必修五 1.2应用举例(二)
人教A高中数学必修五同步课时分层训练:第1章 解三角形 第2课时 含解析

第一章 1.2 应用举例第二课时 高度、角度问题课时分层训练‖层级一‖|学业水平达标|1.如图,在湖面上高为10 m 处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)( )A .2.7 mB .17.3 mC .37.3 mD .373 m解析:选C 根据题图,由题意知CM =DM . ∴CM -10tan 30°=CM +10tan 45°,∴CM =tan 45°+tan 30°tan 45°-tan 30°×10≈37.3(m),故选C. 2.渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4 km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)( )A .14.5 km/hB .15.6 km/hC .13.5 km/hD .11.3 km/h解析:选C 由物理学知识,画出示意图如图.AB =15,AD=4,∠BAD =120°.在▱ABCD 中,D =60°.在△ADC 中,由余弦定理,得AC =AD 2+CD 2-2AD ·CD cos D =16+225-4×15=181≈13.5(km/h).故选C.3.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D ,测得塔顶A 的仰角为30°,则塔高为( )A .15米B .5米C .10米D .12米解析:选C如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h .在Rt △AOD 中,∠ADO =30°,则OD =3h , 在△OCD 中,∠OCD =120°,CD =10,由余弦定理,得OD 2=OC 2+CD 2-2OC ·CD cos ∠OCD ,即(3h )2=h 2+102-2h ×10×cos 120°,∴h 2-5h -50=0,解得h =10或h =-5(舍去).4.甲船在B 岛的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时,乙船自B 岛出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是( )A.1507 minB .157 hC .21.5 minD .2.15 h 解析:选A 设经过x 小时时距离为s ,则在△BPQ 中,由余弦定理知PQ 2=B P 2+BQ 2-2BP ·BQ ·cos 120°,即s 2=(10-4x )2+(6x )2-2(10-4x )·6x ·⎝ ⎛⎭⎪⎫-12=28x 2-20x +100,∴当x =514 h 时,s 2最小,即当航行时间为514 h =1507 min 时,s 最小.5.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30°,45°,60°,且AB =BC =60 m ,则建筑物的高度为( )A .15 6 mB .20 6 mC .25 6 mD .30 6 m解析:选D 设建筑物的高度为h ,由题图知,P A =2h ,PB =2h ,PC =233h ,∴在△PBA 和△PBC 中,分别由余弦定理,得cos ∠PBA =602+2h 2-4h 22×60×2h,① cos ∠PBC =602+2h 2-43h 22×60×2h.② ∵∠PBA +∠PBC =180°,∴cos ∠PBA +cos ∠PBC =0.③由①②③,解得h =306或h =-306(舍去),即建筑物的高度为30 6 m.6.学校里有一棵树,甲同学在A 地测得树尖的仰角为45°,乙同学在B 地测得树尖的仰角为30°,量得AB =AC =10 m 树根部为C (A 、B 、C 在同一水平面上),则∠ACB = .解析:如图,AC =10,∠DAC =45°,∴DC =10.∵∠DBC =30°,∴BC =103, cos ∠ACB =102+(103)2-1022×10×103=32, ∴∠ACB =30°.答案:30°7.如图,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA=60°.已知山高BC =100 m ,则山高MN = m.解析:根据题图所示,AC =100 2.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3.在△AMN 中,MN AM =sin 60°,∴MN =1003×32=150(m).答案:1508.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正以每小时90海里的速度向它靠近,此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船到达商船.