高中数学必修五1.2应用举例
高中数学人教B版必修5第1章《解三角形》(1.2 第1课时)同步课件

∴AE=2csoisn1350°°=
2×12 6+
= 2
6-
2.
4
在△ABC 中,已知 A=45°,cosB=45. (1)求 cosC 的值; (2)若 BC=10,D 为 AB 的中点,求 CD 的长.
[解析]
(1)∵A=45°,∴cosA=
22,sinA=
2 2.
又∵cosB=45,∴sinB=35.
第一章 解三角形
第一章 1.2 应用举例 第1课时 距离问题
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课时作业
课前自主预习
• 碧波万顷的大海上,“蓝天号”渔轮在A处进行海上
作业,“白云号”货轮在“蓝天号”正南方向距
“蓝天号”20n mile的B处.现在“白云号”以10n
mile/h的速度向正北方向行驶,而“蓝天号”同时
小岛A周围38 n mile内有暗
礁,一船正向南航行,在B处
测得小岛A在船的南偏东30°,
航行30 n mile后,在C处测
得小岛在船的南偏东45°,
如果此船不改变航向,继续
向南航行,有无触礁的危险?
• [分析] 船继续向南航行,有无触礁的危险,取决
于A到直线BC的距离与38 n mile的大小,于是我们 只要先求出AC或AB的大小,再计算出A到BC的距离,
∴x=503 6 n mile.
• 4.在相距2 km的A、B两点处测量目标点C,若∠CAB =75°,∠CBA=60°,则A、C两点之间的距离为
______ km.
[答案] 6
[解析] 如图所示,由题意知∠C=45°, 由正弦定理,得siAn6C0°=sinA4B5°,∴AC= 22·23= 6. 2
人教A高中数学必修五同步课时分层训练:第1章 解三角形 第2课时 含解析

第一章 1.2 应用举例第二课时 高度、角度问题课时分层训练‖层级一‖|学业水平达标|1.如图,在湖面上高为10 m 处测得天空中一朵云的仰角为30°,测得湖中之影的俯角为45°,则云距湖面的高度为(精确到0.1 m)( )A .2.7 mB .17.3 mC .37.3 mD .373 m解析:选C 根据题图,由题意知CM =DM . ∴CM -10tan 30°=CM +10tan 45°,∴CM =tan 45°+tan 30°tan 45°-tan 30°×10≈37.3(m),故选C. 2.渡轮以15 km/h 的速度沿与水流方向成120°角的方向行驶,水流速度为4 km/h ,则渡轮实际航行的速度为(精确到0.1 km/h)( )A .14.5 km/hB .15.6 km/hC .13.5 km/hD .11.3 km/h解析:选C 由物理学知识,画出示意图如图.AB =15,AD=4,∠BAD =120°.在▱ABCD 中,D =60°.在△ADC 中,由余弦定理,得AC =AD 2+CD 2-2AD ·CD cos D =16+225-4×15=181≈13.5(km/h).故选C.3.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D ,测得塔顶A 的仰角为30°,则塔高为( )A .15米B .5米C .10米D .12米解析:选C如图,设塔高为h ,在Rt △AOC 中,∠ACO =45°,则OC =OA =h .在Rt △AOD 中,∠ADO =30°,则OD =3h , 在△OCD 中,∠OCD =120°,CD =10,由余弦定理,得OD 2=OC 2+CD 2-2OC ·CD cos ∠OCD ,即(3h )2=h 2+102-2h ×10×cos 120°,∴h 2-5h -50=0,解得h =10或h =-5(舍去).4.甲船在B 岛的正南A 处,AB =10 km ,甲船以4 km/h 的速度向正北航行,同时,乙船自B 岛出发以6 km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们航行的时间是( )A.1507 minB .157 hC .21.5 minD .2.15 h 解析:选A 设经过x 小时时距离为s ,则在△BPQ 中,由余弦定理知PQ 2=B P 2+BQ 2-2BP ·BQ ·cos 120°,即s 2=(10-4x )2+(6x )2-2(10-4x )·6x ·⎝ ⎛⎭⎪⎫-12=28x 2-20x +100,∴当x =514 h 时,s 2最小,即当航行时间为514 h =1507 min 时,s 最小.5.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30°,45°,60°,且AB =BC =60 m ,则建筑物的高度为( )A .15 6 mB .20 6 mC .25 6 mD .30 6 m解析:选D 设建筑物的高度为h ,由题图知,P A =2h ,PB =2h ,PC =233h ,∴在△PBA 和△PBC 中,分别由余弦定理,得cos ∠PBA =602+2h 2-4h 22×60×2h,① cos ∠PBC =602+2h 2-43h 22×60×2h.② ∵∠PBA +∠PBC =180°,∴cos ∠PBA +cos ∠PBC =0.③由①②③,解得h =306或h =-306(舍去),即建筑物的高度为30 6 m.6.