安徽省高一上学期数学段考试卷

合集下载

安徽省部分重点中学2023-2024学年高一上学期期末测试数学试卷含答案

安徽省部分重点中学2023-2024学年高一上学期期末测试数学试卷含答案

姓名______座位号______(在此卷上答题无效)高一数学(答案在最后)(人教版A )本试卷共4页,22题.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,先将自己的姓名,准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂照.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}250A x x x =-=,则()A.{}0A∈ B.5A∉ C.{}5A∈ D.0A∈【答案】D 【解析】【分析】用列举法表示出集合A ,再利用元素与集合、集合与集合的关系逐项判断即得.【详解】依题意,{0,5}A =,所以0A ∈,5A ∈,B 错误,D 正确;显然{}0A ⊆,{}5A ⊆,AC 错误.故选:D2.12+=()A.4B.6C.8D.10【答案】B 【解析】【分析】根据给定条件,利用指数运算、指数式与对数式的互化及换底公式计算即得.【详解】因为1222122log3log3log2==,所以22l11lo3og3g2223622++==⨯=⨯=.故选:B3.中文“函数”一词,最早是由近代数学家李善兰翻译的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,下列选项中是同一个函数的是()A.01y x=-与0y=B.y=与y=C.y x=与z=D.2y x x=+与32x xyx+=【答案】C【解析】【分析】利用同一函数的定义,逐项分析判断即得.【详解】对于A,函数01y x=-的定义域为{R|0}x x∈≠,函数0y=的定义域为R,两个函数定义域不同,A不是;对于B,函数y=的定义域为{|2}x x≥,函数y=的定义域为{|2x x≤-或2}x≥,两个函数定义域不同,B不是;对于C,函数y x=的定义域为R,函数z=R,且z y==,两个函数定义域相同,对应法则也相同,C是;对于D,函数2y x x=+的定义域为R,函数32x xyx+=的定义域为{R|0}x x∈≠,两个函数定义域不同,D不是.故选:C4.已知角α的顶点与原点重合,始边与x轴的非负半轴重合,点(1,P在角α的终边上,则5πsin(2)6α+=()A.14 B.14- C.12D.12-【答案】C【分析】根据给定条件,利用正切函数定义求出tan α,再利用二倍角公式结合齐次式法及和角的正弦公式求解即得.【详解】依题意,tan α=,则2222sin cos 2tan sin 22sin cos sin cos tan 12ααααααααα====-++,22222222cos sin 1tan 1cos 2cos sin sin cos tan 12ααααααααα--=-===-++所以5π5π5π111sin(2sin 2cos cos 2sin (66622222ααα+=+=-⨯--⨯=.故选:C5.已知“0x ∃∈R ,200202420240x x a --<”为真命题,则实数a 的取值范围为()A.506a >-B.506a -≥ C.506a -≤ D.506a <-【答案】A 【解析】【分析】根据给定条件,分离参数,借助二次函数求出最小值即得.【详解】“0x ∃∈R ,200202420240x x a --<”为真命题,则“0x ∃∈R ,20020242024a x x >-”为真命题,而2020012024()506506422022024x x x =≥----,当且仅当012x =时取等号,则506a >-,所以实数a 的取值范围为506a >-.故选:A6.函数()4e xf x x =-在[]3,3-上的大致图象为()A. B.C. D.【答案】D【分析】根据给定函数的奇偶性,结合(0)1f =-即可判断得解.【详解】依题意,||||()()4||e 4||e x x x f x x f x -=-=---=,因此函数()f x 是偶函数,其图象关于y 轴对称,排除AB ;又(0)1f =-,选项C 不满足,D 符合题意.故选:D7.《梦溪笔谈》是我国科技史上的杰作,其中收录了扇形弧长的近似计算公式:22ABl ⨯=+矢弦径.如图,公式中“弦”是指扇形中 AB 所对弦AB 的长,“矢”是指 AB 所在圆O 的半径与圆心O 到弦的距离之差,“径”是指扇形所在圆O 的直径.若扇形的弦AB =,扇形的圆心角为2π3,利用上面公式,求得该扇形的弧长的近似值与实际值的误差为()A.16π13-B.8π13--C.16π132-D.8π132--【答案】B 【解析】【分析】利用等腰三角形性质求出圆半径及点O 到弦AB 的距离并求出 AB l ,再由弧长公式求出 AB 的实际值即可计算得解.【详解】取弧AB 的中点C ,连接OC 交AB 于D ,则D 是AB 的中点,且OC AB ⊥,在等腰AOB中,2π3AB AOB =∠=,则π6OAB ∠=,圆O 半径124πcos 6ABR OA ===,122OD R ==,2CD R OD =-=,因此 2212AB CD l AB R=+=,而扇形弧长的实际值为2π8π33R =,所以该扇形的弧长的近似值与实际值的误差为8π13-.故选:B8.定义在R 上的偶函数()f x 在(],0-∞上单调递减,且()50f -=,则不等式()()160x f x +-≤的解集是()A.(][],11,11-∞-B.(],11-∞C.[]1,11- D.(][),111,-∞-+∞ 【答案】A 【解析】【分析】利用()f x 的奇偶性与单调性得到()f x 在(0,)+∞上单调递增与()50f =,再分类讨论1x +的取值范围,结合偶函数的性质()()fx f x =即可得解.【详解】因为定义在R 上的偶函数()f x 在(],0-∞上单调递减,且()50f -=,所以()f x 在(0,)+∞上单调递增,()()550f f =-=,因为()()160x f x +-≤,当10x +>,即1x >-时,()60f x -≤,即()()65fx f -≤,所以65x -≤,即565x -≤-≤,解得111x ≤≤,故111x ≤≤;当10x +≤,即1x ≤-时,()60f x -≥,即()()65fx f -≥,所以65x -≥,即65x -≤-或65x -≥,解得1x ≤或11x ≥,故1x ≤-;综上:1x ≤-或111x ≤≤.故选:A.【点睛】关键点点睛:本题解决的关键是充分利用偶函数的性质()()fx f x =,从而简化运算得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知a b c >>,则下列结论错误的是()A.33b c >B.22a c > C.> D.a c b->【答案】BCD 【解析】【分析】根据给定条件,利用不等式性质判断A ;举例说明判断BCD.【详解】由b c >及3y x =在R 上单调递增,可得33b c >,A 正确;取1,2a c ==-,满足a c >,而2214a c =<=,B 错误;由a b >,知,a b 是否是非负数不确定,当0b <>C 错误;取3,2,1a b c ===,满足a b c >>,而2a c b -==,D 错误.故选:BCD10.已知集合{}29A x x =<,A B ⊆,则()A.集合A B B ⋃=B.{}33A B x x ⋂=-<<C.集合A B ⋃可能是{}22x x -<<D.{}44x x -<<可能是B 的子集【答案】ABD 【解析】【分析】解不等式化简集合A ,由已知结合集合运算逐项判断即得.【详解】集合29{|}{3}3|A x x x x ==<<<-,A B ⊆,则A B B ⋃=,{|33}A B A x x ==-<< ,AB 正确;显然()A A B ⊆ ,即{|33}()x x A B -<<⊆ ,而{}22x x -<<是{|33}-<<x x 的真子集,C 错误;由于{|33}x x B -<<⊆,{}{|33}44x x x x -<<⊆-<<,因此{}44x x -<<可能是B 的子集,D 正确.故选:ABD11.函数()sin()f x A x ωϕ=+(0A >,0ω>,π2ϕ<)的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的3倍,纵坐标变为原来的2倍,然后向左平移3π4个单位长度,得到函数()g x 的图象,则()A.1A =B.()g x 的解析式为2π2sin 33y x ⎛⎫=+⎪⎝⎭C.7π,02⎛⎫⎪⎝⎭是()g x 图象的一个对称中心D.()g x 的单调递减区间是11π5π3π,3π44k k ⎡⎤--⎢⎥⎣⎦,Z k ∈【答案】ABD 【解析】【分析】先利用三角函数的图象求得()f x 的解析式,再利用三角函数平移的性质与正弦函数的性质即可得解.【详解】依题意,由图象可知1A =,3π5π3π43124T ⎛⎫=--= ⎪⎝⎭,则πT =,故A 正确;因为0ω>,所以2ππω=,则2ω=,所以()sin(2)f x x ϕ=+,因为()f x 的图象过点π,13⎛⎫⎪⎝⎭,所以sin 21π3ϕ⎛⎫⨯+= ⎪⎝⎭,则2ππ2π,Z 32k k ϕ+=+∈,即π2π,Z 6k k ϕ=-+∈,又π2ϕ<,则π6ϕ=-,所以()sin 26πf x x ⎛⎫=- ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的3倍,得到2πsin 36y x ⎛⎫=-⎪⎝⎭的图象,纵坐标变为原来的2倍,得到2π2sin 36y x ⎛⎫=-⎪⎝⎭的图象,向左平移3π4个单位长度,得到函数()23ππ2π2sin 2sin 34633g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,故B 正确;因为7π27ππ8π2sin 2sin 023233g ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故C 错误;令3π2ππ2π2π,Z 2332k x k k -+≤+≤-+∈,解得11π5π3π3π,Z 44k x k k -≤≤-∈,所以()g x 的单调递减区间是11π5π3π,3π44k k ⎡⎤--⎢⎣⎦,Z k ∈,故D 正确.故选:ABD.12.已知函数21,0(),0ax x f x x bx x -≤⎧=⎨+>⎩,则下列结论中正确的是()A.若函数()f x 在(,1)-∞上单调递减,则0a >且2b ≤-B.若函数()f x 有2个零点,则a<0且0b <C.若函数()f x 有1个零点,则a<0且0b ≥D.若函数()f x 在(,2]-∞的最大值为1,则a<0且32b ≤-【答案】AB 【解析】【分析】分类探讨分段函数()f x 的性质,再结合分段函数单调性、零点及最大值逐项分析判断即得.【详解】当0x ≤时,()1f x ax =-,当a<0时,()f x 单调递增,函数值集合为(,1]-∞,当0a =时,()1f x =,当0a >时,()f x 单调递减,函数值集合为[1,)+∞;当0x >时,2()f x x bx =+,当0b ≥时,()f x 在(0,)+∞上单调递增,当0b <时,()f x 在(0,)2b -上单调递减,在[,)2b-+∞上单调递增,对于A ,由函数()f x 在(,1)-∞上单调递减,得012a b >⎧⎪⎨-≥⎪⎩,解得0a >且2b ≤-,A 正确;对于B ,当0x >时,2()f x x bx =+,函数()f x 在(0,)+∞上最多一个零点,由函数()f x 有2个零点,得函数()f x 在(,0]-∞上有一个零点,在(0,)+∞上有一个零点,因此a<0且0b <,B 正确;对于C ,当0a ≤时,()1f x ax =-在(,0]-∞上无零点,当0b <时,()f x 在(0,)+∞上有一个零点,则当0a ≤且0b <时,函数()f x 也只有1个零点,C 错误;对于D ,由于函数()f x 在(,2]-∞的最大值为1,则()f x 在(,0]-∞上不能单调递减,即0a ≤,且(0)1f =,当0b ≥时,()f x 在(0,2]上单调递增,(2)424f b =+≥,不符合题意,当0b <时,若22b-≥,即4b ≤-,则()f x 在(0,2]上单调递减,()0f x <,此时()f x 在(,2]-∞的最大值为1,因此4b ≤-,若22b -<,即40b -<<,则()f x 在(0,]2b -上单调递减,在[,2]2b-上单调递增,必有(2)421f b =+≤,解得32b ≤-,则342b -<≤-,此时()f x 在(,2]-∞的最大值为1,因此342b -<≤-,综上所述,函数()f x 在(,2]-∞的最大值为1,则0a ≤且32b ≤-,D 错误.故选:AB【点睛】方法点睛:对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.三、填空题:本题共4小题,每小题5分,共20分.13.已知幂函数的图象经过点1(243,)3,那么()f x 的解析式为______;不等式(|)3|f x ≤的解集为______.【答案】①.15()f x x-=②.11(,[,)243243-∞-+∞ 【解析】【分析】利用幂函数过的点求出()f x 的解析式,再利用单调性解不等式即可.【详解】设幂函数()f x x α=,依题意,12433α=,即5133α-=,因此51α=-,解得15α=-,所以函数()f x 的解析式为15()f x x -=;显然函数()f x 在(0,)+∞上单调递减,且1()3243f =,于是不等式(|)3|f x ≤为:2(||)1()43f f x ≤,解得|4|123x ≥,即1243x ≤-或1243x ≥,所以不等式(|)3|f x ≤的解集为11(,][,)243243-∞-+∞ .故答案为:15()f x x -=;11(,][,)243243-∞-+∞ 14.若π02α<<,02βπ<<,()3cos 5αβ+=-,5cos 13β=,则cos()4πα+=______.【答案】232130-##【解析】【分析】根据给定条件,利用同角公式及和差角的余弦公式计算得解.【详解】由π02α<<,02βπ<<,得0παβ<+<,而()3cos 5αβ+=-,5cos 13β=,则4sin()5αβ+==,12sin 13β==,因此3541233cos cos[()]51351365ααββ=+-=-+=,56sin 65α==,所以πππ23356232cos()cos cos sin sin (44426565130ααα+=-=-=-.故答案为:130-15.已知函数())f x x =,若0m >,0n >,且41()(1)(0)f f f m n+-=,则16m n +的最小值为______.