解析:如图,设观测站、商船、分别位于A,B处,开始时,海盗船位于C处,20分钟后,海盗船到达D处.在△ADC中,AC=107,AD=20,CD=30,由余弦定理,得cos∠ADC=AD2+CD2-AC2 2AD·CD=400+900-7002×20×30=12,则∠ADC=60°.在△ABD中,由已知,得∠ABD=30°,∠BAD=60°-30°=30°,所以BD=AD=20,2090×60=403(分).答案:40 39.在社会实践中,小明观察一棵桃树.他在点A处发现桃树顶端点C的仰角大小为45°,往正前方走4米后,在点B处发现桃树顶端点C的仰角大小为75°.(1)求BC的长;(2)若小明身高为1.70米,求这棵桃树顶端点C离地面的高度(精确到0.01米,其中3≈1.732).解:(1)∠CAB=45°,∠DBC=75°,则∠ACB=75°-45°=30°,AB=4,由正弦定理得BCsin 45°=4sin 30°,解得BC=42(米),即BC的长为4 2 米.(2)在△CBD中,∠CDB=90°,BC=42,∴DC=42sin 75°.∵sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=6+24,则DC =2+23,∴CE =ED +DC =1.70+2+23≈3.70+3.464≈7.16(米),即这棵桃树顶端点C 离地面的高度约为7.16米.10.碧波万顷的大海上,“蓝天号”渔轮在A 处进行海上作业,“白云号”货轮在“蓝天号”正南方向距“蓝天号”20海里的B 处.现在“白云号”以每小时10海里的速度向正北方向行驶,而“蓝天号”同时以每小时8海里的速度由A 处向南偏西60°方向行驶,经过多少小时后,“蓝天号”和“白云号”两船相距最近.解:如图,设经过t 小时,“蓝天号”渔轮行驶到C 处,“白云号”货轮行驶到D 处,此时“蓝天号”和“白云号”两船的距离为CD .根据题意,知在△ADC 中,AC =8t ,AD =20-10t ,∠CAD=60°.由余弦定理,知CD 2=AC 2+AD 2-2×AC ×AD cos 60°=(8t )2+(20-10t )2-2×8t ×(20-10t )×cos 60°=244t 2-560t +400=244⎝ ⎛⎭⎪⎫t -70612+400-244×⎝ ⎛⎭⎪⎫70612, ∴当t =7061时,CD 2取得最小值,即“蓝天号”和“白云号”两船相距最近.‖层级二‖|应试能力达标|1.在一座20 m 高的观测台台顶测得对面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的高为( )A .20⎝⎛⎭⎪⎫1+33m B .20(1+3)m C .10(6+2)m D .20(6+2)m解析:选B 如图所示,AB 为观测台,CD 为水塔,AM 为水平线.依题意得AB =20,∠DAM =45°,∠CAM =60°,从而可知MD =20,AM =20,CM =203, ∴CD =20(1+3)(m). 2.在静水中划船的速度是每分钟40 m ,水流的速度是每分钟20 m ,如果船从岸边A 处出发,沿着与水流垂直的航线到达对岸,那么船前进的方向指向河流的上游并与河岸垂直的方向所成的角为( )A.π4B .π3 C.π6 D .512π解析:选C 设水流速度与船速的合速度为v ,方向指向对岸.则由题意知,sin α=v 水v 船=2040=12, 又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π6.故选C. 3.某工程中要将一长为100 m 倾斜角为75°的斜坡,改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长( )A .100 2 mB .100 3 mC .50(2+6)mD .200 m解析:选A ∠BAC =75°-30°=45°.在△ABC 中,AC =100 m ,由正弦定理,得BC sin ∠BAC=AC sin B ,∴BC =AC sin ∠BAC sin B =100×sin 45°sin 30°=1002(m).故选A.4.如图,在O 点测量到远处有一物体做匀速直线运动,开始时物体位于P 点,1分钟后,其位置在Q 点,且∠POQ =90°,再过1分钟,该物体位于R 点,且∠QOR =30°,则tan ∠OPQ 的值为( )A.12 B .22 C.32 D .3解析:选C 由题意知,PQ =QR ,设其长为1,则PR =2.在△OPR 中,由正弦定理,得2sin 120°=OP sin R .在△OQR 中,由正弦定理,得1sin 30°=OQ sin R ,则tan ∠OPQ =OQ OP =sin 120°2sin 30°=32.故选C.5.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距 m.