学校里有一棵树,甲同学在A 地测得树尖的仰角为45°,乙同学在B 地测得树尖的仰角为30°,量得AB =AC =10 m 树根部为C (A 、B 、C 在同一水平面上),则∠ACB = .解析:如图,AC =10,∠DAC =45°,∴DC =10.∵∠DBC =30°,∴BC =103, cos ∠ACB =102+(103)2-1022×10×103=32, ∴∠ACB =30°.答案:30°7.如图,为测量山高MN ,选择A 和另一座山的山顶C为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA=60°.已知山高BC =100 m ,则山高MN = m.解析:根据题图所示,AC =100 2.在△MAC 中,∠CMA =180°-75°-60°=45°.由正弦定理得AC sin 45°=AM sin 60°⇒AM =100 3.在△AMN 中,MN AM =sin 60°,∴MN =1003×32=150(m).答案:1508.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正以每小时90海里的速度向它靠近,此时海盗船距观测站107海里,20分钟后测得海盗船距观测站20海里,再过 分钟,海盗船到达商船.解析:如图,设观测站、商船、分别位于A,B处,开始时,海盗船位于C处,20分钟后,海盗船到达D处.在△ADC中,AC=107,AD=20,CD=30,由余弦定理,得cos∠ADC=AD2+CD2-AC2 2AD·CD=400+900-7002×20×30=12,则∠ADC=60°.在△ABD中,由已知,得∠ABD=30°,∠BAD=60°-30°=30°,所以BD=AD=20,2090×60=403(分).答案:40 39.在社会实践中,小明观察一棵桃树.他在点A处发现桃树顶端点C的仰角大小为45°,往正前方走4米后,在点B处发现桃树顶端点C的仰角大小为75°.(1)求BC的长;(2)若小明身高为1.70米,求这棵桃树顶端点C离地面的高度(精确到0.01米,其中3≈1.732).解:(1)∠CAB=45°,∠DBC=75°,则∠ACB=75°-45°=30°,AB=4,由正弦定理得BCsin 45°=4sin 30°,解得BC=42(米),即BC的长为4 2 米.(2)在△CBD中,∠CDB=90°,BC=42,∴DC=42sin 75°.∵sin 75°=sin(45°+30°)=sin 45°cos 30°+cos 45°sin 30°=6+24,则DC =2+23,∴CE =ED +DC =1.70+2+23≈3.70+3.464≈7.16(米),即这棵桃树顶端点C 离地面的高度约为7.16米.10.碧波万顷的大海上,“蓝天号”渔轮在A 处进行海上作业,“白云号”货轮在“蓝天号”正南方向距“蓝天号”20海里的B 处.现在“白云号”以每小时10海里的速度向正北方向行驶,而“蓝天号”同时以每小时8海里的速度由A 处向南偏西60°方向行驶,经过多少小时后,“蓝天号”和“白云号”两船相距最近.解:如图,设经过t 小时,“蓝天号”渔轮行驶到C 处,“白云号”货轮行驶到D 处,此时“蓝天号”和“白云号”两船的距离为CD .根据题意,知在△ADC 中,AC =8t ,AD =20-10t ,∠CAD=60°.由余弦定理,知CD 2=AC 2+AD 2-2×AC ×AD cos 60°=(8t )2+(20-10t )2-2×8t ×(20-10t )×cos 60°=244t 2-560t +400=244⎝ ⎛⎭⎪⎫t -70612+400-244×⎝ ⎛⎭⎪⎫70612, ∴当t =7061时,CD 2取得最小值,即“蓝天号”和“白云号”两船相距最近.‖层级二‖|应试能力达标|1.在一座20 m 高的观测台台顶测得对面一水塔塔顶仰角为60°,塔底俯角为45°,那么这座塔的高为( )A .20⎝⎛⎭⎪⎫1+33m B .20(1+3)m C .10(6+2)m D .20(6+2)m解析:选B 如图所示,AB 为观测台,CD 为水塔,AM 为水平线.依题意得AB =20,∠DAM =45°,∠CAM =60°,从而可知MD =20,AM =20,CM =203, ∴CD =20(1+3)(m). 2.在静水中划船的速度是每分钟40 m ,水流的速度是每分钟20 m ,如果船从岸边A 处出发,沿着与水流垂直的航线到达对岸,那么船前进的方向指向河流的上游并与河岸垂直的方向所成的角为( )A.π4B .π3 C.π6 D .512π解析:选C 设水流速度与船速的合速度为v ,方向指向对岸.则由题意知,sin α=v 水v 船=2040=12, 又α∈⎝ ⎛⎭⎪⎫0,π2,∴α=π6.故选C. 3.某工程中要将一长为100 m 倾斜角为75°的斜坡,改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长( )A .100 2 mB .100 3 mC .50(2+6)mD .200 m解析:选A ∠BAC =75°-30°=45°.在△ABC 中,AC =100 m ,由正弦定理,得BC sin ∠BAC=AC sin B ,∴BC =AC sin ∠BAC sin B =100×sin 45°sin 30°=1002(m).故选A.4.