【答案】36【解析】【分析】根据给定条件,探讨函数()f x 的奇偶性及单调性,由此求出,m n 的关系式,再利用基本不等式“1”的妙用求解即得.【详解】函数())f x x =中,R x ∀∈||x x >≥,则函数()f x 的定义域为R ,而()()))ln10f x f x x x -+=++-==,则函数()f x 是奇函数,显然函数y y x ==-在(,0]-∞上都单调递减,则函数t x =-在(,0]-∞上单调递减,而函数ln y t =在(0,)+∞上单调递增,则函数()f x 在(],0-∞上单调递减,于是函数()f x 在[)0,+∞上单调递减,因此函数()f x 在R 上单调递减,(0)0f =,由41((1)(0)f f f m n +-=,得411()(1)(1)f f f m n n =--=-,则411m n=-,即411m n +=,于是441616(16)2020236n m m n n m n m n m +++=+=+≥+,当且仅当64n mm n=,即812m n ==时取等号,所以16m n +的最小值为36.故答案为:3616.已知直线y a =与函数()()tan f x x ωϕ=+(0ω>,π02ϕ<<)的图象所有交点之间的最小距离为2,且其中一个交点为()1,1-,则函数()y f x =的图象与函数223y x =-(3922x -<<)的图象所有交点的横坐标之和为______.【答案】6【解析】【分析】根据给定条件,结合正切函数的图象性质求出()f x ,确定函数()y f x =与223y x =-共同具有的性质,再借助图象求解即可.【详解】依题意,函数()tan()f x x ωϕ=+的最小正周期为2,则π2ω=,解得π2=ω,于是π()tan()2f x x ϕ=+,由π(1)tan()12f ϕ=+=-,得π3ππ,Z 24k k ϕ+=+∈,而π02ϕ<<,取π0,4k ϕ==,因此ππ()tan()24f x x =+,显然33ππ()tan()0244f =+=,则函数()y f x =的图象关于点3(,0)2成中心对称,又函数223y x =-的图象关于点3(,0)2成中心对称,在同一坐标系内作出函数()y f x =和223y x =-的图象,观察图象知,两个函数在39(,)22-的图象共有4个公共点,且关于点3(,0)2成中心对称,所以4个交点的横坐标之和为3462⨯=.故答案为:6【点睛】思路点睛:给定)t )a ()(n(0f x x ωϕω=>+的性质求解解析式,一般是求出周期定ω,由图象上特殊点求ϕ.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)1105448132()()πlog 816243-++-;(2)2log 33810log log 274lglg303-⋅---.【答案】(1)52;(2)212-.【解析】【分析】(1)利用指数运算法则、对数换底公式计算即得.(2)利用对数运算法则、对数换底公式计算即得.【小问1详解】2421111045355448132333335(()πlog 8[(][()]1log 2116243222222-++-=++-=+-=.【小问2详解】2log 3810log log 274lglg303-⋅---2312312log 332232310log 3log 3log 22lg(30)3=-⋅--⨯2log 32232)23321log 3log 2(2lg10013222=-⋅--=---=-.18.已知3πtan()74α-=.(1)求sin 2cos sin 3cos αααα+-的值;(2)若π(π,)2α∈--,求sin 2cos 2αα+的值.【答案】(1)119-;(2)24102510+.【解析】【分析】(1)利用差角的正切公式求出tan α,再利用齐次式法计算即得.(2)利用同角公式求出sin ,cos αα,再利用二倍角公式计算即得.【小问1详解】由3πtan()74α-=,得tan tantan 17n 3π1tan 1ta π4n 3t 4a αααα-+==-+,解得3tan 4α=,所以32sin 2cos tan 21143sin 3cos tan 3934αααααα+++===----.【小问2详解】由π(π,)2α∈--,得ππ(,)224α∈--,则sin 0,cos 0,cos 02ααα<<>,由3tan 4α=,得3sin cos 4αα=,而22sin cos 1αα+=,解得34sin ,cos 55αα=-=-,于是3424sin 22sin cos 2(()5525ααα==⨯-⨯-=,又21cos 1cos 2210αα+==,则cos 210α=,所以0sin 2cos224251αα++=.19.已知函数()f x 的定义域为()0,∞+,x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立.若1x >时,()0f x <.(1)判断并证明函数()f x 的单调性;(2)若132f ⎛⎫= ⎪⎝⎭,求解关于x 的不等式()364f x x f ⎛⎫+-< ⎪⎝⎭的解集.【答案】(1)()f x 在()0,∞+上单调递减,证明见解析(2)()1,+∞【解析】【分析】(1)利用单调性的定义结合已知即可证明;(2)利用赋值法求出164f ⎛⎫= ⎪⎝⎭,根据已知结合函数的单调性,将不等式化得到关于x 的不等式组,解之即可得解.【小问1详解】()f x 在()0,∞+上单调递减,证明如下:因为x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立,当1x >时,()0f x <,12,0x x ∀>,且12x x <,则211x x >,则()()22110x f x f x f x ⎛⎫-=< ⎪⎝⎭,即()()12f x f x >,所以()f x 在()0,∞+上单调递减.【小问2详解】因为因为x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立,所以()()x f f y f x y ⎛⎫+= ⎪⎝⎭,则()()()f x f y f xy +=,因为132f ⎛⎫=⎪⎝⎭,所以1116422f f f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以不等式()364f x x f ⎛⎫+-< ⎪⎝⎭可化为3144x f f x ⎛⎫⎛⎫-< ⎪ ⎪⎢⎝⎭⎝⎡⎤⎣⎦⎭⎥,所以31440304x x x x ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎪>⎨⎪⎪->⎪⎩,解得1x >.所以不等式()364f x x f ⎛⎫+-< ⎪⎝⎭的解集为()1,+∞.20.已知函数()22f x x ax =+-.(1)若关于()f x 的不等式()0f x <的解集为(),2b ,求a ,b 的值;(2)已知当[]1,2x ∈-时,()336xxf -≤恒成立,求实数a 的取值范围.【答案】(1)1a =-,1b =-(2)43,3⎛⎤--∞ ⎥⎝⎦【解析】【分析】(1)根据已知结合三个二次之间的关系,列出关于,a b 的方程组,解之即可得解;(2)利用换元法将问题转化为41a t t -≥+在1,93⎡⎤⎢⎥⎣⎦上恒成立,再利用对勾函数的性质求得max4t t ⎛⎫+ ⎪⎝⎭,从而得解.【小问1详解】因为()22f x x ax =+-,且()0f x <的解集为(),2b ,所以b 和2是方程220x ax +-=的两个不等实根,且2b <,由韦达定理可得222b a b +=-⎧⎨=-⎩,解得11a b =-⎧⎨=-⎩,故1a =-,1b =-.【小问2详解】因为()22f x x ax =+-,所以()()23332x xx f a ⋅=+-,则()336xxf -≤可化为()233362x x x a ≤+--⋅,整理可得()()21334xx a +⋅≤-,令3x t =,[]1,2x ∈-,所以1,93t ⎡⎤∈⎢⎥⎣⎦,则上式可化为()241t a t ≤+-⋅在1,93⎡⎤⎢⎥⎣⎦上恒成立,即41a t t -≥+在1,93⎡⎤⎢⎥⎣⎦上恒成立,因为44t t +≥=,当且仅当4t t =,即2t =时,等号成立,所以由对勾函数的性质可知4y t t =+在1,23⎡⎫⎪⎢⎣⎭上单调递减,在(]2,9上单调递增,而当13t =时,7313343y +==⨯;当9t =时,485999y +==;所以max 4373t t ⎛⎫+= ⎪⎝⎭,故3713a -≥,所以343a ≤-,所以实数a 的取值范围为43,3⎛⎤--∞ ⎥⎝⎦.21.某学校校园内有一个扇形空地AOB (πAOB ∠<),该扇形的周长为10π203+,面积为50π3,现要在扇形空地AOB 内部修建一矩形运动场馆CDEF ,如图所示.(1)求扇形空地AOB 的半径和圆心角;(2)取CD 的中点M ,记MOD θ∠=.(i )写出运动场馆CDEF 的面积S 与角θ的函数关系式;(ii )求当角θ为何值时,运动场馆CDEF 的面积最大?并求出最大面积.【答案】(1)扇形空地AOB 的半径为10,圆心角为π3;(2)(i)π200sin(23S θ=+-π(0,6θ∈;(ii )π12θ=,200-【解析】【分析】(1)利用扇形弧长公式、扇形面积公式列出方程求解并验证即得.(2)(i )借助直角三角形的边角关系求出函数关系式;(ii )利用正弦函数的性质求解最值.【小问1详解】设扇形空地AOB 所在圆半径为r ,扇形弧长为l ,依题意,10π2203150π23r l rl ⎧+=+⎪⎪⎨⎪=⎪⎩,解得1010π3r l =⎧⎪⎨=⎪⎩或5π320r l ⎧=⎪⎨⎪=⎩,当5π320r l ⎧=⎪⎨⎪=⎩时,圆心角12ππl AOB r ∠==>,不符合题意,当1010π3r l =⎧⎪⎨=⎪⎩时,圆心角ππ3l AOB r ∠==<,符合题意,所以扇形空地AOB 的半径为10,圆心角为π3.【小问2详解】(i )由(1)知,π3AOB ∠=,则π(0,6θ∈,在Rt MOD △中,10cos ,10sin OM DM θθ==,则10sin EN DM θ==,在Rt EON △中,π6EON ∠=,tan ENON EONθ==∠,于是10cos MN OM ON θθ=-=-,所以220sin (10cos )S EN MN θθθ=⋅=-2200sin cos 100sin 2cos 2)θθθθθ=-=--π100(sin 22)200sin(23θθθ=+-=+-,π(0,)6θ∈.(ii )由(i )知,当π(0,)6θ∈时,ππ2π2(,)333θ+∈,则当ππ232θ+=,即π12θ=时,max 200S =-所以当π12θ=时,运动场馆CDEF 的面积最大,最大面积为200-【点睛】思路点睛:涉及求正(余)型函数在指定区间上的最值问题,根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质求解即得.22.已知函数4(2)4log af x x xb -=+(0a >,1a ≠,2b ≠-)是定义在(2,2)-上的奇函数.(1)求(0)f 和实数b 的值;(2)若()f x 满足2(2)(32)0f t f t -+-<,求实数t 的取值范围;(3)若01a <<,问是否存在实数m ,使得对定义域内的一切t ,都有2(2)(10)f t f mt +++>恒成立?【答案】(1)(0)0f =,2b =;(2)当01a <<时,01t <<,当1a >时,413<<t ;(3)存在,116m =.【解析】【分析】(1)根据给定条件,结合奇函数的定义求解即得.(2)按01,1a a <<>分类,利用单调性解不等式即得.(3)利用奇函数及意识性脱去法则,转化为恒成立的不等式组,再借助二次函数分类求解.【小问1详解】依题意,420(0)log log 1004aa fb -⨯===⨯+,又()f x 是(2,2)-上的奇函数,则()()f x f x -=-,即42()42log log ()44a a x xb x bx ---=--++,亦即424log log 442aa x bx bx x++=-+-,整理得22216416x b x -=-,于是24b =,而2b ≠-,所以2b =.【小问2详解】由(1)知,424288()log log log (1)(0,1)242424a a a x x f x a a x x x ---+===->≠+++,显然函数8124y x =-+在(2,2)-上单调递减,由奇函数性质及2(2)(32)0f t f t -+-<,得2(2)(32)(23)f t f t f t -<--=-,当01a <<时,函数log a y x =在(0,)+∞上单调递减,则()f x 在(2,2)-上单调递增,不等式化为222232t t -<-<-<,解得01t <<,当1a >时,函数log a y x =在(0,)+∞上单调递增,则()f x 在(2,2)-上单调递减,不等式化为222322t t -<-<-<,解得413t <<,所以当01a <<时,01t <<;当1a >时,413<<t .【小问3详解】假定存在实数m ,对定义域内的一切t ,都有2(2)(10)f t f mt +++>恒成立,即2(1(2)()2)f mt f t f t +>-+=--恒成立,当01a <<时,由(2)知函数()f x 在(2,2)-上单调递增,不等式化为2212212222mt t mt t ⎧+>--⎪-<+<⎨⎪-<--<⎩,整理得22303140mt t mt t ⎧++>⎪-<<⎨⎪-<<⎩,于是有231mt -<<对任意40t -<<恒成立,则2231m t t-<<,当40t -<<时,223311(,),(,)1616t t -∈-∞-∈+∞,因此311616m -≤≤;有230mt t ++>对任意40t -<<恒成立,设2()3g t mt t =++,①当0m >时,函数2()3g t mt t =++的图象开口向上,对称轴102t m=-<,(i )当1120m ∆=->,即112m <时,必有(4)1610142g m m-=-≥⎧⎪⎨-≤-⎪⎩,则111612m ≤<;(ii )当1120m ∆=-=,即112m =时,2211()3(6)01212g t t t t =++=+>在(4,0)t ∈-上恒成立,则112m =;(iii )当1120m ∆=-<,即112m >时,()0g t >在(4,0)t ∈-上恒成立,则112m >;②当0m ≤时,(4)16110g m -=-≤-<,不满足()0g t >在(4,0)t ∈-上恒成立,综上得311616m -≤≤且116m ≥,所以存在116m =使得对定义域内的一切t ,都有()2(2)10f t f mt +++>恒成立.。