解析:设两条船所在位置分别为A ,B 两点,炮台底部所在位置为C 点,在△ABC 中,由题意可知AC =30tan 30°=303(m),BC =30tan 45°=30(m),C =30°,AB 2=(303)2+302-2×303×30×cos 30°=900,所以AB =30(m).答案:306.某海岛周围38海里有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30海里后测得此岛在东北方向,若不改变航向,则此船 (填“有”或“无”)触礁的危险.解析:如图所示,暗礁位于C 处,开始时,轮船在A 处,航行30海里后,轮船在B 处.由题意在△ABC 中,AB =30,∠BAC =30°,∠ABC =135°,则∠ACB =15°.由正弦定理,得BC=AB sin ∠BAC sin ∠ACB =30sin 30°sin 15°=156-24=15(6+2). 在Rt △BDC 中,CD =22BC =15(3+1)>38.所以,此船无触礁的危险.答案:无7.如图,小明同学在山顶A 处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD =100 m ,汽车从C 点到B 点历时14 s ,则这辆汽车的速度为 m/s(精确到0.1,参数数据:2≈1.414,5≈2.236).解析:由题意,AB =200 m ,AC =100 2 m ,在△ABC 中,由余弦定理可得BC =40 000+20 000-2×200×1002×⎝ ⎛⎭⎪⎫-22≈ 316.17 m ,这辆汽车的速度为316.17÷14≈22.6 m/s.答案:22.68.如图所示,A ,B 是海面上位于东西方向相距5(3+3)n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?解:由题意,知AB=5(3+3),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB =ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 (h).。
【优质文档】必修5教案《1.2应用举例(二)》

生:需求出 BD边。 师:那如何求 BD边呢? 生:可首先求出 AB 边,再根据 BAD= 求得。
解 : 在 ABC中 , BCA=90 + , ABC =90 - ,
BAC= -
, BAD = . 根据正弦定理 ,
BC =
AB
sin( ) sin(90 )
所以 AB= BC sin(90 ) = BCcos 在 Rt ABD中 , 得 BD =ABsin
sin( ) sin( )
BAD=BCcos sin sin( )
将测量数据代入上式 , 得 BD = 27.3cos501 sin54 40 = 27.3cos501sin5440 ≈ 177 (m)
1.2 解三角形应用举例
第二课时
一、教学目标
1、 能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题
2、 巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。
3、 进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力
二、教学重点、难点
重点: 结合实际测量工具,解决生活中的测量高度问题
1、 作业:《习案》作业五
DBC≈ BC tan8 ≈ 1047(m) , 要懂得从所给的背景资
AB
的方法。
分析:求 AB 长的关键是先求 AE,在 ACE中,如
能求出 C 点到建筑物顶部 A 的距离 CA,再测出由
C 点观察 A 的仰角,就可以计算出 AE的长。
解:选择一条水平基线 HG,使 H、G、 B 三点在同
一条直线上。 由在 H、G两点用测角仪器测得 A
人教a版必修五课件:解三角形-应用举例:三角形中的几何计算(54页)

人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
人教A版· 数学· 必修5
π 又0<A<π,故A= . 3
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
1 (2)△ABC的面积S=2bcsinA= 3,故bc=4. 而a2=b2+c2-2bccos A,故b2+c2=8. 解得b=c=2.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
进入导航
第一章 1.2 第3课时
系列丛书
典例导悟
类型一 [例1] 三角形中的面积计算 (2012· 全国新课标卷)已知a,b,c分别为△
ABC三个内角A,B,C的对边,acos C+ 3 asin C-b-c =0. (1)求A; (2)若a=2,△ABC的面积为 3,求b,c.