如图,在O 点测量到远处有一物体做匀速直线运动,开始时物体位于P 点,1分钟后,其位置在Q 点,且∠POQ =90°,再过1分钟,该物体位于R 点,且∠QOR =30°,则tan ∠OPQ 的值为( )A.12 B .22 C.32 D .3解析:选C 由题意知,PQ =QR ,设其长为1,则PR =2.在△OPR 中,由正弦定理,得2sin 120°=OP sin R .在△OQR 中,由正弦定理,得1sin 30°=OQ sin R ,则tan ∠OPQ =OQ OP =sin 120°2sin 30°=32.故选C.5.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距 m.解析:设两条船所在位置分别为A ,B 两点,炮台底部所在位置为C 点,在△ABC 中,由题意可知AC =30tan 30°=303(m),BC =30tan 45°=30(m),C =30°,AB 2=(303)2+302-2×303×30×cos 30°=900,所以AB =30(m).答案:306.某海岛周围38海里有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30海里后测得此岛在东北方向,若不改变航向,则此船 (填“有”或“无”)触礁的危险.解析:如图所示,暗礁位于C 处,开始时,轮船在A 处,航行30海里后,轮船在B 处.由题意在△ABC 中,AB =30,∠BAC =30°,∠ABC =135°,则∠ACB =15°.由正弦定理,得BC=AB sin ∠BAC sin ∠ACB =30sin 30°sin 15°=156-24=15(6+2). 在Rt △BDC 中,CD =22BC =15(3+1)>38.所以,此船无触礁的危险.答案:无7.如图,小明同学在山顶A 处观测到,一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A 处测得公路上B ,C 两点的俯角分别为30°,45°,且∠BAC=135°.若山高AD =100 m ,汽车从C 点到B 点历时14 s ,则这辆汽车的速度为 m/s(精确到0.1,参数数据:2≈1.414,5≈2.236).解析:由题意,AB =200 m ,AC =100 2 m ,在△ABC 中,由余弦定理可得BC =40 000+20 000-2×200×1002×⎝ ⎛⎭⎪⎫-22≈ 316.17 m ,这辆汽车的速度为316.17÷14≈22.6 m/s.答案:22.68.如图所示,A ,B 是海面上位于东西方向相距5(3+3)n mile 的两个观测点.现位于A 点北偏东45°方向、B 点北偏西60°方向的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距20 3 n mile的C点的救援船立即前往营救,其航行速度为30 n mile/h,则该救援船到达D点需要多长时间?解:由题意,知AB=5(3+3),∠DBA=90°-60°=30°,∠DAB=90°-45°=45°,∴∠ADB=180°-(45°+30°)=105°.在△DAB中,由正弦定理得BDsin∠DAB =ABsin∠ADB,即BD=AB sin∠DABsin∠ADB=5(3+3)sin 45°sin 105°=5(3+3)sin 45°sin 45°cos 60°+cos 45°sin 60°=10 3 n mile.又∠DBC=∠DBA+∠ABC=60°,BC=20 3 n mile,∴在△DBC中,由余弦定理,得CD=BD2+BC2-2BD·BC cos∠DBC=300+1 200-2×103×203×1 2=30 n mile,则救援船到达D点需要的时间为3030=1 (h).。
2021_2022学年高中数学第1章解三角形1.2第2课时角度问题课件新人教A版必修5

灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,
则灯塔 A 在灯塔 B 的( )
A.北偏东 5°
B.北偏西 10°
C.南偏东 5°
D.南偏西 10°
B [由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC, ∴∠CAB=∠CBA=50°,从而可知灯塔 A 在灯塔 B 的北偏西 10°.]
A [结合题图可知∠DAC=β-α.
在△ACD中,由正弦定理得
sin D∠CDAC=sAinCα,
∴AC=sina
∠sinDαAC=sin
a sin α (β-α).
在Rt△ABC中,
AB=AC
sin
β=sian
sin αsin β (β-α).]
您好,谢谢观看!
Thank you for watching !
思路探究:①你能根据题意画出示意图吗? ②在△ABC 中,能求出 BC 与∠ABC 吗? ③在△BCD 中,如何求出∠BCD?
[解] 设缉私船用 t 小时在 D 处追上走私船,画出示意图,则有 CD=10 3t,BD=10t,
在△ABC 中,∵AB= 3-1,AC=2,∠BAC=120°, ∴由余弦定理,得 BC2=AB2+AC2-2AB·AC·cos∠BAC=( 3-1)2+22-2×( 3- 1)×2×cos 120°=6,
即缉私船沿北偏东 60°方向能最快追上走私船.
1.测量角度问题的关键是在弄清题意的基础上,画出表示实际 问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦 定理解三角形,最后将解得的结果转化为实际问题的解.