安徽省合肥市合肥一六八中学2024-2025学年高一上学期期中考试数学试卷

安徽省合肥市合肥一六八中学2024-2025学年高一上学期期中考试数学试卷
维交换”;②若对任意 x Î R ,恒有 f ( g ( x)) = h( f ( x)) ,则称 g ( x) 与 h( x) 关于 f ( x) “任
意交换”.
(1)判断函数 g ( x) = 2x +1与 h ( x) = x -1是否关于 f ( x) = x2 “ n 维交换”,并说明理由;
【详解】由
x
x
3
£
0
,得
ì í î
x x
(x-
¹0
3)
£
0
,解得
0
<
x
£
3

所以 M = {x 0 < x £ 3} ,
由 y = x2 +1 ³ 1,所以 N = [1, +¥) ,
图中阴影部分表示的集合为 M Ç (ðU N ) = (0,1) .
故选:A. 7.B
【分析】对
A,判断
f
(x)
的奇偶性可判断;对
C.若方程
f
(
x)
=
1 4
没有实数根,则
a
<
-1
) ( D.若函数 f ( x) 在 0,+∞ 上单调递增,则 a >0
( ) 8.已知函数
f
(x)
=
2x 图象与函数 2x-1 +1
g
(x)
=
x3
- 3x2
+
3x
图象有三个交点,分别为
x1, y1

( ) x 2, y 2 、 ( x3, y3 ) ,则 x1 + x2 + x3 + y1 + y2 + y3 = ( )

树人高级中学2020_2021学年高一数学上学期第一次阶段考试试题

树人高级中学2020_2021学年高一数学上学期第一次阶段考试试题

安徽省淮北市树人高级中学2020-2021学年高一数学上学期第一次阶段考试试题时间:120分钟 满分:150分一.单选题(每题5分,共8题)1.若0a b >>,则下面不等式中成立的是( ) A 。

2a ba b ab +>>> B.2a ba ab b +>>> C.2a ba b ab +>>>D 。

2a ba ab b +>>> 2.下面关于集合的表示正确的个数是;; ;. A 。

0B. 1C. 2D 。

33。

已知1(0,)4x ∈,则(14)x x -取最大值时x 的值是( )A .14B .16C .18D .1104。

命题“所有能被2整除的整数都偶数"的否定( ) A.所有不能被2整除的整数都是偶数 B 。

所有能被2整除的整数都不是偶数 C 。

存在一个不能被2整除的整数是偶数 D 。

存在一个能被2整除的整数不是偶数5。

已知0,0,22x y x y >>+=,则x y 的最大值为( ) A.2B 。

1 C.12D.146.给出下列四个条件:①22xt yt >;②xt yt>;③22x y >;④110x y<<.其中能成为x y >的充分条件的是( )A 。

①②B 。

②③C 。

③④D 。

①④7。

函数的最小值是A. 4B. 6C. 8D 。

108.某城市对一种每件售价为160元的商品征收附加税,税率为%R (即每销售100元征税R 元),若年销售量为5302R ⎛⎫- ⎪⎝⎭万件,要使附加税不少于128万元,则R 的取值范围是( ) A.[]4,8B.[]6,10C 。

[]4%,8%D.[]6%,100%二、不定项选择题(本题共4小题,每小题5分,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,有选错的得0分,部分选对的得3分。

2020-2021学年安徽省合肥一中高一上学期段一考试数学试卷 PDF版

2020-2021学年安徽省合肥一中高一上学期段一考试数学试卷 PDF版
[x] 为整数,[x] 3 ,即 x 3
即 A = 3, +) ,
则 U A = (− , 3),
故选:B.
11.【解答】解:根据题意, 1 + 2 5 3x − 4 − 5 0 5x2 − 27x + 26 0
x −1 x − 2 4 ( x −1)( x − 2) 4
(x −1)(x − 2)
解得 x 1 或 x 1 , 2
第4页(共9页)
所以不等式的解集为 (− , 1) (1 , +) . 2
故答案为: (− , 1) (1 , +) . 2
16.【解答】解:观察发现 2 m + 1和 n + 3 的平方的和为定值,故平方。
令 y= 2 m + 1 + n + 3 ,
y2 = 4m + 4 + n + 3 + 4 (m + 1)(n + 3)=16 + 4 (m +1)(n + 3) ,
命题 p 的否定是:“ x0 R , x0 + | x0 | 0 ”.
故答案为:真,“ x0 R , x0 + | x0 | 0 ”.
15.【解答】解:关于 x 的不等式 ax + b x + c 0 的解集为 (1, 4) ,令 x = y ,
则关于 y 的不等式 ay2 + by + c 0 的解集为 (1, 2) ,
x
x
第5页(共9页)
当造价写为 200 60 + (x + 200) 2 400 + 100x x
= 12000 + 900x + 160000 12000 + 2 900x 160000 = 36000(元 ) ,当且仅当 900x = 160000 ,

安徽省高一上学期开学考试数学试题(解析版)

安徽省高一上学期开学考试数学试题(解析版)