人教A版· 数学· 必修5
1 1 1 (4)S=2absinC=2acsinB=_________. 2bcsinA
人教A版· 数学· 必修5
进入导航
第一章 1.2 第3课时
系列丛书
2.三角形中的计算、证明问题除正弦定理、余弦定理 外,常见的公式还有: (1)P=a+b+c(P为三角形的周长); (2)A+B+C=π; 1 (3)S= aha(ha表示a边上的高); 2 1 1 1 (4)S= absinC= acsinB= bcsinA; 2 2 2
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30

第一课时 1.2 应用举例(一)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.教学重点:熟练运用正弦定理、余弦定理解答有关三角形的测量实际问题.教学难点:根据题意建立解三角形的数学模型.教学过程:一、复习准备:1.在△ABC 中,∠C =60°,a +b =+1),c =,则∠A 为 .2.在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 解法:利用正弦定理、余弦定理化为边的关系,再进行化简二、讲授新课:1. 教学距离测量问题:① 出示例1:如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).分析:实际问题中已知的边与角? 选用什么定理比较合适?→ 师生共同完成解答. →讨论:如何测量从一个可到达的点到一个不可到达的点之间的距离? ③ 出示例2:如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析得出方法:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.讨论:依次抓住哪几个三角形进行计算?→ 写出各步计算的符号所表示的结论. 具体如下:在∆ADC 和∆BDC 中,应用正弦定理得AC =sin()sin[180()]a γδβγδ+︒-++ =sin()sin()a γδβγδ+++, BC =sin sin[180()]a γαβγ︒-++=sin sin()a γαβγ++. 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =④ 练习:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60︒,∠ACD =30︒,∠CDB =45︒,∠BDA =60︒. (答案:AB .2. 小结:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.三、巩固练习:1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°. A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离. ()2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B在观察站C 南偏东60︒,则A 、B a km )3. 作业:教材P14 练习1、2题.第二课时 1.2 应用举例(二)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C, BC =sin sin AB A C =5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.第三课时 1.2 应用举例(三)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1. 讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离? 如何测量底部不可到达的建筑物高度?与前者有何相通之处?2. 讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1. 教学角度的测量问题:① 出示例1:甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.分析:根据题意,如何画图? →解哪个三角形?用什么定理?如何列式?→ 学生讲述解答过程 (答案:630) → 小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?② 练习:已知A 、B 两点的距离为100海里,B 在A 的北偏东30°,甲船自A 以50海里/小时的速度向B 航行,同时乙船自B 以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的 →解哪个三角形?用什么定理解?如何列式? ③ 出示例2:某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图? → 寻找三角形中的已知条件和问题? →如何解三角形.→ 师生共同解答. (答案:北偏东8331'︒方向;1.4小时)④ 练习:某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2. 小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之. (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1. 我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2. 某时刻A 点西400千米的B 处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A 进入台风圈?A 处在台风圈中的时间有多长?3. 作业:教材P22 习题1.2 A 组 2、3题.第四课时 1.2 应用举例(四)教学要求:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.教学重点:三角形面积公式的利用及三角形中简单恒等式的证明. 教学难点:利用正弦定理、余弦定理来求证简单的证明题.教学过程:一、复习准备:1. 提问:接触过哪些三角形的面积公式?2. 讨论:已知两边及夹角如何求三角形面积?二、讲授新课:1. 