2.在解三角形问题中,求某些角的度数时,最好用余弦定理求 角.因为余弦函数在(0,π)上是单调递减的,而正弦函数在(0,π)上不 是单调函数,一个正弦值可以对应两个角.但角在0,π2上时,用正、 余弦定理皆可.
高中数学《第一章解三角形1.2应用举例阅读与思考海伦和秦九韶》268PPT课件 一等奖名师

4
2
则用“三斜求 积”公式求得△ABC的面积为 _____.
课堂练习
练习1.在ABC中,AB 3, BC 13 AC 4,求ABC的面积
2. 在△ABC中,b 2, B ,C ,求ABC的面积.
64
c2 sin Asin B b2 sin Asin C a2 sin B sin C
I
正负开方术
数
书
九
II
章
三斜求积术
III
大衍总数术
I 德国数学史家康 托尔赞扬秦九韶 是“最幸运的天 才”
此前法国大数学家拉 格朗日也是这样称赞 牛顿的
有着“科学史之父”美 誉的美国科学史家萨顿 甚至认为,秦九韶是“ 他那个民族,他那个时 代,并且确实也是所有 时代最伟大的数学家之 一”
2005年,牛津大 学出版了《数学史 —从美索不达米亚 到现代》,该书重 点提及12位数学 家,提及了秦九韶 是唯一的中国人
(a
b
c)(a
b
c)(b 4c 2
a
c)(b
a
c)
h (a b c)(a b c)(b a c)(b a c) 4c 2
ha
t DB
h (a b c)(a b c)(b a c)(b a c) 2c
[求出面积S ] (a b c)(a b c)(b a c)(b aC c)
2010年,BBC 广播公司制作4 集纪录片《数学 的故事》,第2 节17分钟讲述中 国,秦九韶是唯 一提及的中国人
古代其他 数学成就
利用祖暅原理求球体积
牟合方盖
古代其他 数学成就
牟合方盖
割圆术
问题提出 能否由秦九韶的公式推导出海伦公式?
公式转化
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
高中数学必修五:正余弦定理应用举例(必考题)含解析

第一章正余弦定理应用举例(必考题)含解析1.2第1课时基础巩固一、选择题1.某次测量中,A在B的北偏东55°,则B在A的()A.北偏西35°B.北偏东55°C.南偏西35°D.南偏西55°[答案] D[解析]根据题意和方向角的概念画出草图,如图所示.α=55°,则β=α=55°.所以B在A的南偏西55°.故应选D.2.两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.a km B.3a kmC.2a km D.2a km[答案] B[解析]∠ACB=120°,AC=BC=a,由余弦定理可得AB=3a(km).3.一船向正北航行,看见正西方向有相距10n mlie的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时()A.5n mlie B.53n mlieC.10n mlie D.103n mlie[答案] C[解析]如图,依题意有∠BAC=60°,∠BAD=75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300m 和500m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为( )A .500mB .600mC .700mD .800m[答案] C[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,现测得∠ABC =120°,则A 、C 两地的距离为( )A .10kmB .3kmC .105kmD .107km[答案] D[解析] 在△ABC 中,AB =10,BC =20,∠ABC =120°,则由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =100+400-2×10×20cos120° =100+400-2×10×20×(-12)=700,∴AC =107,即A 、C 两地的距离为107km.6.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120m 由此可得河宽为(精确到1m)( )A .170mB .98mC .95mD .86m[答案] C[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=40 6.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m) 二、填空题7.如图所示,为了测量河的宽度BC ,最适宜测量的两个数据是________.[答案] AC 与∠A .[解析] 由图可知,AB 与BC 不能直接测量.8.一船以24 km/h 的速度向正北方向航行,在点A 处望见灯塔S 在船的北偏东30°方向上,15 min 后到点B 处望见灯塔在船的北偏东65°方向上,则船在点B 时与灯塔S 的距离是______ km.(精确到0.1 km)[答案] 5.2[解析] 作出示意图如图.由题意知,则AB =24×1560=6,∠ASB =35°,由正弦定理6sin35°=BS sin30°,可得BS ≈5.2(km).三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)[分析] 由于∠ADC =75°,∠BDC =15°,∴∠ADB 为直角.题中有多个三角形而抓住△ABD 为Rt △作为突破口可简化计算.[解析] 在△ACD 中,∠CAD =60°,AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5n mile ,∴此船可以继续沿正北方向航行.能力提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2km ,船B 在灯塔C 西偏北25°且到C 的距离为3km ,则A 、B 两船的距离为( )A .23kmB .32kmC .15kmD .13km[答案] D[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.