0,所以Δ=k 2+8>0,所以l 与C 必有两交点.(2)解 设A (x 1,y 1),B (x 2,y 2), 则y 1x 1+y 2x 2=1,① 因为y 1=kx 1+1,y 2=kx 2+1,代入①,得2k +⎝⎛⎭⎫1x 1+1x 2=1,② 由(1)可得x 1+x 2=12k ,x 1x 2=-12,代入②得k =1.11.若点M (1,1)是抛物线y 2=4x 的弦AB 的中点,则弦AB 的长为________.答案 15解析 设A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x ,可得y 21=4x 1,y 22=4x 2,两式相减,可得k =y 1-y 2x 1-x 2=4y 1+y 2=2, 所以直线AB 的方程为y -1=2(x -1),即y =2x -1,代入抛物线的方程得4x 2-8x +1=0,则x 1+x 2=2,x 1x 2=14, 则||AB =1+k 2·(x 1+x 2)2-4x 1x 2=5×⎝⎛⎭⎫22-4×14=15, 即弦AB 的长为15.12.已知A ,B 是抛物线y 2=2px (p >0)上两点,O 为坐标原点.若|OA |=|OB |,且△AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________.答案 x =5p 2解析 由抛物线的性质知A ,B 关于x 轴对称.设A (x ,y ),则B (x ,-y ),焦点为F ⎝⎛⎭⎫p 2,0.由题意知AF ⊥OB ,则有y x -p 2·-y x =-1. 所以y 2=x ⎝⎛⎭⎫x -p 2,2px =x ⎝⎛⎭⎫x -p 2. 因为x ≠0.所以x =5p 2. 所以直线AB 的方程为x =5p 2. 13.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 6解析 抛物线的焦点坐标F ⎝⎛⎭⎫0,p 2,准线方程为y =-p 2.代入x 23-y 23=1得||x = 3+p 24. 要使△ABF 为等边三角形,则tan π6=|x |p =3+p 24p =33,解得p 2=36,p =6. 14.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为________.答案 48解析 由⎩⎪⎨⎪⎧ y 2=4x ,y =x -3消去y 得x 2-10x +9=0,得x =1或9,即⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6. 所以|AP |=10,|BQ |=2或|BQ |=10,|AP |=2,所以|PQ |=8,所以梯形APQB 的面积S =10+22×8=48.15.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB→=0,则k 等于( )A.12B.22C. 2 D .2答案 D解析 由题意可知,抛物线的焦点为(2,0).设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -2).由⎩⎪⎨⎪⎧y =k (x -2),y 2=8x 得k 2x 2-(4k 2+8)x +4k 2=0, 则x 1+x 2=4k 2+8k 2,x 1x 2=4. y 1+y 2=k (x 1-2)+k (x 2-2)=k (x 1+x 2-4)=8k, y 1y 2=-8x 18x 2=-16.∴MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+y 1y 2-2(y 1+y 2)+4=x 1x 2+2(x 1+x 2)+4-16-16k +4=0, 解得k =2,故选D.16.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.解 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3,又F ⎝⎛⎭⎫32,0,所以直线l 的方程为y =3⎝⎛⎭⎫x -32. 联立⎩⎪⎨⎪⎧y =3⎝⎛⎭⎫x -32,y 2=6x ,消去y 得4x 2-20x +9=0,解得x 1=12,x 2=92, 故|AB |=1+(3)2×⎪⎪⎪⎪92-12=2×4=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义,知|AB |=|AF |+|BF |=x 1+p 2+x 2+p 2=x 1+x 2+p =x 1+x 2+3=9, 所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.。

直线与抛物线的位置关系教案

直线与抛物线的位置关系教案

直线与抛物线的位置关系教案一、教学目标:知识与技能:1. 让学生掌握直线与抛物线的位置关系,能够判断直线与抛物线的位置;2. 学会利用数学知识解决实际问题,提高学生的解决问题的能力。

过程与方法:1. 通过观察、分析、归纳直线与抛物线的位置关系;2. 利用数形结合的方法,直观地展示直线与抛物线的交点情况。

情感态度价值观:1. 培养学生的团队协作精神,让学生在合作中学习,提高学习兴趣;2. 培养学生勇于探究、积极思考的科学精神。

二、教学重点与难点:重点:1. 直线与抛物线的位置关系的判断;2. 利用数形结合方法分析直线与抛物线的位置关系。

难点:1. 对直线与抛物线位置关系的理解;2. 如何在实际问题中应用直线与抛物线的位置关系。

三、教学准备:教师准备:1. 教学PPT;2. 相关例题及练习题;3. 数学软件或板书。

学生准备:1. 课本;2. 笔记本;3. 草稿纸。

四、教学过程:1. 导入新课:利用PPT展示直线与抛物线的图像,引导学生观察并思考它们之间的位置关系。

2. 知识讲解:讲解直线与抛物线的位置关系,包括相交、相切、平行等情况,并通过实例进行解释。

3. 例题解析:利用数学软件或板书,展示典型例题,引导学生分析解题思路,总结规律。

4. 课堂练习:让学生独立完成练习题,教师巡回指导,解答学生疑问。

5. 总结归纳:对本节课的内容进行总结,强调直线与抛物线位置关系的判断方法及应用。

五、课后作业:1. 完成课后练习题;2. 结合生活实际,寻找直线与抛物线的位置关系应用实例,下节课分享。

注意事项:1. 注重学生个体差异,因材施教;2. 鼓励学生提问,充分调动学生的积极性;3. 课堂练习环节,关注学生的解题过程,培养学生的思维能力。

六、教学拓展:1. 分析其他类型的曲线(如圆、双曲线等)与直线的position relationship;2. 探讨直线与抛物线的位置关系在实际问题中的应用,如物理中的运动轨迹问题,工程中的优化问题等;3. 利用数学软件,让学生自己尝试绘制不同位置关系的直线与抛物线,加深对知识的理解。