教学面积公式:①讨论:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?→如何计算三角形面积?②结论:三角形面积公式,S=12absin C,S=1bcsin A,S=12acsinB③练习:已知在∆ABC中,∠B=30︒,b=6,c求a及∆ABC的面积S.(解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数)④出示例1:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?分析:由已知条件可得到什么结论?根据三角形面积公式如何求一个角的正弦?→师生共同解答. →小结:余弦定理,诱导公式,面积公式.→讨论:由三边如何直接求面积?(海仑公式)2. 教学恒等式证明:①讨论:射影定理:a = b cos C + c cos B;b = a cos C + c cos A;c = a cos B + b cos A.分析:如何证明第一个式子?证一:右边=22222222222a b c a c b ab c aab ac a+-+-+=== 左边证二:右边= 2R sin B cos C + 2R sin C cos B=2R sin(B+C)=2R sin A= a = 左边→学生试证后面两个.②出示例2:在∆ABC中,求证:(1)222222sin sin;sina b A Bc C++=(2)2a+2b+2c=2(bc cos A+ca cos B+abcosC)分析:观察式子特点,讨论选用什么定理?3. 小结:利用正弦定理或余弦定理,“化边为角”或“化角为边”.三、巩固练习:1. 在△ABC中,若22tantanA aB b=,判断△ABC的形状. (两种方法)2. 某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶. 公路的走向是M站的北偏东40︒. 开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米. 问汽车还需行驶多远,才能到达M汽车站?(15千米)3. 作业:教材P24 14、15题.。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2

第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
高一数学必修5全套教案

D
C
五巩固深化反馈研究
1 已知ΔABC 已知 A=600,B=300,a=3;求边 b=(
)
A3
B
2C
3D
2
第 2 页 共 63 页
重庆铁路中学高一数学组陈昭旭
必修五教案
(2)已知ΔABC 已知 A=450,B=750,b=8;求边a=(
)
A 8B
4C
4 3 -3 D 8 3 -8
(3)正弦定理的内容是
必修五教案
第 0 页 共 63 页
重庆铁路中学高一数学组陈昭旭
必修五教案
第一章 解斜三角形
1.1.1 正弦定理
(一)教学目标
1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运
用正弦定理与三角形内角和定理解斜三角形中的一类简单问题
2. 过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学
不等关系与不等式(一) 不等关系与不等式(二) 一元二次不等式及其解法(一) 一元二次不等式及其解法(二) 一元二次不等式及其及解法(三) 二元一次不等式(组)与平面区域(一) 二元一次不等式(组)与平面区域 (二) 简单的线性规划问题(一) 简单的线性规划问题(二) 简单的线性规划问题(三) 基本不等式(一) 基本不等式(二) 基本不等式(三) 小结与复习
c
b
c
从而在直角三角形
ABC
中,
a sin
A
b sinB
c sinC
C
aB
(图 1.1-2)
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
人教a版必修五课件:解三角形-应用举例:高度、角度问题(68页)
系列丛书
思考感悟
1.“视角”是“仰角”吗?
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
提示:不是.视角是指观察物体的两端视线张开的角 度.如图所示,视角60° 指的是观察该物体上下两端点时, 视线的张角.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
2.方位角的范围是(0° ,180° )吗?
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
AB 在Rt△ABE中,tan∠AEB= ,AB为定值,若要使仰 BE 角∠AEB最大,则BE要最小,即BE⊥CD,这时∠AEB= 30° . 在Rt△BED中,∠BDE=180° -135° -30° =15° , ∴BE=BD· sin∠BDE=20 2sin15° =10( 3-1) (m). 在Rt△ABE中,AB=BEtan∠AEB=10( 3 -1)tan30° = 10 3 (3- 3)(m). 10 ∴塔的高度为 3 (3- 3) m.
标方向线为止的水平角 叫方位角. ______________________
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
(3)如图(1)所示,BC代表水平距离,AC代表垂直距 离,AB代表坡面距离.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
如图(2)所示,把坡面的铅垂高度h和水平宽度l的比叫
人教A版· 数学· 必修5
进入导航
第一章 1.2 第2课时
系列丛书
典例导悟
类型一 [例1] 底部不可到达的高度问题 某人在塔的正东沿着南偏西60° 的方向前进40
人教a版必修五课件:解三角形-应用举例:距离问题(59页)
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
∵DC=6,∠DBC=15° ,∠BCD=120° , CD· sin120° ∴BD= sin15° =3 6 ( 3 +1),AB=BDcos45° = 3 3( 3+1). ∴步行速度=3 3( 3+1)≈14.2 (m/min).