甲船在湖中B 岛的正南A 处,AB =3km ,甲船以8km /h 的速度向正北方向航行,同时乙船从B 岛出发,以12km/h 的速度向北偏东60°方向驶去,则行驶15min 时,两船的距离是( )A .7kmB .13kmC .19kmD .10-33km[答案] B[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13km.3.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( )A .1762n mile/hB .346n mile/hC .1722n mile/hD .342n mile/h[答案] A[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).4.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12 h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是( )A .10kmB .102kmC .15kmD .152km[答案] B[解析] 在△ABC 中,BC =40×12=20(km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102(km).二、填空题5.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90n mile.此时海盗船距观测站107n mile,20min 后测得海盗船距观测站20n mlie ,再过________min ,海盗船到达商船.[答案]403[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ×CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°,∴BD =AD =20,2090×60=403(min).6.如图,一艘船上午在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距42n mile ,则此船的航行速度是________n mile/h.[答案] 16[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午在A 地,在B 地,∴航行0.5小时的路程为8n mile , ∴此船的航速为16n mile/h. 三、解答题7.海上某货轮在A 处看灯塔B ,在货轮北偏东75°,距离为126n mile ;在A 处看灯塔C ,在货轮的北偏西30°,距离为83n mile ;货轮向正北由A 处航行到D 处时看灯塔B 的方位角为120°.求:(1)A 处与D 处的距离; (2)灯塔C 与D 处之间的距离.[解析] 由题意,画出示意图,如图所示.(1)在△ABD 中,由已知∠ADB =60°,则B =45°. 由正弦定理,得AD =AB sin45°sin60°=24(n mile)(2)在△ADC 中,由余弦定理,得 CD 2=AD 2+AC 2-2AD ×AC cos30° =242+(83)2-2×24×83×32=(83)2, ∴CD =83(n mile)答:A 处与D 处之间距离为24n mile ,灯塔C 与D 处之间的距离为83n mile.8.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50m ,BC =120m ,于A 处测得水深AD =80m ,于B 处测得水深BE =200m ,于C 处测得水深CF =110m ,求∠DEF 的余弦值.[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.第一章 1.2 第2课时基础巩固一、选择题1.如图,从气球A 测得济南全运会东荷、西柳个场馆B 、C 的俯角分别为α、β,此时气球的高度为h ,则两个场馆B 、C 间的距离为( )A .h sin αsin βsin (α-β)B .h sin (β-α)sin αsin βC .h sin αsin βsin (α-β)D .h sin βsin αsin (α-β)[答案] B[解析] 在Rt △ADC 中,AC =hsin β,在△ABC 中,由正弦定理,得BC =AC sin (β-α)sin α=h sin (β-α)sin αsin β.2.某工程中要将一长为100 m 倾斜角为75°的斜坡,改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长( )A .1002mB .1003mC .50(2+6)mD .200m[答案] A[解析] 如图,由条件知,AD =100sin75°=100sin(45°+30°) =100(sin45°cos30°+cos45°sin30°) =25(6+2),CD =100cos75°=25(6-2),BD =AD tan30°=25(6+2)33=25(32+6).∴BC =BD -CD =25(32+6)-25(6-2) =1002(m).3.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40m ,则电视塔的高度为( )A .102mB .20mC .203mD .40m[答案] D[解析] 设AB =x m ,则BC =x m ,BD =3x m ,在△BCD 中,由余弦定理,得 BD 2=BC 2+CD 2-2BC ·CD cos120°, ∴x 2-20x -800=0,∴x =40(m).4.若甲船在B 岛的正南方A 处,AB =10km ,甲船以4km /h 的速度向正北航行,同时,乙船自B 岛出发以6km/h 的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们的航行时间是( )A .1507minB .157hC .21.5minD .2.15h [答案] A[解析] 当时间t <2.5h 时,如图.∠CBD =120°,BD =10-4t ,BC =6t . 在△BCD 中,利用余弦定理,得CD 2=(10-4t )2+(6t )2-2×(10-4t )×6t ×cos120°=28t 2-20t +100. 当t =202×28=514(h),即1507min 时,CD 2最小,即CD 最小为6757. 当t ≥2.5h 时,CF =15×32,CF 2=6754>CD 2, 故距离最近时,t <2.5h ,即t =1507min.5.