一、单选题1.已知集合,,,则( ) {}1,2,3,4,5,6U ={}25A x x =∈<≤Z {}1,5B =()U A B = ðA .B .C .D .{}2{}3,4{}1,4,6{}2,3,4【答案】B【分析】化简集合A ,根据补集的定义求出,再求出即可.U B ðU A B ð【详解】解:,{}{}253,4,5A x x =∈<≤=Z , {}2,3,4,6U B =ð故,(){}3,4U A B = ð故选:B .2.设,则“”是“”的( )R a ∈1a >21a >A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】A【分析】根据给定条件,利用充分条件、必要条件的定义判断作答.【详解】由得或,因此“若,则”是真命题,“若,则”是假命21a >1a >1a <-1a >21a >21a >1a >题,所以“”是“”的充分不必要条件.1a >21a >故选:A3.命题“,”的否定是( )()0,1x ∃∈20x x -<A .,B ., ()0,1x ∃∉20x x -≥()0,1x ∃∈20x x -≥C .,D ., ()0,1x ∀∉20x x -<()0,1x ∀∈20x x -≥【答案】D【分析】根据给定条件,利用存在量词命题的否定方法判断作答.【详解】命题“,”为存在量词命题,其否定是全称量词命题,()0,1x ∃∈20x x -<所以命题“,”的否定为:,.()0,1x ∃∈20x x -<()0,1x ∀∈20x x -≥故选:D4.若函数,且,则( )(1)f x x +=()8f a ==a A .11 B .10 C .9 D .8【答案】C【分析】运用换元法求出函数的解析式,再利用代入法进行求解即可.()f x 【详解】令,1x t +=由,可得,即,(1)f x x +=()1f t t =-()1f x x =-由,可得,()8f a =()189f a a a =-=⇒=故选:C5.如果函数在区间上是增函数,则实数的取值范围是( )()224(1)1f x x a x =--+[2,)+∞a A .B .C .D .(,1]-∞-(,4]-∞[1,)-+∞[4,)+∞【答案】C 【分析】求得函数的对称轴的方程,结合二次函数的图象与性质,得到,即可求解.()f x 12a -≤【详解】由题意,函数,可得其图像开口向上,对称轴为,()224(1)1f x x a x =--+1x a =-要使得函数在区间上是增函数,则满足,解得,()f x [2,)+∞12a -≤1a ≥-即实数的取值范围是.a [1,)-+∞故选:C.6.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是( )A .B . 1()|1|f x x =-1()1f x x =-C . D . 21()1f x x =-21()1f x x =+【答案】B【分析】由图象知函数的定义域排除选项选项A 、D ,再根据不成立排除选项C ,即可得()01f =-正确选项.【详解】由图知的定义域为,排除选项A 、D ,()f x {}|1x x ≠±又因为当时,,不符合图象,所以排除选项C ,0x =()01f =-()01f =故选:B.7.生物体死亡后,它机体内原有的碳14含量会按确定的比率衰减(称为衰减率),大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,若碳14含量与死亡年数之间的函数关系式P t 为(其中为常数).若2022年某遗址文物出土时碳14的残余量约占原始含量的85%,12t aP ⎛⎫= ⎪⎝⎭a 则可推断该文物属于( )参考数据:2log 0.850.23=-参考时间轴:A .宋代B .唐代C .汉代D .战国时期 【答案】B 【分析】根据半衰期的定义可求,进而结合对数的公式即可求解.573012t P ⎛⎫= ⎪⎝⎭【详解】由题意可知:经过5730年衰减为原来的一半,所以, 573012t P ⎛⎫= ⎪⎝⎭故,因此,由此解得,5730=0.8512t ⎛⎫ ⎪⎝⎭122lo g 0.85log 0.855730t ==-1317.91318t =≈,由此可推断该文物属于唐代,20221318=704-故选:B8.若函数在区间内存在最小值,则的值可以是( ) ()2sin 24f x x π⎛⎫=+ ⎪⎝⎭,8πθ⎛⎫ ⎪⎝⎭θA . B . 4π78πC . D . 58π38π【答案】B【分析】根据所给角的范围及正弦函数的性质可确定的范围即可得解.24+πθ【详解】由, ,8x ⎛⎫∈ ⎪⎝⎭πθ则 2(,2).424x +∈+πππθ若使在开区间上取得最小值则必须, ()f x 3242ππθ+>解得, 58πθ>故选:B二、多选题9.已知均为实数,则下列命题正确的是( )a b c d ,,,A .若则.,a b c d >>a d b c ->-B .若则.,a b c d >>ac bd >C .若,则 ,0a b c d >>>a b d c>D .若,则0,0ab bc ad >->c d a b>【答案】AD 【分析】由不等式的性质,逐个判断选项.【详解】若,则,又,则,A 选项正确;c d >d c ->-a b >a d b c ->-若,满足,但,不成立,B 选项错误; 2,1,1,2a b c d ===-=-,a b c d >>2ac bd ==-ac bd >若,,满足,但,不成立,C 选项错误; 1,2a b =-=-2,1c d ==,0a b c d >>>1a b d c ==-a b d c>,则,又,∴,即,D 选项正确. 0bc ad ->bc ad >0ab >bc ad ab ab>c d a b >故选:AD 10.已知函数的图象经过点则( ) ()a f x x =1,33⎛⎫ ⎪⎝⎭A .的图象经过点B .的图象关于y 轴对称 ()f x (3,9)()f xC .在上单调递减D .在内的值域为()f x (0,)+∞()f x (0,)+∞(0,)+∞【答案】CD【分析】根据函数解析式和图象经过的点求出,结合选项可得答案. 1a =-【详解】将点的坐标代入,可得,则的图象不经过点,1,33⎛⎫ ⎪⎝⎭()a f x x =1a =-1(),()=f x f x x ()3,9A 错误;在上单调递减,C 正确;根据反比例函数的图象与性质可得B 错误,D 正确. ()f x (0,)+∞故选:CD.11.(多选)已知函数在区间上的图象是一条连续不断的曲线,若,则在()f x [],a b ()()0f a f b ⋅<区间上( )[],a b A .方程没有实数根()0f x =B .方程至多有一个实数根()0f x =C .若函数单调,则必有唯一的实数根()f x ()0f x =D .若函数不单调,则至少有一个实数根()f x ()0f x =【答案】CD【分析】根据零点存在定理可得答案.【详解】由函数零点存在定理,知函数在区间上至少有一个零点,()f x [],a b 所以若函数不单调,则至少有一个实数根,()f x ()0f x =若函数单调,则函数有唯一的零点,即必有唯一的实数根,()f x ()f x ()0f x =故选:CD .12.已知函数,则下列结论中错误的是( ) ()2π32sin f x x ⎛⎫=+ ⎪⎝⎭A .的最小正周期为()f x 2πB .的图象关于点中心对称 ()f x 2π,03⎛⎫ ⎪⎝⎭C .的图象关于直线对称 ()f x π=6x D .在上单调递增 ()f x 5ππ,1212⎡⎤-⎢⎥⎣⎦【答案】ABC【分析】根据给定的函数解析式,结合正弦函数的性质,逐项判断作答.【详解】函数的周期,A 不正确; ()2π32sin f x x ⎛⎫=+ ⎪⎝⎭22T ππ==当时,,点不是图象的对称中心,B 不正23x π=222sin 2033π3f ππ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭2π,03⎛⎫ ⎪⎝⎭()f x 确;当时,,直线不是图象的对称轴,C 不正确; 6x π=π32sin 2266f ππ⎛⎫⎛⎫=⨯+=< ⎪ ⎪⎝⎭⎝⎭π=6x ()f x 当时,,因函数在上单调递增, 5ππ1212x -≤≤ππ2232x π-≤+≤sin y x =[,]22ππ-因此在上单调递增,D 正确. ()f x 5ππ,1212⎡⎤-⎢⎥⎣⎦故选:ABC三、填空题13.已知是一次函数,,,则的解析式为()f x 2(2)3(1)5f f -=2(0)(1)1f f --=()f x 【答案】()32f x x =-【分析】设f (x )=kx+b ,k≠0,由已知得(4k+2b)-(3k+3b)=52b-(-k+b)=1,由此能求出f (x )=3x-2.【详解】∵f (x )是一次函数,2f (2)−3f (1)=5,2f (0)−f (−1)=1,∴设f (x )=kx +b ,k ≠0,则f (2)=2k +b ,f (1)=k +b ,f (0)=b ,f (−1)=−k +b ,因为,, 2(2)3(1)5f f -=2(0)(1)1f f --=, (42)(33)52()1k b k b b k b +-+=⎧∴⎨--+=⎩解得k =3,b =−2,∴f (x )=3x −2.故答案为:3x −2.【点睛】本题主要考查利用待定系数法求一次函数的解析式,意在考查运用所学知识解答问题的能力,属于基础题.14.函数的图像恒过定点,且点在幂函数的图像上,则()()log 1039a f x x =-+A A ()g x ()7g =_______【答案】49【分析】令真数等于,求得、的值,可得函数的图象经过定点的坐标.1x ()f x ()f x 【详解】解:对于函数,令,求得,,()log (103)9a f x x =-+1031x -=3x =()9f x =可得它的的图象恒过定点.(3,9)A 点在幂函数 的图象上,,,,A ()g x x α=39α∴=2α∴=2()g x x =则,()27749g ==故答案为.49【点睛】本题主要考查对数函数图象的性质及幂函数的定义,属于基础题.15.若角的终边经过点,则___________. α(P -cos 2πα⎛⎫-= ⎪⎝⎭【分析】根据定义求得. sin α=【详解】角的终边经过点, α(P -则sin α==所以. cos()sin 2παα-==16.已知函数的部分图像如图所示,则满足条件()2cos()f x x ωϕ=+的最小正整数x 为________. 74()()043f x f f x fππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭【答案】2【分析】先根据图象求出函数的解析式,再求出的值,然后求解三角不等式可()f x 7(),()43f f π4π-得最小正整数或验证数值可得. 【详解】由图可知,即,所以; 313341234T πππ=-=2T ππω==2ω=由五点法可得,即;232ππϕ⨯+=6πϕ=-所以. ()2cos 26f x x π⎛⎫=- ⎪⎝⎭因为,; 7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭()2cos 032f 4π5π⎛⎫== ⎪⎝⎭所以由可得或; 74(()())(()(043f x f f x f ππ--->()1f x >()0f x <因为,所以, ()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭方法一:结合图形可知,最小正整数应该满足,即, ()0f x <cos 206x π⎛⎫-< ⎪⎝⎭解得,令,可得, ,36k x k k π5ππ+<<π+∈Z 0k =536x <<ππ可得的最小正整数为2.x 方法二:结合图形可知,最小正整数应该满足,又,符合题意,可()0f x <(2)2cos 406f π⎛⎫=-< ⎪⎝⎭得的最小正整数为2.x 故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解,根据特殊点ω求解.ϕ四、解答题17.已知集合,集合. {}2340A x x x =+-≥20x B x x -⎧⎫=≤⎨⎬⎩⎭(1)若,且,求实数的取值范围.{}21C x a x a =<<+()C A B ⊆⋂a (2),若是的必要不充分条件,判断实数2112022D x x m x m m ⎧⎫⎛⎫⎛⎫=-+++≤⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭x A B ∈ x D ∈m 是否存在,若存在求的范围.m 【答案】(1);(2)存在,. 1,2a ⎡⎫+∞⎢⎣∈⎪⎭31,2m ⎡⎤∈⎢⎥⎣⎦【解析】(1)解一元二次不等式以及分式不等式,求出,讨论或,利用集合的A B ⋂C =∅C ≠∅包含关系即可求解(2)由题意可得且,由集合的包含关系可得且等号不同时取,()D A B ⊆ ()D A B ≠ 1122m m ≥⎧⎪⎨+≤⎪⎩解不等式即可求解.【详解】(1)由题意可得或,, {4A x x =≤-}1x ≥{}02B x x =<≤∴.{}12A B x x ⋂=≤≤当时,有,即;C =∅12a a +≤1a ≥当时,有,解得. C ≠∅12112a a a <⎧⎪≥⎨⎪+≤⎩112a ≤<综上所述,. 1,2a ⎡⎫+∞⎢⎣∈⎪⎭(2)由题意可得,且,()D A B ⊆ ()D A B ≠∵, ()11022D x x m x m x m x m ⎧⎫⎡⎤⎛⎫⎧⎫=--+≤=≤≤+⎨⎬⎨⎬ ⎪⎢⎥⎝⎭⎩⎭⎣⎦⎩⎭∴且等号不同时取,解得,∴. 1122m m ≥⎧⎪⎨+≤⎪⎩312m ≤≤31,2m ⎡⎤∈⎢⎥⎣⎦18.已知幂函数f (x )=(m 2﹣4m +4)xm ﹣2在(0,+∞)上单调递减.(1)求f (x )的解析式;(2)若正数a ,b 满足2a +3b =4m ,若不等式≥n 恒成立,求实数n 的最大值. 32a b+【答案】(1)1()f x x -=(2)6【分析】(1)利用幂函数的性质即可求解m 的值;(2)利用基本不等式求出的最小值,即可求解n 的最大值. 32a b+【详解】(1)幂函数f (x )=(m 2﹣4m +4)xm ﹣2在(0,+∞)上单调递减,所以,解得m =1, 244120m m m ⎧-+=⎨-<⎩所以f (x )的解析式为f (x )=x ﹣1.(2)正数a ,b 满足2a +3b =4m ,则a >0,b >0,2a +3b =4,, 所以=()(2a +3b )=(12+)≥6,当且仅当=,即a =1,b =时32a b +1432a b +1449a b b a +4a b 9b a 23等号成立,故的最小值为6, 32a b+又不等式≥n 恒成立, 32a b+所以n ≤6,即实数n 的最大值6.19.已知是定义在上的奇函数,且当时,.()f x R 0x >2()2f x x x =-+(1)求函数在上的解析式;()f x R (2)作出函数的草图(不用列表),并指出它的单调递减区间;()f x (3)若函数在区间上单调递增,求实数的取值范围.()f x [1,2]a --a 【答案】(1);(2)图象见解析,;(3). ()222,02,0x x x f x x x x ⎧-+>=⎨+≤⎩(,1],[1,)-∞-+∞(]1,3【解析】(1)先分析时,,即可求解出的解析式,然后由奇函数的性质运算即可0x <0x ->()f x -得解;(2)作出图象,数形结合即可得函数的单调递减区间;(3)根据函数的单调性,数形结合即可得关于的不等式,由此可求解出的取值范围.a a 【详解】(1)∵是定义在R 上的奇函数,∴,()f x (0)0f =又当时,,0x >2()2f x x x =-+当时, ∴0x <()()()2222f x f x x x x x ⎡⎤=--=----=+⎣⎦∵满足,; ()0f ()22f x x x =+()222,02,0x x x f x x x x ⎧-+>∴=⎨+≤⎩(2)作出函数的图象如图所示:()f x由图象可知,函数的单调递减区间为;(,1],[1,)-∞-+∞(3)在区间上单调递增()f x [1,2]a --由函数的图象可得,解得∴121a -<-≤(]1,3a ∈的取值范围为.a ∴(]1,3【点睛】方法点睛:利用函数奇偶性求解函数解析式的方法(已知奇偶性以及的解析()f x 0x >式):(1)先设,则,根据的解析式求解出;0x <0x ->0x >()f x -(2)根据函数的奇偶性,得到与的关系,由此求解出时的解析式; ()f x ()f x ()f x -0x <()f x (3)结合(1)(2)可求解出的解析式. ()f x20.已知函数. ()4,0e 3,0+<⎧=⎨+≥⎩x x x f x a x (1)若在上单调递增,求的取值范围;()f x R a (2)讨论函数的零点个数.()()3g x f x =-【答案】(1)1a ≥(2)当时,有一个零点;当时,且当时,有两个零点,当时,0x <()g x 0x ≥23a ≤()g x 23a >()g x 有一个零点.【分析】(1)由、都是单调递增函数可得的单调性,利用单调性可()4f x x =+()3x f x e a =+()f x 得答案;(2)时有一个零点;0x <()0g x =当时,利用单独单调性求得,分和讨论可得答案.0x ≥()g x min ()g x min 0()≤g x min ()0g x >【详解】(1)当时,单调递增,0x <()4f x x =+当时,单调递增,0x ≥()e 3=+x f x a 若在上单调递增,只需,()f x R 04e 3a ≤+.1a ∴≥(2)当时,,此时,即,有一个零点;0x <()1g x x =+()0g x ==1x -当时,,此时在上单调递增,0x ≥()e 33=+-x g x a ()g x [)0,∞+,()min ()013332g x g a a ==+-=-若,即,此时有一个零点; 320a -≤23a ≤()g x 若,即,此时无零点, 320a ->23a >()g x 故当时,有两个零点,当时,有一个零点. 23a ≤()g x 23a >()g x 21.已知的最小正周期为. ()()π2sin 206f x x ωω⎛⎫=-> ⎪⎝⎭π(1)求的值,并求的单调递增区间;ω()f x (2)求在区间上的值域. ()f x 70,π12⎡⎤⎢⎥⎣⎦【答案】(1);单调递增区间为;(2). =1ω()ππππZ 63k k k ⎡⎤⎢⎥∈⎣⎦-+,,[]1,2-【分析】(1)根据正弦函数的周期公式求的值,再由正弦函数的单调增区间即可求的单调ω()f x 递增区间;(2)由的范围求得范围,再由正弦函数的性质即可求值域.x π26x -【详解】(1)因为的最小正周期为, ()()π2sin 206f x x ωω⎛⎫=-> ⎪⎝⎭π所以,则,则, 2π=π2ω=1ω()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令,解得, ()πππ2π22π,Z 262k x k k -≤-≤+∈()ππππ,Z 63k x k k -≤≤+∈所以函数的单调递增区间为 ()π2sin 26f x x ⎛⎫=- ⎪⎝⎭()ππππZ 63k k k ⎡⎤⎢⎥∈⎣⎦-+,,(2)由得, 70,π12x ⎡⎤∈⎢⎥⎣⎦ππ2,π66x ⎡⎤-∈-⎢⎥⎣⎦所以, π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦所以.()[]1,2f x ∈-22.已知函数的部分图象如图所示. ()πsin()0,0,2f x A x B A ωϕωϕ⎛⎫=++>>< ⎪⎝⎭(1)求的解析式及对称中心坐标:()f x (2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当()f x π6()g x 时,关于的方程有实数根,求实数的取值范围. ππ,46x ⎡⎤∈-⎢⎥⎣⎦x ()210g x a +-=a【答案】(1), π()2sin 213f x x ⎛⎫=+- ⎪⎝⎭ππ,126k ⎛⎫-- ⎪⎝⎭()k ∈Z (2) 11,22⎡⎤-⎢⎥⎣⎦【分析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最A B 7ππ21212T =-2πT ω=ω高点可求得的值,即可得的解析式,由正弦函数的对称中心可得对称中心;ϕ()f x ()f x (2)由图象的平移变换求得的解析式,由正弦函数的性质可得的值域,令的取值()g x ()g x 12a -为的值域,解不等式即可求解.()g x 【详解】(1)由题意可得:,可得,所以, 13A B A B +=⎧⎨-+=-⎩21A B =⎧⎨=-⎩()2sin()1f x x ωϕ=+-因为,所以,可得, 7πππ212122T =-=2ππT ω==2ω=所以,()2sin(2)1f x x ϕ=+-由可得, ()ππ22πZ 122k k ϕ⨯+=+∈()π2πZ 3k k ϕ=+∈因为,所以,,所以. π2ϕ<0k =π3ϕ=()π2sin 213f x x ⎛⎫=+- ⎪⎝⎭令可得,所以对称中心为. ()π2π3x k k +=∈Z ()ππZ 26k x k =-∈()ππ,1Z 26k k ⎛⎫--∈ ⎪⎝⎭(2)由题意可得:, ()ππ2π2sin 2112sin 2633g x x x ⎡⎤⎛⎫⎛⎫=++-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,,, ππ,46x ⎡⎤∈-⎢⎥⎣⎦2ππ2,π36x ⎡⎤+∈⎢⎥⎣⎦[]2πsin 20,13x ⎛⎫+∈ ⎪⎝⎭()[]0,2g x ∈若关于的方程有实数根,则有实根,x ()210g x a +-=()12a g x -=所以,可得:. 0122a ≤-≤1122a -≤≤所以实数的取值范围为. a 11,22⎡⎤-⎢⎥⎣⎦。