系列丛书
2.某人在平地上散步,已知正西方向有两根相距为6 m的标杆,当他向正北方向步行1 min后,看到一根标杆在 其西南方向,一根标杆在其南偏西30° 方向,求此人步行的 速度.(结果保留一位小数)
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
提示:如图,依题设条件,△BCD中已具备解三角形 的条件.由∠DBC=45° -30° =15° ,CD=6,∠BCD=90° +30° =120° 可解得BD.从而解出AB,计算出速度.
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
(1)根据题意作出示意图; (2)确定实际问题所涉及的三角形,并搞清该三角形的 已知元素和未知元素; (3)选用正弦定理或余弦定理(有时需正、余弦定理并用) 进行求解,并注意运算的正确性;
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
人教A版· 数学· 必修5
进入导航
第一章 1.2 第1课时
系列丛书
[解]
根据正弦定理得
AB AC = , sin∠ACB sin∠ABC ACsin∠ACB 8sin45° ∴AB= = sin∠ABC sin180° -30° -45° = 4 2 =8( 3-1) (m) 6+ 2 4
数学人教版必修五《1.2应用举例》(共19张PPT)
55 sin 75
55 sin 75 66(m)
sin(180 51 75 ) sin 54
答:A,B两点间的距离为66米。
思考
如何测定河对岸两点A、B间的距离?
B A
导入 两个不可到达点的问题
例2、如图, A,B两点都在河的对岸(不可到达),设 计一种测量,求A,B两点距离的方法。 解:如图,测量者可 以在河岸边选定两点 C、D,设CD=a, ∠BCA=α,∠ACD=β, ∠CDB=γ,
❖ You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
❖
导入 一个不可到达点的问题
例1.设A、B两点在河的两岸,要测量两点之间的距离。 测量者在A的同测,在所在的河岸边选定一点C, 测出AC的距离是55cm,∠BAC=51o, ∠ACB =75o,求A、B两点间的距离。
探究载客游轮能否触礁
一轮船在海上由西向东航行,测得某岛M在A处
的北偏东 角,前进4km 后,测得该岛在北偏
东 角,已知该岛周围3.5 范围内有暗礁,现 该船继续东行。 (1)若 2600,问该船有无触礁危险? 如果没有请说明理由;
(2)如果有,那么该船自 处向东航行 多远会有触礁危险
探究载客游轮能否触礁
∠ADB=δ。
分析:用例1的方法,可以计算出河的这一岸的一点C 到对岸两点的距离,再测出∠BCA的大小,借助于余 弦定理可以计算出A、B两点间的距离。
例题讲解
解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D 两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ。在 △ADC和△BDC中,应用正弦定理得
数学必修五1.2应用举例(公开课)课件
解三角形的应用---实地测量举例
两点A、B间的距离?
A
B
想一想: 如何测定河两岸两点A、
解三角形的应用---实地测量举例
B间的距离?
在B的同一侧选定一点C
A
α
β
C
B
想一想: 如何测定河两岸两点A、
解三角形的应用---实地测量举例 A
B间的距离?
α β
C B
55
若BC=55, ∠α=510 ,α 0 ∠ β=75 ,求AB的长.
简解:由正弦定理可得
AB/sinα=BC/sinA
A
α
β
C
B
55
问题一:测量距离问题
(2):两点都不可到达
例2、 如何测定河对岸两点A、B
解三角形的应用--实地测量举例
间的距离?
如图在河这边取一点D,构造三 角形ABD,能否求出AB?为什么??