江岸边有一炮台高30m ,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .103mB .1003mC .2030mD .30m[答案] D[解析] 设炮塔顶A 、底D ,两船B 、C ,则∠ABD =45°,∠ACD =30°,∠BDC =30°,AD =30,∴DB =30,DC =303,BC 2=DB 2+DC 2-2DB ·DC ·cos30°=900,∴BC =30.6.如图所示,在山底A 处测得山顶B 的仰角∠CAB =45°,沿倾斜角为30°的山坡向山顶走1 000m 到达S 点,又测得山顶仰角∠DSB =75°,则山高BC 为( )A .5002mB .200mC .1 0002mD .1 000m[答案] D[解析] ∵∠SAB =45°-30°=15°,∠SBA =∠ABC -∠SBC =45°-(90°-75°)=30°, 在△ABS 中,AB =AS ·sin135°sin30°=1 000×2212=1 0002,∴BC =AB ·sin45°=1 0002×22=1 000(m). 二、填空题7.某海岛周围38n mile 有暗礁,一轮船由西向东航行,初测此岛在北偏东60°方向,航行30n mile 后测得此岛在东北方向,若不改变航向,则此船________触礁危险(填“有”或“无”).[答案] 无[解析] 如图所示,由题意在△ABC 中,AB =30, ∠BAC =30°,∠ABC =135°,∴∠ACB =15°,由正弦定理,得BC =AB sin ∠BAC sin ∠ACB =30sin30°sin15°=156-24=15(6+2).在Rt △BDC 中,CD =22BC =15(3+1)>38. ∴此船无触礁的危险.8.甲船在A 处发现乙船在北偏东60°的B 处,乙船正以a n mile/h 的速度向北行驶.已知甲船的速度是3a n mile/h ,问甲船应沿着________方向前进,才能最快与乙船相遇?[答案] 北偏东30°[解析] 如图,设经过t h 两船在C 点相遇,则在△ABC 中,BC =at ,AC =3at ,B =180°-60°=120°, 由BC sin ∠CAB =ACsin B,得sin ∠CAB =BC sin B AC =at ·sin120°3at =12.∵0°<∠CAB <90°,∴∠CAB =30°,∴∠DAC =60°-30°=30°.即甲船应沿北偏东30°的方向前进,才能最快与乙船相遇.三、解答题9.如图所示,两点C 、D 与烟囱底部在同一水平直线上,在点C 1、D 1,利用高为1.5 m 的测角仪器,测得烟囱的仰角分别是α=45°和β=60°,C 、D 间的距离是12 m ,计算烟囱的高AB .(精确到0.01 m)[解析] 在△BC 1D 1中,∠BD 1C 1=120°,∠C 1BD 1=15°.由正弦定理C 1D 1sin ∠C 1BD 1=BC 1sin ∠BD 1C 1,∴BC 1=12sin120°sin15°=182+66,∴A 1B =22BC 1=18+63,则AB =A 1B +AA 1≈29.89(m).10.在海岸A 处,发现北偏东45°方向,距A 处(3-1)n mile 的B处有一艘走私船,在A 处北偏西75°的方向,距离A 处2n mile 的C 处的缉私船奉命以103n mile /h 的速度追截走私船.此时,走私船正以10n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?[解析] 设缉私船用t 小时在D 处追上走私船.在△ABC 中,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos ∠CAB =(3-1)2+22-2×(3-1)×2×cos120°=6,∴BC = 6.在△BCD 中,由正弦定理,得 sin ∠ABC =AC BC sin ∠BAC =22,∴∠ABC =45°,∴BC 与正北方向垂直. ∴∠CBD =120°.在△BCD 中,由正弦定理,得 CD sin ∠CBD =BD sin ∠BCD ,∴103t sin120°=10tsin ∠BCD,∴sin ∠BCD =12,∴∠BCD =30°.故缉私船沿北偏东60°的方向能最快追上走私船.能力提升一、选择题1.飞机沿水平方向飞行,在A 处测得正前下方地面目标C 的俯角为30°,向前飞行10 000m 到达B 处,此时测得正前下方目标C 的俯角为75°,这时飞机与地面目标的水平距离为( )A .2 500(3-1)mB .5 0002mC .4 000mD .4 0002m[答案] A[解析] 示意图如图,∠BAC =30°,∠DBC =75°,∴∠ACB =45°,AB =10 000.由正弦定理,得10 000sin45°=BC sin30°,又cos75°=BD BC ,∴BD =10 000·sin30°sin45°·cos75°=2 500(3-1)(m).2.渡轮以15km /h 的速度沿与水流方向成120°角的方向行驶,水流速度为4km/h ,则渡轮实际航行的速度为(精确到0.1km/h)( )A .14.5km /hB .15.6km/hC .13.5km /hD .11.3km/h[答案] C[解析] 由物理学知识,画出示意图,如图.AB =15,AD =4, ∠BAD =120°.在▱ABCD 中,D =60°, 在△ADC 中,由余弦定理,得 AC =AD 2+CD 2-2AD ×CD ×cos D =16+225-4×15=181≈13.5(km/h). 故选C .3.在地面上点D 处,测量某建筑物的高度,测得此建筑物顶端A 与底部B 的仰角分别为60°和30°,已知建筑物底部高出地面D 点20m ,则建筑物高度为( )A .20mB .30mC .40mD .60m[答案] C[解析] 设O 为塔顶在地面的射影,在Rt △BOD 中,∠ODB =30°,OB =20,BD =40,OD =203,在Rt △AOD 中,OA =OD ·tan60°=60, ∴AB =OA -OB =40.4.如图所示,在地面上共线的三点A ,B ,C 处测得一建筑物的仰角分别为30°,45°,60°,且AB =BC =60 m ,则建筑物的高度为( )A .156mB .206mC .256mD .306m[答案] D[解析] 设建筑物的高度为h ,由题图知,P A =2h ,PB =2h ,PC =233h ,∴在△PBA 和△PBC 中,分别由余弦定理,得 cos ∠PBA =602+2h 2-4h 22×60×2h ,①cos ∠PBC =602+2h 2-43h 22×60×2h .