直线与抛物线的位置关系

直线与抛物线的位置关系
,
汇报人:
目录
交点个数
直线与抛物线 相交的个数取 决于直线的斜 率和抛物线的
开口方向
当直线斜率存 在且与x轴不垂 直时直线与抛 物线最多有两
个交点
当直线斜率不 存在(垂直于x 轴)时直线与 抛物线有一个
交点
当直线斜率不 存在(垂直于x 轴)且过抛物 线顶点时直线 与抛物线有无
数多个交点
交点坐标
当夹角达到90度时直线与抛物 线相切
夹角的变化还会影响交点的个 数以及与对称轴的关系
汇报人:
交点性质
交点个数:直线与抛物线可能有一个或两个交点 交点位置:交点位于抛物线的对称轴上或对称轴的一侧 交点坐标:通过联立方程求得交点的坐标 交点性质的应用:判断直线与抛物线的位置关系求解相关问题
直线与抛物线平行无交点
平行
直线与抛物线平行交点在无穷远处
直线与抛物线平行交点在抛物线上
直线与抛物线平行交点在直线两侧
交点坐标的求 法:联立直线 与抛物线的方 程解得交点的x 坐标和y坐标。
交点的性质: 交点是直线与 抛物线的公共 点满足两个方
程。
交点的几何意 义:交点是直 线与抛物线的 交点也是它们
相切的点。
交点与切线的 关系:在切点 处切线的斜率 等于该点的导
数值。
交点与参数关系
当参数为0时直线与抛物线交于原点 当参数不为0时直线与抛物线交于两点与参数的正负有关 参数的正负决定了交点的位置和数量 参数的变化会影响交点的位置和数量
抛物线开口大小变化对位置关系的影响
开口大小变化:影响抛物线的位置关系
开口向上:抛物线与x轴交点随开口增大而增多
开口向下:抛物线与x轴交点随开口减小而减少
开口大小变化对直线与抛物线位置关系的影响:开口增大时直线与抛物线交点增多;开口减小时直线与抛物线交 点减少

抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解抛物线知识点和题型分类讲解抛物线的定义:抛物线是平面内满足以下三个条件的点的轨迹:1.在平面内;2.动点到定点F距离与到定直线l的距离相等;3.定点不在定直线上。

当定点F在定直线l上时,动点的轨迹是过定点F且与直线l垂直的直线。

抛物线的标准方程和几何性质:标准方程:1.y^2 = 2px (p>0)2.y^2 = -2px (p>0)3.x^2 = 2py (p>0)4.x^2 = -2py (p>0)p的几何意义:焦点F到准线l的距离。

图形:抛物线是关于对称轴对称的。

顶点:抛物线的顶点是对称轴与抛物线的交点。

对称轴:与抛物线垂直且通过顶点的直线。

焦点:抛物线的定点F。

离心率:离心率e = PF/d,其中PF为焦点到抛物线上一点P的距离,d为抛物线的准线到顶点的距离。

准线方程:与抛物线垂直且通过焦点F的直线。

范围:抛物线的定义所决定的范围。

开口方向:抛物线开口的方向由p的正负号决定。

焦半径:焦半径是从焦点到抛物线上一点P的距离。

自测:1.抛物线的顶点在原点,准线方程为x = -2,则抛物线的方程是y^2 = 8x。

2.已知d为抛物线y = 2px^2(p>0)的焦点到准线的距离,则pd等于4.3.抛物线的焦点为椭圆x^2/9 + y^2/4 = 1的左焦点,顶点为椭圆中心,则抛物线方程为y^2 = -45x。

4.点(3,1)是抛物线y^2 = 2px的一条弦的中心,且这条弦所在直线的斜率为2,则p = 1/2.1.解析:如图,设点P的坐标为(x,y),则点P到直线y=-1的距离为|y-(-1)|=|y+1|,点P到点(0,3)的距离为√[(x-0)²+(y-3)²],由题意得|y+1|+2=√[(x-0)²+(y-3)²],两边平方得y²+2y+1+4=x²+y²-6y+9,化简得x²=2y-6,即为点P的轨迹方程.2.解析:如图,设点P的坐标为(x,y),则有|PB|+|PF|=√[(x-3)²+(y-2)²]+√[(x-1)²+y²],由抛物线的定义可知点P 到焦点F的距离等于点P到直线x=-1的距离,设点P到直线x=-1的距离为d,则有d=|x+1|,又因为点P在抛物线上,所以有y²=4x,代入d=|x+1|,得y²=4|x+1|,即为点P 的轨迹方程.3.删除此段落,因为没有明显的问题或需要改写的地方.4.解析:如图,设点P的坐标为(x,y),则有y²=4x,点A的坐标为(1,1),抛物线的焦点为F(2,0),则点P到抛物线的准线x=-1的距离为|y|,点P到焦点F的距离为√[(x-2)²+y²],由题意得|y|+√[(x-2)²+y²]=|y-1|,解得x²=y,即为点P的轨迹方程.5.解析:如图,设点P的坐标为(x,y),则有x²=4y,点A的坐标为(1,1),抛物线的焦点为F(1,0),则点P到焦点F的距离为√[(x-1)²+y²],点P到点A的距离为√[(x-1)²+(y-1)²],由题意得√[(x-1)²+y²]+√[(x-1)²+(y-1)²]=√[(x-1)²+y²]+|y|,解得y=x²/4,即为点P的轨迹方程.1) 由题意可知,点M到焦点的距离为5,横坐标为3,因此焦点坐标为(4,0)。