的应用
我国古代很早就有测量方面的知识,公元 解三角形问题是三角学的基本问题之一。 解三角形的方法在度量工件、测量距离和 一世纪的《周髀算经》里,已有关于平面测量 什么是三角学?三角学来自希腊文“三角形” 高度及工程建筑等生产实际中,有广泛的应用, 的记载,公元三世纪, 我国数学家刘徽在计 和“测量”。最初的理解是解三角形的计算, 在物理学中,有关向量的计算也要用到解三角 算圆内接正六边形、正十二边形的边长时,就 后来,三角学才被看作包括三角函数和解三角 形的方法。 已经取得了某些特殊角的正弦…… 形两部分内容的一门数学分学科。
3.水平距离、垂直距离、坡面距离。 C 坡面距离 α 水平距离 坡度(坡度比) i: 垂直距离/水平距离 坡角α: tanα=垂直距离/水平距离 垂 直 距 离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五 1.2应用举例(二)
一、选择题
1、平行四边形中,AC =65,BD =17,周长为18,则平行四边形面积是( )
A .16
B .17.5
C .18
D .18.53
2、在某个位置测得某山峰仰角为θ,对着山峰在平行地面上前进600 m 后测仰角为原来的2倍,继续在平行地面上前进200 3 m 后,测得山峰的仰角为原来的4倍,则该山峰的高度是( )
A .200 m
B .300 m
C .400 m
D .100 3 m
3、从高出海平面h 米的小岛看正东方向有一只船俯角为30°,看正南方向一只船俯角为45°,则此时两船间的距离为( )
A .2h 米 B.2h 米
C.3h 米 D .22h 米
4、如图,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得望树尖的仰角为30°,45°,且A 、B 两点之间的距离为60 m ,则树的高度为( )
A .30+30 3 m
B .30+153m
C .15+303m
D .15+33m
5、设甲、乙两楼相距20 m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是( )
A .20 3 m ,403
3 m B .10 3 m,20 3 m
C .10(3-2) m,20 3 m
D.152 3 m ,203
3 m
6、从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α与β的关系为( )
A .α>β
B .α=β
C .α<β
D .α+β=90°
二、填空题
7、某舰艇在A 处测得遇险渔船在北偏东45°,距离为10 n mile 的C 处,此时得知,该渔船沿北偏东
105°方向,以每小时9 n mile的速度向一小岛靠近,舰艇时速21 n mile,则舰艇到达渔船的最短时间是______小时.
8、已知等腰三角形的底边长为6,一腰长为12,则它的内切圆面积为________.
9、△ABC中,已知A=60°,AB∶AC=8∶5,面积为103,则其周长为________.
10、甲船在A处观察乙船,乙船在它的北偏东60°的方向,两船相距a海里,乙船正向北行驶,若甲船是乙船速度的3倍,则甲船应取方向__________才能追上乙船;追上时甲船行驶了________海里.
三、解答题
11、江岸边有一炮台高30 m,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连成30°角,求两条船之间的距离.
12、如图所示,为了解某海域海底构造,在海平面内一条直线上的A、B、C三点进行测量.已知AB =50 m,BC=120 m,于A处测得水深AD=80 m,于B处测得水深BE=200 m,于C处测得水深CF=110 m,求∠DEF的余弦值.
13、已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA=4,求圆内接四边形ABCD的面积.
14、如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.
已知铁塔BC 部分的高为h ,求山高CD .
以下是答案
一、选择题
1、A
解析 设两邻边AD =b ,AB =a ,∠BAD =α,
则a +b =9,a 2+b 2-2ab cos α=17,
a 2+
b 2-2ab cos(180°-α)=65.
解得:a =5,b =4,cos α=35或a =4,b =5,cos α=35
, ∴S ▱ABCD =ab sin α=16.
2、 B
解析 如图所示,600·sin 2θ=2003·sin 4θ,
∴cos 2θ=32,∴θ=15°, ∴h =2003·sin 4θ=300 (m).
3、A
解析 如图所示, BC =3h ,AC =h ,
∴AB =
3h 2+h 2=2h .
4、A
解析 在△P AB 中,由正弦定理可得
60sin (45°-30°)=PB sin 30°
, PB =60×12sin 15°=30sin 15°
, h =PB sin 45°=(30+303)m.