②∵∠PBA +∠PBC =180°, ∴cos ∠PBA +cos ∠PBC =0.③由①②③,解得h =306或h =-306(舍去), 即建筑物的高度为306m. 二、填空题5.学校里有一棵树,甲同学在A 地测得树尖的仰角为45°,乙同学在B 地测得树尖的仰角为30°,量得AB =AC =10m 树根部为C (A 、B 、C 在同一水平面上),则∠ACB =________.[答案] 30°[解析] 如图,AC =10,∠DAC =45°,∴DC =10,∵∠DBC =30°,∴BC =103, cos ∠ACB =102+(103)2-1022×10×103=32,∴∠ACB =30°.6.(2014·新课标Ⅰ文,16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°.已知山高BC =100m ,则山高MN =________m .[答案] 150m[解析] 本题考查解三角形中的应用举例. 如图,在Rt △ABC 中,BC =100,∠CAB =45°, ∴AC =100 2.在△AMC 中,∠CAM =75°,∠ACM =60°, ∴∠AMC =45°.由正弦定理知AM sin60°=1002sin45°,∴AM =100 3.在Rt △AMN 中,∠NAM =60°, ∴MN =AM ·sin60°=1003×32=150(m). 三、解答题7.如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12n mile ,渔船乙以10n mile/h 的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2h 追上.(1)求渔船甲的速度; (2)求sin α的值.[解析] (1)在△ABC 中,∠BAC =180°-60°=120°,AB =12,AC =10×2=20,∠BAC =α.由余弦定理,得BC 2=AB 2+AC 2-2AB ×AC ×cos ∠BAC =122+202-2×12×20×cos120°=784. 解得BC =28.所以渔船甲的速度为BC2=14n mile/h.(2)在△ABC 中,因为AB =12,∠BAC =120°,BC =28,∠BCA =α, 由正弦定理,得AB sin α=BC sin120°.即sin α=AB sin120°BC =12×3228=3314.8.据气象台预报,在S 岛正东距S 岛300 km 的A 处有一台风中心形成,并以每小时30 km 的速度向北偏西30°的方向移动,在距台风中心270 km 以内的地区将受到台风的影响.问:S 岛是否受其影响?若受到影响,从现在起经过多少小时S 岛开始受到台风的影响?持续时间多久?说明理由.[分析] 设B 为台风中心,则B 为AB 边上动点,SB 也随之变化.S 岛是否受台风影响可转化为SB ≤270这一不等式是否有解的判断,则需表示SB ,可设台风中心经过t h 到达B 点,则在△ABS 中,由余弦定理可求SB .[解析] 如图,设台风中心经过t h 到达B 点,由题意:∠SAB =90°-30°=60°,在△SAB中,SA=300,AB=30t,∠SAB=60°,由余弦定理得:SB2=SA2+AB2-2SA·AB·cos∠SAB=3002+(30t)2-2·300·30t cos60°.若S岛受到台风影响,则应满足条件|SB|≤270即SB2≤2702,化简整理得t2-10t+19≤0,解之得5-6≤t≤5+6,所以从现在起,经过(5-6)h S岛开始受到影响,(5+6)小时后影响结束,持续时间:(5+6)-(5-6)=26(h).答:S岛从现在起经过(5-6)h受到台风影响,且持续时间为26h.。
人教A版高中数学必修5《一章 解三角形 1.2 应用举例 阅读与思考 海伦和秦九韶》示范课教案_28
《秦九韶-海伦公式》教案【教学内容】人教版数学必修五《秦九韶-海伦公式》【教学对象】高一学生【教材分析】本节内容是高中数学必修五的第一章,是阅读与思考部分中的内容,本节课的主要意在引领学生运用所学知识对“秦九韶-海伦公式”进行证明,并进行有效的应用,让同学们从中体会到数学之美。
【知识背景】海伦公式与秦九韶公式古希腊的几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式“如果一个三角形的三边长分别为a,b,c,记那么三角形的面积为:..这一公式称为海伦公式;海伦公式又译作希伦公式、海龙公式、希罗公式,传说是古代的叙拉古国王希伦(Heron,也称海龙)二世发现的公式。
中国宋代的数学家秦九韶在1247年也提出了“三斜求积术”。
它与海伦公式基本一样,其实在《九章算术》中,已经有求三角形公式“底乘高的一半”,在实际丈量土地面积时,由于土地的面积并不是三角形,要找出它来并非易事。
所以他们想到了三角形的三条边。
如果这样做求三角形的面积也就方便多了。
但是怎样根据三边的长度来求三角形的面积?直到南宋,中国著名的数学家秦九韶提出了“三斜求积术”。
秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。
“术”即方法。
三斜求积术就是用小斜平方加上大斜平方,送到中斜平方,取相减后余数的一半,自乘而得一个数,小斜平方乘以大斜平方,送到上面得到的那个。
相减后余数被4除,所得的数作为“实”,作1作为“隅”,开平方后即得面积。
我国南宋时期数学家秦九韶也曾提出利用三角形的三边长求面积的秦九韶公式:.其实这两个公式实质是一致的,聪明的你能够推导出来吗?对比这两个公式,我们发现海伦公式形式漂亮,便于记忆,但是如果一个三角形的三边长是无理数的时候,还是秦九韶公式处理比较方便,现在请您选择适当的公式解决一些问题吧。
【学情分析】高二学生在进入本节课的学习之前,需要熟悉前面已学过的余弦定理、三角形面积公式以及平方差公式和完全平方公式。
高中数学 1-2-1距离问题课件 新人教A版必修5
思路方法技巧
命题方向 正、余弦定理在生产、生活中不易到达点测 距中的应用 [例 1] 要测量河对岸两个建筑物 A、B 之间的距离,
选取相距 3 km 的 C、D 两点,并测得∠ACB=75° ,∠ BCD=45° ,∠ADC=30° ,∠ADB=45° ,求 A、B 之间的距 离.