直线与抛物线的位置关系

直线与抛物线的位置关系

第3课时 直线与抛物线的位置关系一、直线与抛物线的位置关系1.直线与抛物线公共点的个数可以有0个、1个或2个. 将直线方程与抛物线方程联立,消元后得到一元二次方程,若Δ=0,则直线与抛物线相切,若Δ>0,则直线与抛物线相交,若Δ<0,则直线与抛物线没有公共点.特别地,当直线与抛物线的轴平行时,直线与抛物线有一个公共点.2.在求解直线与抛物线的位置关系的问题时,要注意运用函数与方程思想,将位置关系问题转化为方程根的问题.题型一、直线与抛物线的位置关系例1、已知抛物线C :y 2=-2x ,过点P (1,1)的直线l 斜率为k ,当k 取何值时,l 与C 有且只有一个公共点,有两个公共点,无公共点?[解析] 直线l :y -1=k (x -1),将x =-y 22代入整理得,ky 2+2y +2k -2=0.(1)k =0时,把y =1代入y 2=-2x 得,x =-12,直线l 与抛物线C 只有一个公共点(-12,1).(2)k ≠0时,Δ=4-4k (2k -2)=-8k 2+8k +4.由Δ=0得,k =1±32, ∴当k <1-32或k >1+32时,Δ<0,l 与C 无公共点.当k =1±32时,Δ=0,l 与C 有且只有一个公共点. 当1-32<k <1+32且k ≠0时,Δ>0,l 与C 有两个公共点. 综上知,k <1-32或k >1+32时,l 与C 无公共点;k =1±32或k =0时,l 与C 只有一个公共点;1-32<k <0或0<k <1+32时,l 与C 有两个公共点. 例2、已知点A(0,2)和抛物线C :2y =6x ,求过点A 且与抛物线C 有且仅有一个公共点的直线l 的方程.[解析] 当直线l 的斜率不存在时,由直线l 过点A (0,2)可知,直线l 就是y 轴,其方程为x =0. 由⎩⎨⎧x =0y 2=6x,得y 2=0.因此,此时直线l 与抛物线C 只有一个公共点O (0,0). 如果直线l 的斜率存在,则设直线l 的方程为y =kx +2.这个方程与抛物线C 的方程联立得方程组 ⎩⎨⎧y =kx +2y 2=6x,由方程组消去x 得方程,ky 2-6y +12=0① 当k =0时,得-6y +12=0,可知此时直线l 与抛物线相交于点()23,2. 当k ≠0时,关于y 的二次方程①的判别式Δ=36-48k .由Δ=0得k =34,可知此时直线l 与抛物线C 有且仅有一个公共点,直线l 的方程为y =34x +2,即3x -4y+8=0.因此,直线l 的方程为x =0,或3x -4y +8=0,或y =2. 题型二、弦长问题例3、顶点在原点,焦点在x 轴上的抛物线,截直线2x -y +1=0所得弦长为15,则抛物线方程为______. [答案] y 2=12x 或y 2=-4x例4、已知抛物线y 2=4x 的一条过焦点的弦AB ,A (x 1,y 1)、B (x 2,y 2),AB 所在直线与y 轴交点坐标(0,2),则1y 1+1y 2=__________________.[答案] 12 题型三、对称问题例5、已知抛物线y 2=x 上存在两点关于直线l :y =k (x -1)+1对称,求实数k 的取值范围.[解析] 设抛物线上的点A (y 21,y 1)、B (y 22,y 2)关于直线l 对称.则⎩⎨⎧k ·y 1-y 2y 21-y 22=-1y 1+y 22=k (y 21+y222-1)+1,得⎩⎨⎧y 1+y 2=-k y 1y 2=k 22+1k -12,∴y 1、y 2是方程t 2+kt +k 22+1k -12=0的两个不同根.∴Δ=k 2-4(k 22+1k -12)>0得-2<k <0.故实数k 的取值范围是-2<k <0.例6、求过点P (0,1)且与抛物线y 2=2x 只有一个公共点的直线方程.[正解] (1)若直线斜率不存在,则过点P (0,1)的直线方程为x =0,由⎩⎨⎧ x =0y 2=2x ,得⎩⎨⎧x =0y =0.即直线x =0与抛物线只有一个公共点.(2)若直线的斜率存在,设为k ,则过点P (0,1)的直线方程为y =kx +1,由方程组⎩⎨⎧y =kx +1,y 2=2x .消去y ,得k 2x 2+2(k -1)x +1=0.当k =0时,得⎩⎨⎧x =12.y =1.即直线y =1与抛物线只有一个公共点;当k ≠0时,直线与抛物线只有一个公共点,则Δ=4(k -1)2-4k 2=0,所以k =12,直线方程为y =12x +1.综上所述,所求直线方程为x =0或y =1或y =12x +1.课后作业一、选择题1.直线y =kx -2交抛物线y 2=8x 于A 、B 两点,若AB 中点的横坐标为2,则k =( ) A .2或-2 B .-1 C .2D .3[答案] C[解析] 由⎩⎪⎨⎪⎧y 2=8xy =kx -2得k 2x 2-4(k +2)x +4=0,则4(k +2)k 2=4,即k =2. 2.过抛物线y 2=4x 的焦点的直线交抛物线于A 、B 两点,O 为坐标原点,则OA →·OB →的值是( )A .12B .-12C .3D .-3[答案] D[解析] 设A (y 214,y 1)、B (y 224,y 2),则OA →=(y 214,y 1),OB →=(y 224,y 2),则OA →·OB →=(y 214,y 1)·(y 224,y 2)=y 21y 2216+y 1y 2,又∵AB 过焦点,则有y 1y 2=-p 2=-4,∴OA →·OB →=(y 1y 2)216+y 1y 2=(-4)216-4=-3,故选D.3.已知AB 是过抛物线2x 2=y 的焦点的弦,若|AB |=4,则AB 的中点的纵坐标是( )A .1B .2 C.58 D.158[答案] D[解析] 如图所示,设AB 的中点为P (x 0,y 0),分别过A ,P ,B 三点作准线l 的垂线,垂足分别为A ′,Q ,B ′,由题意得|AA ′|+|BB ′|=|AB |=4,|PQ |=|AA ′|+|BB ′|2=2,又|PQ |=y 0+18,∴y 0+18=2,∴y 0=158.4.