5、A
解析 h 甲=20tan 60°=203(m).
h 乙=20tan 60°-20tan 30°=403
3(m).
6、 B
二、填空题
7、2
3
解析 设舰艇和渔船在B 处相遇,则在△ABC 中,由已知可得:∠ACB =120°,设舰艇到达渔船的最短时间为t ,则AB =21t ,BC =9t ,AC =10,则(21t )2=(9t )2+100-2×10×9t cos 120°, 解得t =23或t =-512
(舍).
8、27π5
解析 不妨设三角形三边为a ,b ,c 且a =6,b =c =12,
由余弦定理得:
cos A =b 2+c 2-a 22bc =122+122-622×12×12=78
, ∴sin A = 1-⎝⎛⎭⎫782=158
. 由12(a +b +c )·r =12bc sin A 得r =3155
. ∴S 内切圆=πr 2=27π5
. 9、20
解析 设AB =8k ,AC =5k ,k >0,则
S =12
AB ·AC ·sin A =103k 2=10 3. ∴k =1,AB =8,AC =5,由余弦定理:
BC 2=AB 2+AC 2-2AB ·AC ·cos A
=82+52-2×8×5×12
=49. ∴BC =7,∴周长为:AB +BC +CA =20.
10、北偏东30°
3a
解析
如图所示,设到C 点甲船追上乙船,
乙到C 地用的时间为t ,乙船速度为v ,
则BC =t v ,AC =3t v ,B =120°,
由正弦定理知BC sin ∠CAB =AC sin B
, ∴1sin ∠CAB =3sin 120°
, ∴sin ∠CAB =12
,∴∠CAB =30°,∴∠ACB =30°, ∴BC =AB =a ,
∴AC 2=AB 2+BC 2-2AB ·BC cos 120°
=a 2+a 2-2a 2·⎝⎛⎭
⎫-12=3a 2,∴AC =3a .
三、解答题
11、解 如图所示:
∠CBD =30°,∠ADB =30°,∠ACB =45° ∵AB =30,
∴BC =30,
BD =30tan 30°
=30 3.
在△BCD 中,
CD 2=BC 2+BD 2-2BC ·BD ·cos 30°=900, ∴CD =30,即两船相距30 m.
12、解 作DM ∥AC 交BE 于N ,交CF 于M . DF =
MF 2+DM 2=302+1702=10298(m), DE =DN 2+EN 2=502+1202=130(m),
EF =(BE -FC )2+BC 2=
902+1202=150(m). 在△DEF 中,由余弦定理的变形公式,得
cos ∠DEF =DE 2+EF 2-DF 2
2DE ·EF =1302+1502-102×2982×130×150
=1665. 即∠DEF 的余弦值为1665
.
13、解
连接BD ,则四边形面积
S =S △ABD +S △CBD =12AB ·AD ·sin A +12
BC ·CD ·sin C . ∵A +C =180°,∴sin A =sin C .
∴S =12(AB ·AD +BC ·CD )·sin A =16sin A . 由余弦定理:在△ABD 中,BD 2=22+42-2×2×4cos A =20-16cos A , 在△CDB 中,BD 2=42+62-2×4×6cos C =52-48cos C , ∴20-16cos A =52-48cos C .
又cos C =-cos A ,∴cos A =-12
.∴A =120°. ∴四边形ABCD 的面积S =16sin A =8 3.
14、解 在△ABC 中,∠BCA =90°+β, ∠ABC =90°-α,
∠BAC =α-β,∠CAD =β.
根据正弦定理得:AC sin ∠ABC =BC sin ∠BAC
, 即AC sin (90°-α)=BC sin (α-β)
, ∴AC =BC cos αsin (α-β)
=h cos αsin (α-β)
. 在Rt △ACD 中,CD =AC sin ∠CAD =AC sin β =h cos αsin βsin (α-β)
. 即山高CD 为h cos αsin βsin (α-β)
.。