安徽省芜湖市第一中学2024-2025学年高一上学期期中考试数学题

安徽省芜湖市第一中学2024-2025学年高一上学期期中考试数学题

安徽省芜湖市第一中学2024-2025学年高一上学期期中考试数学题一、单选题1.已知R x ∈,R y ∈,则“1x >且1y >”是“2x y +>”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知集合{}210A x x =-≥,集合102B x x ⎧⎫=-≤⎨⎬⎩⎭,则()A B =R U ð()A .1{2x x ≤或≥1B .112x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫≤<⎨⎬⎩⎭D .{1}∣<xx 3.已知函数()y f x =的定义域为[]1,4-,则y =).A .[]1,4-B .31,2⎛⎤⎥⎝⎦C .31,2⎡⎤⎢⎣⎦D .(]1,94.设a ,b ∈R ,且a b >,则下列不等式一定成立的是().A .11a b <B .22ac bc >C .a b >D .33a b >5.不等式10ax x b+>+的解集为{|1x x <-或}4x >,则()()10x a bx +-≥的解集为()A .1,14⎡⎤⎢⎥⎣⎦B .1,[1,4∞∞⎛⎤-+ ⎥⎝⎦ )C .11,4⎡⎤--⎢⎥⎣⎦D .(]1,1,4∞∞⎡⎫---+⎪⎢⎣⎭6.已知0a >,0b >,3a b ab +=-,若不等式2212a b m +≥-恒成立,则m 的最大值为()A .1B .2C .3D .77.“曼哈顿距离”是十九世纪的赫尔曼-闵可夫斯基所创词汇,用以标明两个点在标准坐标系上的绝对轴距总和,其定义如下:在直角坐标平面上任意两点()11,A x y ,()22,B x y 的曼哈顿距离()1212,d A B x x y y =-+-,若点()2,1M ,点P 是直线3y x =+上的动点,则(),d M P 的最小值为()A .2B .3C .4D .58.已知(),()f x g x 是定义域为R 的函数,且()f x 是奇函数,()g x 是偶函数,满足2()()2f x g x ax x +=++,若对任意的1212x x <<<,都有()()12125g x g x x x ->--成立,则实数a 的取值范围是()A .[)0,∞+B .5,4∞⎡⎫-+⎪⎢⎣⎭C .5,4∞⎛⎫-+ ⎪⎝⎭D .5,04⎡⎤-⎢⎥⎣⎦二、多选题9.下列说法正确的是()A.y =与y =B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负根”的充要条件C .若命题0p x ∃≥:,23x =,则0p x ⌝∃<:,23x ≠D .若命题q :对于任意R x ∈,220x x a +->为真命题,则1a <-10.下列选项正确的有()A .当()1,x ∈+∞时,函数2221x x y x -+=-的最小值为2B .(),1x ∈-∞,函数31y x x =+-的最大值为-C.函数2y 的最小值为2D .当0a >,0b >时,若2a b ab +=,则2+a b的最小值为3211.已知定义域为R 的奇函数()f x ,满足()103431x x f x x x ⎧-<≤⎪=⎨>⎪-⎩,,下列叙述正确的是()A .函数()f x 的值域为[]22-,B .关于x 的方程()12f x =的所有实数根之和为11C .关于x 的方程()0f x =有且只有两个不等的实根D .当[)3,0x ∈-时,()f x 的解析式为()1=-+f x x三、填空题12.已知a ,b ∈R ,{}21,3,A a =,{}1,2,B a b =+,若A B =,则a b +=13.已知)=fx ()f x 的解析式为.14.已知方程2620x x a -+=的两根分别为1x ,2x ,12x x ≠,若对于[]2,3t ∀∈,都有22121t x x t-≥+恒成立,则实数a 的取值范围是四、解答题15.已知集合{}121A xa x a =+≤≤-∣,{}16B x x =-≤≤∣.(1)当4a =时,求A B ⋂;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围.16.已知幂函数()()222433mm f x m m x+-=-+为定义域上的偶函数.(1)求实数m 的值;(2)求使不等式()()21f t f t -<成立的实数t 的取值范围.17.已知函数()21f x ax bx =++.(1)若21a b =+,且0a <,求不等式()3f x >的解集(结果用a 表示);(2)若()13f =,且a ,b 都是正实数,求111a b ++的最小值.18.已知函数()21x f x ax b+=+是其定义域上的奇函数,且()12f =.(1)求a ,b 的值;(2)令函数()()()2212R h x x mf x m x=+-∈,当[]1,3x ∈时,()h x 的最小值为8-,求m 的值.19.一般地,若函数()f x 的定义域是[],a b ,值域为[],ka kb ,则称[],ka kb 为()f x 的“k 倍跟随区间”,若函数的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”.(1)写出二次函数()212f x x =的一个“跟随区间”;(2)求证:函数()11g x x=-不存在“跟随区间”;(3)已知函数()()()221R 0aa x h x a a a x+-=∈≠,有“4倍跟随区间”[]4,4m n ,当n m -取得最大值时,求a的值.。