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若F A →+FB →+FC →=0,则|F A →|+|FB →|+|FC →|等于( )A .9B .6C .4D .3[答案] B[解析] 设A 、B 、C 三点坐标分别为(x 1,y 1)、(x 2,y 2)、(x 3,y 3).由题意知F (1,0),因为F A →+FB →+FC →=0,所以x 1+x 2+x 3=3.根据抛物线定义,有|F A →|+|FB →|+|FC →|=x 1+1+x 2+1+x 3+1=3+3=6.故选B.5.已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线与抛物线交于点A (x 1,y 1)、B (x 2,y 2),则y 21+y 22的最小值为( )A .4B .6C .8D .10[答案] C[解析] 当直线的斜率不存在时,其方程为x =1,∴y 21=4,y 22=4, ∴y 21+y 22=8.当直线的斜率存在时,设其方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1)y 2=4x ,得ky 2-4y -4k =0, ∴y 1+y 2=4k,y 1y 2=-4,∴y 21+y 22=(y 1+y 2)2-2y 1y 2=16k2+8, ∵k 2>0,∴y 21+y 22>8,综上可知,y 21+y 22≥8,故y 21+y 22的最小值为8.6.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A 、B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223[答案] D[解析] 设A 、B 两点坐标分别为(x 1,y 1)、(x 2,y 2),由⎩⎪⎨⎪⎧y =k (x +2)y 2=8x 消去y 得,k 2x 2+4x (k 2-2)+4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5,∴k 2=89,∵k >0,∴k =223. 二、填空题6.已知F 是抛物线y 2=4x 的焦点,M 是这条抛物线上的一个动点,P (3,1)是一个定点,则|MP |+|MF |的最小值是______________________.[答案] 4[解析] 过P 作垂直于准线的直线,垂足为N ,交抛物线于M ,则|MP |+|MF |=|MP |+|MN |=|PN |=4为所求最小值.7.在已知抛物线y =x 2上存在两个不同的点M 、N 关于直线y =kx +92对称,则k 的取值范围为__________________.[答案] k >14或k <-14[解析] 设M (x 1,x 21),N (x 2,x 22)关于直线y =kx +92对称, ∴x 21-x 22x 1-x 2=-1k ,即x 1+x 2=-1k .设MN 的中点为P (x 0,y 0),则x 0=-12k ,y 0=k ×(-12k )+92=4.因中点P 在y =x 2内,有4>(-12k )2⇒k 2>116,∴k >14或k <-14.三、解答题8.已知抛物线y 2=6x 的弦AB 经过点P (4,2),且OA ⊥ OB (O 为坐标原点),求弦AB 的长.[解析] 由A 、B 两点在抛物线y 2=6x 上,可设A (y 216,y 1)、B (y 226,y 2).因为OA ⊥OB ,所以OA →·OB →=0.由OA →=(y 216,y 1),OB →=(y 226,y 2),得y 21y 2236+y 1y 2=0.∵y 1y 2≠0,∴y 1y 2=-36,① ∵点A 、B 与点P (4,2)在一条直线上, ∴y 1-2y 216-4=y 1-y 2y 216-y 226, 化简得y 1-2y 21-24=1y 1+y 2,即y 1y 2-2(y 1+y 2)=-24. 将①式代入,得y 1+y 2=-6.②由①和②,得y 1=-3-35,y 2=-3+35,从而点A 的坐标为(9+35,-3-35),点B 的坐标为(9-35,-3+35),所以|AB |=(x 1-x 2)2+(y 1-y 2)2=610. 9.已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由. [解析] (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, ∴p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1. (2)假设存在符合题意的直线l ,其方程为y =-2x +t由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x .消去x 得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0, 解得t ≥-12.另一方面,由直线OA 与l 的距离d =55, 可得|t |5=15,解得t =±1. 综上知:t =1.所以符合题意的直线l 存在,其方程为2x +y -1=0. 10.已知抛物线y 2=-x 与直线y =k (x +1)相交于A ,B 两点.(1)求证:OA ⊥OB ;(2)当△OAB 的面积等于10时,求k 的值.[解析] (1)如图所示,由⎩⎪⎨⎪⎧y 2=-xy =k (x +1),消去x 得,ky 2+y -k =0.设A (x 1,y 1)、B (x 2,y 2),由根与系数的关系得y 1·y 2=-1,y 1+y 2=-1k .∵A ,B 在抛物线y 2=-x 上,∴y 21=-x 1,y 22=-x 2,∴y 21·y 22=x 1x 2. ∵k OA ·k OB =y 1x 1·y 2x 2=y 1y 2x 1x 2=1y 1y 2=-1,∴OA ⊥OB .(2)设直线与x 轴交于点N ,显然k ≠0. 令y =0,得x =-1,即N (-1,0). ∵S △OAB =S △OAN +S △OBN=12|ON ||y 1|+12|ON ||y 2|=12|ON |·|y 1-y 2|, ∴S △OAB =12·1·(y 1+y 2)2-4y 1y 2=12(-1k)2+4. ∵S △OAB =10, ∴10=121k 2+4,解得k =±16.。

知识讲解_抛物线的简单性质_提高

知识讲解_抛物线的简单性质_提高

抛物线的简单性质【要点梳理】要点一:抛物线标准方程2(0)2y =px p >的几何性质1. 对称性观察图象,不难发现,抛物线y 2=2px (p >0)关于..x .轴对称...,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴........ 2. 范围抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x .≥0..;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点....(0,0). 4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e 表示,e .=1... 5. 通径通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径.因为通过抛物线y 2=2px (p >0)的焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为,2p p ⎛⎫ ⎪⎝⎭,,2p p ⎛⎫- ⎪⎝⎭,所以抛物线的通径长为....2.p ..这就是抛物线标准方程中2p 的一种几何意义.另一方面,由通径的定义我们还可以看出,p 刻画了抛物线开口的大小,p 值越大,开口越宽;p 值越小,开口越窄.6. 焦半径抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径 焦半径公式:抛物线22(0)y px p =>,0022p pPF x x =+=+;抛物线22(0)y px p =->,0022p pPF x x =-=-; 抛物线22(0)x py p =>,0022p pPF y y =+=+; 抛物线22(0)x py p =->,0022p pPF y y =-=-. 7. 焦点弦定义:过焦点的直线割抛物线所成的相交弦.设过抛物线22(0)y px p =>焦点的直线交抛物线于A 、B 两点,设1122(,)(,)A x y B x y , 焦点弦公式:焦点弦 12()AB p x x =++; 同理: 若抛物线为22(0)y px p =->,则12()AB p x x =-+;若抛物线为22(0)x py p =>, 则12()AB p y y =++; 若抛物线为22(0)x py p =->,则12()AB p y y =-+. 有关性质: ①124px x =和212y y p =-. 2()22p y k x y px⎧=-⎪⎨⎪=⎩2220p y y p k ⇒--=和22222(2)04k p k x k p p x -++=212y y p ⇒=-和124x x = ②若已知过焦点的直线倾斜角θ,则22sin pAB θ=;当θ=900时,|AB |的最小值等于2p ,这时的弦叫抛物线的通径.(过焦点且垂直于对称轴的相交弦).③以AB 为直径的圆必与准线l 相切.④焦点F 对A 、B 在准线上射影的张角为90︒.⑤112AF BF p +=.要点诠释:(1)抛物线只位于半个坐标平面内,虽然它可以无限延伸,但没有渐进线; (2)抛物线只有一条对称轴,没有对称中心; (3)抛物线只有一个顶点、一个焦点、一条准线; (4)抛物线的离心率是确定的,为1. 要点二:抛物线标准方程几何性质的对比图形标准方程 y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0)顶点 O (0,0)范围 x ≥0,y R ∈x ≤0,y R ∈y ≥0,x R ∈y ≤0,x R ∈ 对称轴 x 轴y 轴焦点 ,02p F ⎛⎫⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭离心率 e =1准线方程 2px =-2p x = 2p y =-2p y =焦半径 0||2p MF x =+ 0||2pMF x =- 0||2p MF y =+0||2pMF y =-要点诠释:(1)与椭圆、双曲线不同,抛物线只有一个焦点、一个顶点、一条对称轴,一条准线;(2)标准方程中的参数p 的几何意义是指焦点到准线的距离;p >0恰恰说明定义中的焦点F 不在准线l 上这一隐含条件;参数p 的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于p 的值,才易于确定焦点坐标和准线方程.要点三:直线和抛物线的位置关系 1. 点和抛物线的位置关系将点P (x 0,y 0)代入抛物线y 2=2px (p >0):若2020y px ->,则点在抛物线外; 若202=0y px -,点在抛物线上; 若2020y px -<,则点在抛物线内.2. 直线和抛物线的位置关系有三种:相交、相切、相离.将直线方程和抛物线方程联立,消元转化为关于x (或y 的)方程组:Ax 2+Bx +C =0(或Ay 2+By +C =0),其中A ,B ,C 为常数若A =0,则直线和抛物线相交(直线与抛物线的对称轴平行),有一个交点; 若A ≠0,计算判别式2=4B AC ∆ :若0∆>,则直线和抛物线相交(有两个交点); 若=0∆,则直线和抛物线相切(有一个交点); 若=0∆,则直线和抛物线相离(无交点); 2. 判断直线和抛物线位置关系的操作程序:要点诠释:(1)在判断直线和抛物线位置关系时,不要忽略直线和抛物线的对称轴平行的情况; (2)若直线和抛物线相交于点()111,P x y ,()222,P x y ,则相交弦的弦长()()22212121212||1|1+4PP k x x k x x x x ⎡⎤=+-+-⎣⎦或()2121212122211||1|14(0)PP y y y y y y k k k ⎛⎫⎡⎤=+-=++-≠ ⎪⎣⎦⎝⎭.要点四:抛物线的光学性质过抛物线上一点可以作一条切线,过切点所作垂直于切线的直线叫做抛物线在这点的法线.抛物线的法线有一条重要性质:经过抛物线上一点作一直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这点与焦点连线的夹角. 如图.抛物线的这一性质在技术上有着广泛的应用.例如,在光学上,如果把光源放在抛物镜的焦点F 处,射出的光线经过抛物镜的反射,变成了平行光线,汽车前灯、探照灯、手电筒就是利用这个光学性质设计的.反过来,也可以把射来的平行光线集中于焦点处,太阳灶就是利用这个原理设计的【典型例题】类型一:抛物线的几何性质 例1. (1)写出抛物线214y x =的焦点坐标、准线方程; (2)已知抛物线的焦点为(0,2),F -写出其标准方程;(3)已知抛物线的焦点在x 轴的正半轴上,且焦点到准线的距离为3,求抛物线的标准方程、焦点坐标和准线方程.【解析】(1)抛物线214y x =的标准方程为24x y =,因为2p =4,所以焦点坐标为(0,1),准线方程为1y =-. (2)因为抛物线的焦点在y 轴的负半轴上,且2p=2,所以4p =,从而所求抛物线的标准方程为28x y =-. (3)由已知得3p =,所以所求抛物线标准方程为26y x =,焦点坐标为3(,0)2,准线方程为32x =-.【总结升华】讨论抛物线的方程和几何性质时要注意抛物线的焦点轴和几何量,,22pp p 的 区别与联系.举一反三:【变式】已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程【答案】因为p =3,所以焦点坐标是3(,0)2准线方程是32x =-例2. 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2); (2)焦点在直线x -2y -4=0上【解析】(1)设所求的抛物线方程为y 2=-2px 或x 2=2py (p >0), ∵过点(-3,2), ∴4=-2p (-3)或9=2p ·2 ∴p =32或p =49∴所求的抛物线方程为y 2=-34x 或x 2=29y ,前者的准线方程是x =31,后者的准线方程是y =-89(2)令x =0得y =-2,令y =0得x =4, ∴抛物线的焦点为(4,0)或(0,-2) 当焦点为(4,0)时,2p=4, ∴p =8,此时抛物线方程y 2=16x ;焦点为(0,-2)时,2p=2, ∴p =4,此时抛物线方程为x 2=-8y∴所求的抛物线的方程为y 2=16x 或x 2=-8y , 对应的准线方程分别是x =-4,y =2 【总结升华】① 过抛物线y 2=2px 的焦点F 的弦AB 长的最小值为2p② 设A (x 1,y 1),B (x 2,y 2)是抛物线y 2=2px 上的两点, 则AB 过F 的充要条件是y 1y 2=-p 2 ③ 设A , B 是抛物线y 2=2px 上的两点,O 为原点, 则OA ⊥OB 的充要条件是直线AB 恒过定点 (2p ,0). 