2023-2024学年安徽省合肥一中高一(上)期中数学试卷【答案版】

2023-2024学年安徽省合肥一中高一(上)期中数学试卷【答案版】

2023-2024学年安徽省合肥一中高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知全集U ={1,2,3,4,5},集合A ={1,5},B ={2,4},则(∁U A )∩B =( ) A .{4}B .{2,4}C .{2,3,4}D .{1,2,3,4}2.命题“∃x ∈R ,x 2﹣3x +3≥0”的否定是( ) A .∀x ∈R ,x 2﹣3x +3<0 B .∀x ∈R ,x 2﹣3x +3≥0 C .∃x ∈R ,x 2﹣3x +3≤0 D .∃x ∈R ,x 2﹣3x +3<03.函数y =√x 2+2x−3x−1的定义域是( )A .[﹣3,1]B .[﹣1,1)∪(1,3]C .(﹣∞,﹣3]∪[1,+∞)D .(﹣∞,﹣3]∪(1,+∞)4.对于实数a ,b ,c ,下列说法正确的是( ) A .若a <b ,则1a>1bB .若a <b ,则ac 2<bc 2C .若a <0<b ,则ab <b 2D .若c >a >b ,则1c−a<1c−b5.函数f(x)=9−3xx−2(x >3)的值域为( ) A .(﹣3,0)B .(0,+∞)C .(﹣1,0)D .(﹣2,0)6.已知函数f(x)={x 2−(a +2)x +3,x ≤1a x,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,2]B .(0,1]C .[1,2]D .(0,+∞)7.对实数a 和b ,定义运算“◎”:a ◎b ={a ,a −b ≤2b ,a −b >2,设函数f (x )=(x 2﹣1)◎(5x ﹣x 2)(x ∈R ),若函数y =f (x )﹣m 的图象与x 轴恰有1个公共点,则实数m 的取值范围是( ) A .(﹣1,6]¥D .[−114,−1)∪[6,8]8.已知函数f (x )是定义在R 上的奇函数,f (1)=3,若∀x 1,x 2∈(0,+∞),且x 1≠x 2,都有(x 1﹣x 2)[x 1f (x 1)﹣x 2f (x 2)]>0,则不等式(x +3)f (x +3)>3的解集为( ) A .(﹣∞,﹣4)∪(﹣2,+∞) B .(﹣∞,2)∪(4,+∞) C .(﹣∞,3)D .(3,+∞)二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数中,与函数y =x +1是同一函数的是( ) A .y =(√x +1)2 B .y =√x 33+1C .y =√(x +1)33D .y =x 2+1x−110.设x ∈R ,不等式ax 2﹣2ax ﹣2<0恒成立的充分不必要条件可以是( ) A .﹣1<a <0B .﹣2<a <0C .﹣3<a ≤0D .0≤a <111.十六世纪中叶,英国数学家雷科德在《砺智石》一书中先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远,下列说法正确的是( ) A .糖水加糖更甜可用式于a+m b+m>ab表示,其中a >b >0,m >0B .当x >32时,y =2x −1+12x−3的最小值为4 C .若x >0,y >0,2x +y =1,则√2x +√y ≤√2D .若a 2(b 2﹣2)=4,则a 2+b 2的最小值为6 12.已知函数f(x)=x1+|x|(x ∈R ),则( ) A .函数f (x )为奇函数B .函数f (x )的值域是(﹣1,1)C .函数f (x )在R 上单调递减D .若对任意的x ∈[﹣1,1],f (x )≤t 2﹣2at +12恒成立,则当a ∈[﹣1,1]时,t ≥2或t =0或t ≤﹣2 三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={x 2−1,x ≤0x −3,x >0,则f (f (﹣2))= .14.下列命题中,真命题的编号是 . ①∀x ∈R ,x 2﹣2x +3>0;②∃x ∈N *,x 为方程2x 2﹣3=0的根; ③∀x ∈{﹣1,0,1},2x +1>0; ④∃x ,y ∈Z ,使3x ﹣2y =10.15.已知a ,b 为正实数,满足(a +b )(2a +b )=3,则10a +7b 的最小值为 .16.已知函数y =f (x )的定义域为R ,满足f (x )=2f (x ﹣1),且当x ∈(0,1]时,f (x )=x (1﹣x ),若对任意x ∈(﹣∞,m ],都有f(x)≤32,则m 的最大值是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A ={x |﹣2<x <8},B ={x |m ﹣3<x <3m ﹣1}. (1)当m =2时,求A ∩B ;(2)若A ∪B =A ,求实数m 的取值范围.18.(12分)已知集合A ={x |x 2﹣x ﹣6<0},B ={x |x 2+2mx ﹣3m 2<0}. (1)若集合B ={x |﹣6<x <2},求实数m 的值;(2)若m ≥0,“x ∈A ”是“x ∈B ”的充分不必要条件,求实数m 的取值范围. 19.(12分)已知幂函数f (x )=(m 2﹣5m +7)x m 为奇函数. (1)求f (x )的解析式;(2)若函数g (x )是定义在R 上的偶函数,当x ≥0时,g (x )=f (x )﹣x 2,求函数g (x )的解析式. 20.(12分)已知函数f (x )=x 2﹣4x +a .(1)在①∃x ∈[1,5],②∀x ∈[1,5]这两个条件中任选一个,补充到下面问题中的横线上,并求解该问题.若命题:“_____,f (x )>0”为真命题,求实数a 的取值范围; (2)求函数F(x)=12[f(x)+f(|x|)]的单调递增区间.21.(12分)如图,某学校欲建矩形运动场,运动场左侧为围墙,三面通道各宽2m ,运动场与通道之间由栅栏隔开.(1)若运动场面积为3200m 2,求栅栏总长的最小值;(2)若运动场与通道占地总面积为3200m 2,求运动场面积的最大值.22.(12分)已知函数f(x)=x 2+a x+b 是奇函数,且f(−2)=−52.(1)判断并根据定义证明函数f (x )在(0,1),(1,+∞)上的单调性;(2)设函数h (x )=f 2(x )﹣2tf (x )﹣2(t <0),若对∀x 1,x 2∈[13,3],都有|h (x 1)﹣h (x 2)|≤8,求实数t 的取值范围.2023-2024学年安徽省合肥一中高一(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,5},B={2,4},则(∁U A)∩B=()A.{4}B.{2,4}C.{2,3,4}D.{1,2,3,4}解:由已知得∁U A={2,3,4},所以(∁U A)∩B={2,4}.故选:B.2.命题“∃x∈R,x2﹣3x+3≥0”的否定是()A.∀x∈R,x2﹣3x+3<0B.∀x∈R,x2﹣3x+3≥0C.∃x∈R,x2﹣3x+3≤0D.∃x∈R,x2﹣3x+3<0解:∃x∈R,x2﹣3x+3≥0的否定是:∀x∈R,x2﹣3x+3<0.故选:A.3.函数y=√x2+2x−3x−1的定义域是()A.[﹣3,1]B.[﹣1,1)∪(1,3] C.(﹣∞,﹣3]∪[1,+∞)D.(﹣∞,﹣3]∪(1,+∞)解:要使得函数y=√x2+2x−3x−1有意义,则x2+2x﹣3≥0,且x﹣1≠0,解得x>1或x≤﹣3,故定义域为(﹣∞,﹣3]∪(1,+∞).故选:D.4.对于实数a,b,c,下列说法正确的是()A.若a<b,则1a >1bB.若a<b,则ac2<bc2C.若a<0<b,则ab<b2D.若c>a>b,则1c−a <1c−b解:若a<0,b>0,则1a <1b,故A错误;若c=0,则ac2=bc2,故B错误;因为a<0<b,所以ab﹣b2=b(a﹣b)<0,即ab<b2,故C正确;因为c>a>b,所以0<c﹣a<c﹣b,所以1c−a >1c−b>0,故D错误.故选:C.5.函数f(x)=9−3xx−2(x >3)的值域为( ) A .(﹣3,0) B .(0,+∞) C .(﹣1,0) D .(﹣2,0)解:由题意,函数f(x)=9−3x x−2=−3+3x−2(x >3), 令t =x ﹣2,则t >1,可得3t∈(0,3),故f(x)=−3+3x−2(x >3)的值域为(﹣3,0). 故选:A .6.已知函数f(x)={x 2−(a +2)x +3,x ≤1a x ,x >1是R 上的减函数,则实数a 的取值范围是( )A .(0,2]B .(0,1]C .[1,2]D .(0,+∞)解:二次函数y =x 2﹣(a +2)x +3的对称轴为x =a+22, 因为函数f(x)={x 2−(a +2)x +3,x ≤1ax,x >1是R 上的减函数,所以有{a+22≥1,a >01−a −2+3≥a,解得0<a ≤1.故选:B .7.对实数a 和b ,定义运算“◎”:a ◎b ={a ,a −b ≤2b ,a −b >2,设函数f (x )=(x 2﹣1)◎(5x ﹣x 2)(x ∈R ),若函数y =f (x )﹣m 的图象与x 轴恰有1个公共点,则实数m 的取值范围是( ) A .(﹣1,6] B .(−∞,−1]∪(−114,6) C .(−114,+∞)D .[−114,−1)∪[6,8]解:当x 2﹣1﹣(5x ﹣x 2)≤2⇒2x 2﹣5x ﹣3≤0⇒−12≤x ≤3时,f (x )=x 2﹣1; 当x 2﹣1﹣(5x ﹣x 2)>2⇒2x 2﹣5x ﹣3>0⇒x <−12或x >3时,f (x )=5x ﹣x 2, 作出f (x )的图象,如图所示:函数y=f(x)﹣m的图象与x轴恰有1个公共点,转化为函数f(x)的图象与直线y=m恰有1个交点,由图象并结合各分段区间上的f(x)的值,可得:6≤m≤8或−114≤m<﹣1,则实数m的取值范围是[−114,﹣1)∪[6,8],故D项正确.故选:D.8.已知函数f(x)是定义在R上的奇函数,f(1)=3,若∀x1,x2∈(0,+∞),且x1≠x2,都有(x1﹣x2)[x 1f (x 1)﹣x 2f (x 2)]>0,则不等式(x +3)f (x +3)>3的解集为( ) A .(﹣∞,﹣4)∪(﹣2,+∞) B .(﹣∞,2)∪(4,+∞) C .(﹣∞,3)D .(3,+∞)解:由∀x 1,x 2∈(0,+∞),且x 1≠x 2,都有(x 1﹣x 2)[x 1f (x 1)﹣x 2f (x 2)]>0, 不妨令x 1<x 2⇒x 1f (x 1)<x 2f (x 2)可知函数xf (x )在(0,+∞)上单调递增, 记g (x )=xf (x ),则g (﹣x )=(﹣x )f (﹣x )=﹣x [﹣f (x )]=xf (x )=g (x ),所以g (x )为偶函数,因此g (x )在(﹣∞,0)上单调递减,且g (﹣1)=g (1)=1×f (1)=3, 不等式(x +3)f (x +3)>3等价于g (x +3)>g (1),故|x +3|>1,解得x >﹣2或x <﹣4,故不等式的解集为:(﹣∞,﹣4)∪(﹣2,+∞). 故选:A .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列函数中,与函数y =x +1是同一函数的是( ) A .y =(√x +1)2 B .y =√x 33+1C .y =√(x +1)33D .y =x 2+1x−1解:由题意知函数y =x +1的定义域为R ,值域为R ,y =(√x +1)2的定义域为[﹣1,+∞),与函数y =x +1的定义域不同,不是同一函数,故A 错误; y =√x 33+1=x +1定义域为R ,定义域与对应关系和y =x +1相同,为同一函数,故B 正确; y =√(x +1)33=x +1定义域R ,定义域与对应关系和y =x +1相同,为同一函数,故C 正确;y =x 2+1x−1的定义域为{x ∈R |x ≠1},与函数y =x +1的定义域不同,不是同一函数,故D 错误.故选:BC .10.设x ∈R ,不等式ax 2﹣2ax ﹣2<0恒成立的充分不必要条件可以是( ) A .﹣1<a <0B .﹣2<a <0C .﹣3<a ≤0D .0≤a <1解:当a =0时,不等式ax 2﹣2ax ﹣2<0为﹣2<0,满足题意;a ≠0时,不等式ax 2﹣2ax ﹣2<0恒成立,则必有a <0且Δ=(﹣2a )2+4a ×2<0, 解得﹣2<a <0,故a 的取值范围为﹣2<a ≤0,由题意知所选不等式ax 2﹣2ax ﹣2<0恒成立的充分不必要条件中不等式相应集合应为(﹣2,0]的真子集,结合选项可知﹣1<a <0,﹣2<a <0所对应集合为(﹣2,0]的真子集, 故选项A ,B 满足条件.故选:AB .11.十六世纪中叶,英国数学家雷科德在《砺智石》一书中先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远,下列说法正确的是( ) A .糖水加糖更甜可用式于a+m b+m>ab表示,其中a >b >0,m >0B .当x >32时,y =2x −1+12x−3的最小值为4 C .