举一反三:【变式】已知抛物线y 2=4x 的内接三角形OAB 的一个顶点O 在原点,三边上的高都过焦点,求三角形OAB 的外接圆的方程.【解析】 ∵△OAB 的三个顶点都在抛物线上,且三条高都过焦点, ∴AB ⊥x 轴,故A 、B 关于x 轴对称,设A 211(,)4y y ,则B 211(,)4y y -,又F (1,0),由OA ⊥BF 得,解得21y =20, ∴A,B (5,-,因外接圆过原点,且圆心在x 轴上,故可设方程为:x 2+y 2+Dx =0, 把A 点坐标代入得D =-9, 故所求圆的方程为x 2+y 2-9x =0.类型二:直线和抛物线的位置关系例3. 已知抛物线的方程为2=4y x ,直线l 过定点(-2,1)P ,斜率为k ,k 为何值时,直线l 与抛物线2=4y x : (1)只有一个公共点;(2)两个公共点;(3)没有公共点?【思路点拨】先定数,在定量:画出草图,确定与抛物线有一个、两个、没有公共点的直线条数;再设出直线l 的方程,与抛物线方程联立,消元,判断一元一次方程或一元二次方程解的个数,从而确定k 的值. 【解析】设直线l 的方程为:()12y k x -=+,联立()2124.y k x y x ⎧-=+⎪⎨=⎪⎩,, 整理得24840ky y k ++= ①.当k =0时,方程①有一个解,此时直线l 方程为y =1,与抛物线有一个公共点; 当k 0≠时,方程①为一元二次方程,判别式()2=1621k k ∆+ , 当0∆>,即112k <<时,方程①有2个不同的解,所以此时直线l 与抛物线有2个公共点; 当=0∆,即1k = 或12k <时,方程①有1个解,所以此时直线l 与抛物线有1个公共点; 当0∆<,即<1k 或12k >时,方程①有没有解,所以此时直线l 与抛物线有没有公共点; 综上所述,当k =0或1k = 或12k <时,直线l 与抛物线只有1个公共点;当112k <<时,直线l 与抛物线有2个公共点; 当<1k 或12k >时,直线l 与抛物线有没有公共点. 如图:【总结升华】直线与抛物线有一个公共点的情况有两种情形:一种是直线平行于抛物线的对称轴;另一种是直线与抛物线相切.【变式1】求过定点P (0,1)且与抛物线 22y x =只有一个公共点的直线的方程. 【答案】x =0 或 y =1 或11.2y x =+ 【变式2】当k 为何值时,直线y = kx +1与抛物线24y x = (1)相交; (2)相切; (3)相离?【解析】由方程组214.y kx y x =+⎧⎨=⎩,消去 y ,并整理得22(24)10k x k x +-+=.(i )当 k =0 时,直线方程为y =1,与抛物线交于一点;(ii )当k ≠ 0时,该方程是一元二次方程,22(24)416(1)k k k ∆=--=-:(1)当0∆>,即1k <时,直线和抛物线相交(有2个交点). (2)当0∆=,即1k =时,直线和抛物线相切. (1)当0∆<,即1k >时,直线和抛物线相离.综上所述,当k <1时直线和抛物线相交且k =0时交于一点;,当k =1时,直线和抛物线相切,当k >1时直线和抛物线相离.类型三:焦点弦和焦半径例4. 斜率为1的直线经过抛物线24y x =的焦点,与抛物线相交于两点A 、B ,求焦点弦长AB 的长. 【解析】方法一:由抛物线的标准方程可知,抛物线焦点的坐标为F (1,0), 所以直线AB 的方程为01(1)y x -=⋅-,即1y x =-, ① 将方程①代入抛物线方程24y x =,化简得2610x x -+=, 解这个方程,得132x =+232x =-, 将1322x =+,2322x =-代入方程①中,得1222y =+2222y =-,即A (322+222+,B (322-222-,∴22||(42)(42)8AB =+=.方法二:由抛物线的定义可知,|AF |=AD |=1x +1, |BF |=|B C|=2x +1, 于是|AB |=|AF +|BF |=1x +2x +2. 在方法一中得到方程2610x x -+=后,根据根与系数的关系可以直接得到 1x +2x =6, 于是立即可以求出|AB |=6+2=8.方法三:抛物线24y x =中24p =,直线的倾斜角为4π 所以焦点弦长224==81sin 2p AB θ=. 【总结升华】求抛物线弦长的一般方法: ①用直线方程和抛物线方程列方程组;②消元化为一元二次方程后,应用韦达定理,求根与系数的关系式,而不要求出根,代入弦长公式()()22212121212||1|1+4PP k x x k x x x x ⎡⎤=+-+-⎣⎦特别地,若弦过焦点,即为焦点弦则据定义转化为|AB | = x 1+x 2 +p 或|AB | =y 1+y 2+p .结合②中的关系式可求解.体现了转化思想.【变式1】已知AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=m ,则AB 中点的横坐标为__________. 【解析】AQ ⊥BQ ,P 为Rt △AQB 斜边中点,∴|PQ |=||22AB m =. 设AB 中点的横坐标为x 0,则|P Q|=x 0+2p. ∴x 0+2p =2m , 得x 0=2m p -.所以AB 中点的横坐标为2m p-. 【变式2】求抛物线22y px =的焦点弦长的最小值.【解析】设焦点弦所在直线的倾角为θ,则直线AB 的方程为:cos sin ()2py x θθ=-,设1122(,),(,)A x y B x y ,由2cos sin ()22p y x y pxθθ⎧=-⎪⎨⎪=⎩得:222222sin (2cos sin )sin 04p x p x θθθθ-++= 22122(2cos sin )sin p x x θθθ+∴+=112AB AF BF x x p ∴=+=++2222(2cos 2sin )2sin sin p pθθθθ+==当2sin 1θ=,即2πθ=时,AB 取最小值2p .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与抛物线的位置关系【学习目标】1.能正熟练使用直接法、待定系数法、定义法求抛物线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、准线)解决相关问题;3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.【知识网络】【要点梳理】要点一、抛物线的定义定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.要点诠释:上述定义可归结为“一动三定”:一个动点,一定点F(即焦点),一定直线(即准线),一定值1(即动点M到定点F的距离与定直线l的距离之比).要点二、抛物线的标准方程抛物线标准方程的四种形式:22y px=,22y px=-,22x py=,22x py=-(0)p>抛物线抛物线的定义与标准方程抛物线的几何性质直线与抛物线的位置关系抛物线的综合问题抛物线的弦问题抛物线的准线图像方程y 2=2px(p >0)y 2=-2px(p>0)x 2=2py (p >0)x2=-2p y(p>0)焦点,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线2px =-2p x =2p y =-2p y =要点诠释:求抛物线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设抛物线方程的具体形式;“定值”是指用定义法或待定系数法确定p 的值.要点三、抛物线的几何性质 范围:{0}x x ≥,{}y y R ∈,抛物线y 2=2px(p>0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M的坐标(x,y)的横坐标满足不等式x≥0;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸。

抛物线是无界曲线。

对称性:关于x 轴对称抛物线y 2=2px (p >0)关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴。

抛物线只有一条对称轴。

顶点:坐标原点抛物线y2=2px(p>0)和它的轴的交点叫做抛物线的顶点。

抛物线的顶点坐标是(0,0)。

离心率:1e =.抛物线y 2=2px(p >0)上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率。

用e 表示,e=1。

抛物线的通径通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径。

要点三、直线与抛物线的位置关系 直线与抛物线的位置关系将直线的方程y kx m =+与抛物线的方程y 2=2px (p >0)联立成方程组,消元转化为关于x 或y 的一元二次方程,其判别式为Δ.2220ky py pm -+=若0k =,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点; 若0k ≠①Δ>0 ⇔直线和抛物线相交,有两个交点; ②Δ=0⇔直线和抛物线相切,有一个公共点; ③Δ<0⇔直线和抛物线相离,无公共点. 直线与抛物线的相交弦设直线y kx m =+交抛物线22221x y a b-=(0,0)a b >>于点111222(,),(,),P x y P x y 两点,则12||PP12|x x -同理可得1212|||(0)PP y y k =-≠ 这里12||,x x -12||,y y -的求法通常使用韦达定理,需作以下变形:12||x x -12||y y -抛物线的焦点弦问题已知过抛物线22(0)y px p =>的焦点F 的直线交抛物线于A 、B 两点。

设A(x 1,y 1),B(x 2,y 2),则:①焦点弦长1222||||()sin pAB x x p AB AB αα=++=或为的倾斜角 ②221212-4p x x y y p ==, ③112||||FA FB p +=,其中|AF |叫做焦半径,1||2p FA x =+ ④焦点弦长最小值为2p 。