若x >0,y >0,2x +y =1,则√2x +√y ≤√2D .若a 2(b 2﹣2)=4,则a 2+b 2的最小值为6解:对于选项A ,当a =2,b =1,m =1时,a b=2,a+m b+m=32<2,当a >b 时,糖水不等式不成立,故A 不正确; 对于选项B ,因为x >32,y =2x −1+12x−3=2x −3+12x−3+2≥2√(2x −3)×(12x−3)+2=4, 当且仅当2x ﹣3=12x−3,即x =2时取等号,故B 正确; 对于选项C ,因为2x +y =1≥2√2xy ,所以xy ≤18,当且仅当2x =y ,即x =14,y =12时等号成立, 所以(√2x +√y)2=2x +y +2√2⋅√xy ≤1+2√2⋅√18=2, 即√2x +√y ≤√2,当且仅当x =14,y =12时等号成立,故C 正确; 对于选项D ,因为a 2(b 2﹣2)=4, 所以a 2=4b 2−2>0,所以a 2+b 2=4b 2−2+b 2=4b 2−2+(b 2﹣2)+2≥2√4b 2−2⋅(b 2−2)+2=6,当且仅当b 2−2=4b 2−2,即a 2=2,b 2=4时,等号成立,故D 正确.故选:BCD .12.已知函数f(x)=x1+|x|(x ∈R ),则( ) A .函数f (x )为奇函数B .函数f (x )的值域是(﹣1,1)C .函数f (x )在R 上单调递减D .若对任意的x ∈[﹣1,1],f (x )≤t 2﹣2at +12恒成立,则当a ∈[﹣1,1]时,t ≥2或t =0或t ≤﹣2 解:选项A ,由题意得x ∈R ,f (﹣x )=−x 1+|−x|=−x 1+|x|=−f (x ),所以函数f (x )是奇函数,故A 正确;选项B ,C ,由函数解析式可得f (x )={x 1+x ,x ≥0x 1−x ,x <0={1−1x+1,x ≥011−x−1,x <0,函数图象如图所示:所以f (x )的值域是(﹣1,1),在R 上单调递增,故B 正确,C 错误; 选项D ,由函数f (x )在R 上单调递增, 则当x ∈[﹣1,1]时,f (x )max =f (1)=12,f (x )≤t 2﹣2at +12恒成立,则t 2﹣2at +12≥12恒成立, 即t 2﹣2at ≥0恒成立,令h (a )=﹣2at +t 2,即a ∈[﹣1,1]时,h (a )≥0恒成立, 则{ℎ(1)=t 2−2t ≥0ℎ(−1)=t 2+2t ≥0,解得:t ≤﹣2或t ≥2或t =0,故D 正确. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f(x)={x 2−1,x ≤0x −3,x >0,则f (f (﹣2))= 0 .解:f(x)={x 2−1,x ≤0x −3,x >0,则f (﹣2)=3,所以f (f (﹣2))=f (3)=0.故答案为:0.14.下列命题中,真命题的编号是 ①④ . ①∀x ∈R ,x 2﹣2x +3>0;②∃x ∈N *,x 为方程2x 2﹣3=0的根; ③∀x ∈{﹣1,0,1},2x +1>0; ④∃x ,y ∈Z ,使3x ﹣2y =10.解:x 2﹣2x +3=(x ﹣1)2+2>0恒成立,故①正确; 由2x 2﹣3=0,解得x =±√62∉N ∗,故②错误;﹣1×2+1=﹣1<0,故③错误, x =4,y =1满足题意,故④正确. 故答案为:①④.15.已知a ,b 为正实数,满足(a +b )(2a +b )=3,则10a +7b 的最小值为 12 . 解:因为a ,b 为正实数,满足(a +b )(2a +b )=3,所以(4a +4b )(6a +3b )=36,所以(4a +4b )(6a +3b )=36≤(4a+4b+6a+3b)24=(10a+7b)24, 则10a +7b ≥12,当且仅当{4a +4b =6a +3b (a +b)(2a +b)=3,即a =12,b =1时,等号成立,故10a +7b 的最小值为12. 故答案为:12.16.已知函数y =f (x )的定义域为R ,满足f (x )=2f (x ﹣1),且当x ∈(0,1]时,f (x )=x (1﹣x ),若对任意x ∈(﹣∞,m ],都有f(x)≤32,则m 的最大值是134.解:因为函数y =f (x )的定义域为R ,满足f (x )=2f (x ﹣1), 当x ∈(0,1]时,f (x )=x (1﹣x ), 当x ∈(1,2]时,x ﹣1∈(0,1],则f (x )=2f (x ﹣1)=2(x ﹣1)[1﹣(x ﹣1)]=﹣2(x ﹣1)(x ﹣2)=−2(x −32)2+12∈[0,12], 当x ∈(2,3]时,x ﹣2∈(0,1],则f (x )=4f (x ﹣2)=4(x ﹣2)[1﹣(x ﹣2)]=﹣4(x ﹣2)(x ﹣3)=−4(x 2−5x +6)=−4(x −52)2+1∈[0,1],当x ∈(3,4]时,x ﹣3∈(0,1],则f (x )=8f (x ﹣3)=8(x ﹣3)[1﹣(x ﹣3)]=﹣8(x ﹣3)(x ﹣4)=−8(x 2−7x +12)=−8(x −72)2+2∈[0,2],因为对任意x ∈(﹣∞,m ],都有f(x)≤32, 当x ∈(3,4]时,令f(x)=−8(x 2−7x +12)=32, 解得x =134或x =154,如下图所示:由图可知,m ≤134,故实数m 的最大值为134. 故答案为:134.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知集合A ={x |﹣2<x <8},B ={x |m ﹣3<x <3m ﹣1}.(1)当m =2时,求A ∩B ;(2)若A ∪B =A ,求实数m 的取值范围.解:(1)当m =2时,B ={x |﹣1<x <5},所以A ∩B ={x |﹣1<x <5};(2)因为A ∪B =A ,所以B 是A 的子集,①B =∅,即3m ﹣1≤m ﹣3,解得m ≤﹣1;②B ≠∅,则{m −3≥−23m −1≤83m −1>m −3,所以1≤m ≤3,综上所述,实数m 的取值范围为{m |m ≤﹣1或1≤m ≤3}.18.(12分)已知集合A ={x |x 2﹣x ﹣6<0},B ={x |x 2+2mx ﹣3m 2<0}.(1)若集合B ={x |﹣6<x <2},求实数m 的值;(2)若m ≥0,“x ∈A ”是“x ∈B ”的充分不必要条件,求实数m 的取值范围.解:(1)因为B ={x |x 2+2mx ﹣3m 2<0}={x |﹣6<x <2},所以方程x 2+2mx ﹣3m 2=0的两根分别为﹣6和2,由韦达定理得{−6+2=−2m −6×2=−3m 2,解得m =2. 所以实数m 的值为2.(2)由x 2﹣x ﹣6<0,得﹣2<x <3,A ={x |﹣2<x <3},由于“x ∈A ”是“x ∈B ”的充分不必要条件,则A ⫋B ,当m =0时,B ={x |x 2<0}=∅,此时A ⫋B ,不成立;当m >0时,B ={x |x 2+2mx ﹣3m 2<0}={x |﹣3m <x <m },因为A ⫋B ,则有{−3m ≤−2m ≥3,解得m ≥3; 综上所述,实数m 的取值范围是[3,+∞).19.(12分)已知幂函数f (x )=(m 2﹣5m +7)x m 为奇函数.(1)求f (x )的解析式;(2)若函数g (x )是定义在R 上的偶函数,当x ≥0时,g (x )=f (x )﹣x 2,求函数g (x )的解析式. 解:(1)因为f (x )为幂函数,所以m 2﹣5m +7=1,解得m =2或m =3;当m =2时,f (x )=x 2是偶函数,不是奇函数;当m =3时,f (x )=x 3是奇函数,所以m =3.故f (x )的解析式f (x )=x 3.(2)由(1)得,当x ≥0时,g (x )=f (x )﹣x 2=x 3﹣x 2,对于x <0,则﹣x >0,g (﹣x )=(﹣x )3﹣(﹣x )2=﹣x 3﹣x 2,又因为函数g (x )是定义在R 上的偶函数,所以g (﹣x )=g (x ),所以g (x )=﹣x 3﹣x 2(x <0),所以函数g (x )的解析式g(x)={x 3−x 2,x ≥0−x 3−x 2,x <0. 20.(12分)已知函数f (x )=x 2﹣4x +a .(1)在①∃x ∈[1,5],②∀x ∈[1,5]这两个条件中任选一个,补充到下面问题中的横线上,并求解该问题.若命题:“_____,f (x )>0”为真命题,求实数a 的取值范围;(2)求函数F(x)=12[f(x)+f(|x|)]的单调递增区间.解:(1)由f (x )>0,得x 2﹣4x +a >0,即a >﹣x 2+4x ,令g (x )=﹣x 2+4x ,g (x )=﹣(x ﹣2)2+4,所以g (x )在[1,2]上单调递增,在[2,5]上单调递减,则在[1,5]上g (x )的最小值为g (5)=﹣5,最大值为g (2)=4.选择条件①,∃x ∈[1,5]使得a >﹣x 2+4x 成立,则a >g (x )min ,所以a >﹣5,故实数a 的取值范围是(﹣5,+∞).选择条件②,∀x ∈[1,5]使得a >﹣x 2+4x 恒成立,则a >g (x )max ,所以a >4,故实数a 的取值范围是(4,+∞).(2)当x ≥0时,F(x)=12[f(x)+f(|x|)]=12[f(x)+f(x)]=f(x),=x 2﹣4x +a =(x ﹣2)2+a ﹣4,所以F (x )在[0,2)上单调递减,在[2,+∞)上单调递增;当x <0时,F(x)=12[f(x)+f(|x|)]=12[f(x)+f(−x)]=12[x 2−4x +a +(−x)2+4x +a]=x 2+a , 所以F (x )在(﹣∞,0)上单调递减,综上函数F (x )的单调递增区间为[2,+∞).21.(12分)如图,某学校欲建矩形运动场,运动场左侧为围墙,三面通道各宽2m ,运动场与通道之间由栅栏隔开.(1)若运动场面积为3200m 2,求栅栏总长的最小值;(2)若运动场与通道占地总面积为3200m 2,求运动场面积的最大值.解:(1)设矩形运动场的长、宽分别为a ,b (如图,单位:m ),由题意,ab =3200,所以2a +b ≥2√2ab =160,当且仅当{a =40b =80时,取“=”, 故栅栏总长的最小值为160m .(2)由题意(a +2)(b +4)=3200,整理得ab +4a +2b ﹣3192=0,而4a +2b =3192−ab ≥2√8ab =4√2ab ,故ab +4√2ab −3192≤0,令√ab =t (t >0),则t 2+4√2t −3192≤0,解得0<t ≤38√2,所以√ab ≤38√2,即ab ≤2888,当且仅当{b =2a √ab =38√2,即{a =38b =76时,取“=”, 故运动场面积的最大值为2888m 2.22.(12分)已知函数f(x)=x 2+a x+b 是奇函数,且f(−2)=−52.(1)判断并根据定义证明函数f (x )在(0,1),(1,+∞)上的单调性;(2)设函数h (x )=f 2(x )﹣2tf (x )﹣2(t <0),若对∀x 1,x 2∈[13,3],都有|h (x 1)﹣h (x 2)|≤8,求实数t 的取值范围.(1)解:因为f(−2)=−52,且f (x )是奇函数,所以f(2)=52,所以{4+a 2+b =524+a −2+b =−52,解得{a =1b =0,所以f(x)=x +1x . 此时,f(x)+f(−x)=x +1x +(−x)+1−x=0, 所以f (x )是奇函数,满足要求; 函数f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, 证明如下:任取x 1,x 2∈(0,1),且x 1<x 2,则f(x 1)−f(x 2)=(x 1+1x 1)−(x 2+1x 2)=(x 1−x 2)(x 1x 2−1x 1x 2), 因为x 1,x 2∈(0,1),且x 1<x 2,所以x 1﹣x 2<0,0<x 1x 2<1,所以x 1x 2﹣1<0, 所以f (x 1)﹣f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )在(0,1)上单调递减;同理可证明函数f (x )在(1,+∞)上单调递增.(2)由题意知ℎ(x)=x 2+1x 2−2t(x +1x ), 令z =x +1x ,y =z 2﹣2tz ﹣2,由(1)可知函数z =x +1x 在[13,1]上单调递减,在[1,3]上单调递增, 所以z ∈[2,103],因为函数y =z 2﹣2tz ﹣2的对称轴方程为z =t <0,所以函数y =z 2﹣2tz ﹣2在[2,103]上单调递增, 当z =2时,y =z 2﹣2tz ﹣2取得最小值,y min =﹣4t +2;当z =103时,y =z 2﹣2tz ﹣2取得最大值,y max =−203t +829.所以h (x )min =﹣4t +2,ℎ(x)max =−203t +829,又因为对∀x1,x2∈[13,3]都有|h(x1)﹣h(x2)|≤8恒成立,所以h(x)max﹣h(x)min≤8,即−203t+829−(−4t+2)≤8,解得t≥−13,又因为t<0,所以t的取值范围是[−13,0).。