根据22||sin 2p AB παα=可见,当为时,即AB 垂直于x 轴时,弦AB 的长最短,最短值为2p。

要点诠释:直线与圆锥曲线的位置关系和其他圆锥曲线与直线一样,注意其中方程思想的应用和解析几何的通性通法.【典型例题】类型一:抛物线的方程与性质例1. 顶点在坐标原点,对称轴是坐标轴,并且经过点M(4,8)的抛物线有几条?求出它们的标准方程. 【解析】因为抛物线关于坐标轴对称,它的顶点在原点,并且经过点(4,8)M ,所以可设它的标准方程为2222(0)y px x py p ==>或因为点M 在抛物线上,所以6481616p p ==或即81p p ==或,因此,所求抛物线有两条,它们的标准方程是22162y x x y ==或,【总结升华】抛物线的焦点轴有四种情况,因此在讨论抛物线方程时要注意它的不同位置,恰当的设出方程是解决问题的关键.举一反三:【变式1】若抛物线通过直线12y x =与圆x 2+y2+6x =0的两个交点,且以坐标轴为对称轴,求该抛物线的方程.【答案】由221260y x x y x ⎧=⎪⎨⎪++=⎩得00x y =⎧⎨=⎩,或245125x y ⎧=-⎪⎪⎨⎪=-⎪⎩, 根据题意可设抛物线的方程为x 2=-2my (m >0)或y2=-2p x(p>0), 则2412(,)55--在抛物线上,∴m =245,p =35, ∴方程为2485x y =-或265y x =-【变式2】已知定点F (0,2),若动点M (x,y )满足|M F|=y +2,则点M 的轨迹方程为________. 【答案】由已知得点M 到点F 的距离等于点M 到直线y =-2的距离,故点M 的轨迹方程为x 2=8y . 类型二:直线与抛物线的位置关系例2.过定点P(0,2)作直线l ,使l 与抛物线y 2=4x 有且只有一个公共点,这样的直线l共有________条.【答案】3【解析】如图,过点P 与抛物线y 2=4x仅有一个公共点的直线有三条:二条切线、一条与x 轴平行的直线. 【总结升华】直线与抛物线只有一个公共点时要考虑相交于一点的情况,不要漏掉. 举一反三:【变式】已知F 是抛物线y 2=x 的焦点,A,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为________.【答案】∵|A F|+|BF |=x A+xB +12=3,∴x A +xB=52. ∴线段A B的中点到y轴的距离为524A B x x +=. 类型三:抛物线的弦例3.斜率为1的直线l 经过抛物线y 2=4x的焦点,与抛物线相交于点A、B ,求线段A 、B的长. 【解析】如图8-3-1,y2=4x 的焦点为F (1,0),则l 的方程为y =x-1.由⎩⎨⎧+==142x y xy 消去y 得x 2-6x +1=0. 设A (x 1,y1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B两点到准线的距离为A ',B ',则()()()8262112121=+=++=+++='+'x x x x B B A A【总结升华】抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。

举一反三:【变式】顶点在原点,焦点在x 轴的抛物线截直线y =-2x -1所得的弦长|AB |=求抛物线的方程. 【答案】y 2=20x 或y 2=-12x .例4.若直线l:y=kx -2交抛物线y 2=8x 于A 、B 两点,且A B的中点为M (2,y 0),求y 0及弦AB的长.【解析】把y=kx -2代入y 2=8x ,得k 2x 2-(4k +8)x +4=0.设A (x 1,y 1),B (x2,y 2). ∵A B中点M (2,y 0),∴x 1+x 2=4,即248k k+=4, 解得k =2或k =-1.又Δ=16k 2+64k +64-16k 2>0, ∴k >-1,∴k =2,此时直线方程为y =2x-2, ∵M(2,y 0)在直线上,∴y0=2,|A B|21|x x -==【总结升华】抛物线弦的中点坐标和方程的两根之和的密切联系是解决中点弦问题的关键,方程的思想也是解析几何的核心思想.举一反三:【变式】过抛物线y 2=4x 的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB |等于________.【答案】8【解析】抛物线的准线方程为x =-1,则AB 中点到准线的距离为3-(-1)=4.由抛物线的定义得|AB |=8.类型四:抛物线的综合问题例5.过抛物线y2=2p x(p>0)的焦点F 的直线与抛物线相交于P (x 1,y 1)、Q(x 2,y2)两点,求证:212y y p =-;【解析】证明:由抛物线的方程可得焦点的坐标为(,0)2pF 。

(1)当直线PQ 斜率存在时,过焦点的直线方程可设为()2py k x =-,由2()22p y k x y px⎧=-⎪⎨⎪=⎩消去x 得:ky 2―2py―kp 2=0 (※) 当k=0时,方程(※)只有一解,∴k≠0, 由韦达定理得:y 1·y 2=-p2。

当直线PQ 斜率不存在时,得两交点坐标为(,)2p p ,(,)2pp -, ∴y1·y2=―p2。

综上两种情况:总有y 1y2=―p2。

【总结升华】韦达定理在解决抛物线综合问题中有着非常重要的作用,注意它的合理应用. 举一反三:【变式1】 定长为3的线段AB 的两个端点在抛物线y 2=x 上移动,AB 的中点为M ,求点M 到y 轴的最短距离,并求此时点M 的坐标【答案】如图,设A(x 1,y 1), B(x 2,y2),M (x,y), 则x=221x x +, y=221y y +,又设点A,B,M 在准线l :x=─1/4上的射影分别为A/,B /,M/, M M/与y 轴的交点为N, 则|A F|=|AA /|=x1+41,|BF|=|BB /|=x 2+41, ∴x=21(x 1+x 2)=21(|A F|+|BF|─21)≥21(|AB|─21)=45等号在直线A B过焦点时成立,此时直线AB 的方程为y=k(x─41) 由⎪⎩⎪⎨⎧=-=x y x k y 2)41(得16k 2x 2─8(k 2+2)x+k 2=0 依题意|A B|=21k +|x 1─x 2|=21k +×216k ∆=221kk +=3,∴k2=1/2, 此时x=21(x 1+x 2)=22162)2(8kk ⨯+=45 ∴y= ±22即M(45,22), N(45,─22) 【变式2】已知点P是抛物线y 2=2x 上的动点,点P到准线的距离为d ,且点P 在y 轴上的射影是M ,点A (72,4),则|P A |+|PM |的最小值是( ) A.72 B.4 C. 92 D .5 【答案】 C【解析】 设抛物线y2=2x的焦点为F ,则F(12,0),又点A (72,4)在抛物线的外侧,抛物线的准线方程为x=-12, 则|P M|=d-12,又|P A |+d =|PA|+|PF |≥|AF |=5,所以|PA |+|PM |≥92.故选C.。

相关文档
最新文档