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷【答案版】

2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省高一上学期数学段考试卷
姓名:________
班级:________
成绩:________
一、 单选题 (共 12 题;共 24 分)
1. (2 分) (2019 高一上·浙江期中) 已知集合
,则
()
A . {3}
B.
C.
D.
2. (2 分) 三个数 70.2 , 0.27 , ln0.2 从大到小的顺序是( )
A.

, ln0.2
B.
, ln0.2,
C . , ln0.2,
D . ln0.2, ,
3. (2 分) (2019 高三上·平遥月考) 设

A.
B.
C.
D.
4. (2 分) (2019 高一上·淄博期中) 若集合 合为( )

,则 a,b,c 的大小关系是( )

,则图中阴影部分表示的集
第 1 页 共 17 页


A.
B.
C.
D.

5. (2 分) 函数 f(x)=ex- 的零点所在的区间是 ( )
A . (0, )
B . ( , 1)
C . (1, )
D . ( , 2)
6. (2 分) (2019·汉中模拟) 函数
的部分图象大致为( )
A. B.
第 2 页 共 17 页


C.
D.
7. (2 分) (2020 高二下·吉林月考) 已知函数 A.1
,则
的值为( )
B.2
C.3
D . –3
8. (2 分) (2020 高三上·北京月考) 在标准温度和大气压下,人体血液中氢离子的物质的量的浓度(单位
mol/L,记作
)和氢氧根离子的物质的量的浓度(单位 mol/L,记作
)的乘积等于常数
.已知
pH 值的定义为 以为(参考数据:
,健康人体血液的 pH 值保持在 7.35~7.45 之间,那么健康人体血液中的


)( )
A. B.
C. D. 9. (2 分) (2020 高一上·柳州期末) 函数
的零点所在的区间为( )
第 3 页 共 17 页


A.
B.
C.
D. 10. (2 分) (2016 高一上·铜仁期中) 函数 f(x)=3 的值域为( ) A . [0,+∞) B . (﹣∞,0] C . [1,+∞) D . (﹣∞,+∞)
11. (2 分) (2019 高一上·深圳期中) 已知函数
,则下列结论正确的是( )
A.
是偶函数,递增区间是
B.
是偶函数,递减区间是
C.
是奇函数,递减区间是
D.
是奇函数,递增区间是
12. (2 分) (2019 高二下·玉林期末) 已知定函数 A.
B. C. D.
第 4 页 共 17 页
,则
()


二、 填空题 (共 4 题;共 4 分)
13. (1 分) (2019 高三上·盐城月考) 若幂函数 ________.
的图象经过点
,则其单调递减区间为
14. (1 分) (2017 高二下·中原期末) 已知函数 f(x)是 R 上的偶函数,g(x)是 R 上的奇函数,且 g(x) =f(x﹣1),若 f(﹣2)=2,则 f(2018)=________.
15. (1 分) (2020 高一上·宁波期末) 已知
,定义运算“ ”:
,
,则
________;
的值域为________.
,设函数
16. (1 分) (2019 高一上·成都月考) 已知函数 成立,则实数 的取值范围为________.
三、 解答题 (共 6 题;共 75 分)
17. (10 分) (2020 高一上·上海期中)
(1) 已知 (2) 已知
,且
,求实数 的值;

,试用 、 表示

18. (10 分) (2019 高三上·扬州月考) 已知集合
(1) 若
,求集合

(2) 若
,求实数 的取值范围.
19. (10 分) (2020 高一上·天水月考) 已知定义域为 都有
(1) 求证:
是奇函数;
(2) 设
,且当
时,
,求不等式
第 5 页 共 17 页
,若存在唯一的整数 ,使得
. .
的函数
满足对任意 ,
的解集.


20. (15 分) 要建造一个容积为 1 600 立方米,深为 4 米的长方体无盖蓄水池,池壁的造价为每平方米 200 元,池底的造价为每平方米 100 元.
(1) 把总造价 y 元表示为池底的一边长 x 米的函数;
(2) 由于场地原因,蓄水池的一边长不能超过 20 米,问蓄水池的这个底边长为多少时总造价最低?总造价 最低是多少?
21. (15 分) (2016 高一上·临川期中) 已知函数 (1) 求 a 的值;
是偶函数,g(x)=t•2x+4,
(2) 当 t=﹣2 时,求 f(x)<g(x)的解集;
(3) 若函数 f(x)的图象总在 g(x)的图象上方,求实数 t 的取值范围.
22. (15 分) (2016 高一上·景德镇期中) 已知函数 f(x)=4x+a•2x+3,a∈R.
(1) 当 a=﹣4 时,且 x∈[0,2],求函数 f(x)的值域;
(2) 若关于 x 的方程 f(x)=0 在(0,+∞)上有两个不同实根,求实数 a 的取值范围.
第 6 页 共 17 页


一、 单选题 (共 12 题;共 24 分)
答案:1-1、 考点:
参考答案
解析: 答案:2-1、 考点:
解析: 答案:3-1、 考点:
解析: 答案:4-1、 考点:
第 7 页 共 17 页


解析: 答案:5-1、 考点: 解析:
答案:6-1、 考点:
解析: 答案:7-1、 考点:
解析:
第 8 页 共 17 页


答案:8-1、 考点: 解析:
答案:9-1、 考点:
解析: 答案:10-1、 考点:
解析: 答案:11-1、
第 9 页 共 17 页


考点: 解析:
答案:12-1、 考点: 解析:
第 10 页 共 17 页


二、填空题 (共4题;共4分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、考点:
解析:
三、解答题 (共6题;共75分)答案:17-1、
答案:17-2、
考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、答案:19-2、
考点:
解析:
答案:20-1、
答案:20-2、考点:
解析:
答案:21-1、
答案:21-2、
答案:21-3、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:。

相关文档
最新文档