[解析] 30° ,
21 AD 在△ACD 中,sin60° sinα, = 21×sinα ∴AD= sin60° =15(千米). 答:这个人再走 15 千米就可以到达 A 城.
课堂巩固训练
在一个很大的湖边(可视湖岸为直线)停放着一只小船,由 于缆绳突然断开,小船被风刮跑,其方向与河岸成 15° 角,速 度为 2.5 km/h,同时岸上一人从同一地点开始追小船,已知他 在岸上跑的速度为 4 km/h,水中游的速度为 2 km/h,问此人能 否追上小船?若小船速度改变,则小船能被追上的最大速度是 多少?
学习要点点拨
1.解三角形应用题的基本思路 (1)建模思想 解三角形应用问题时,通常都要根据题意,从实际问题中 抽象出一个或几个三角形,然后通过解这些三角形,得出三角 形边角的大小,从而得出实际问题的解.这种数学建模思想, 从实际问题出发,经过抽象概括,把它转化为具体问题中的数 学模型,然后通过推理演算,得出数学模型的解,再还原成实 际问题的解,用流程图可表示为:
[解析]
在△ABC 中,BC=30,B=30° ,∠ACB=135° ,
∴∠BAC=15° , BC AC 30 AC 由正弦定理 = 即: = , sinA sinB sin15° sin30° ∴AC=60cos15° =60cos(45° -30° ) =60(cos45° cos30° +sin45° sin30° )=15( 6+ 2) ∴A 到 BC 的距离为 d=ACsin45° =15( 3+1), ≈40.98 海里>38 海里, 所以继续向南航行, 没有触礁危险.
新人教A版必修5高中数学第一章1.2应用举例(一)导学案
§1.2 应用举例(一)课时目标1.了解数学建模的思想;2.利用正、余弦定理解决生产实践中的有关距离的问题.1.基线的定义:在测量上,我们根据测量需要适当确定的线段叫做基线.一般来说,基线越长,测量的精确度越高.2.方位角:指从正北方向线按顺时针方向旋转到目标方向线所成的水平角.如图中的A 点的方位角为α.3.计算不可直接测量的两点间的距离是正弦定理和余弦定理的重要应用之一.一、选择题 1.若点P 在点Q 的北偏西45°10′方向上,则点Q 在点P 的( ) A .南偏西45°10′ B .南偏西44°50′ C .南偏东45°10′ D .南偏东44°50′ 答案 C2.已知两灯塔A 和B 与海洋观测站C 的距离都等于a km ,灯塔A 在观测站C 的北偏东20°方向上,灯塔B 在观测站C 的南偏东40°方向上,则灯塔A 与灯塔B 的距离为( )A .a km B.3a km C.2a km D .2a km 答案 B解析 ∠ACB =120°,AC =BC =a , ∴由余弦定理得AB =3a .3.海上有A 、B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,则B 、C 间的距离是( )A .10 3 n mile B.1063n mileC .5 2 n mileD .5 6 n mile 答案 D解析 在△ABC 中,∠C =180°-60°-75°=45°.由正弦定理得:BC sin A =ABsin B∴BC sin 60°=10sin 45° 解得BC =5 6.4.如图所示,设A 、B 两点在河的两岸,一测量者在A 的同侧,在A 所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算A 、B 两点的距离为()A .50 2 mB .50 3 mC .25 2 m D.2522m答案 A解析 由题意知∠ABC =30°,由正弦定理AC sin ∠ABC =ABsin ∠ACB,∴AB =AC ·sin∠ACBsin ∠ABC =50×2212=50 2 (m).5.如图,一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°,与灯塔S 相距20海里,随后货轮按北偏西30°的方向航行30分钟后到达N 处,又测得灯塔在货轮的东北方向,则货轮的速度为( )A .20(6+2) 海里/小时B .20(6-2) 海里/小时C .20(6+3) 海里/小时D .20(6-3) 海里/小时 答案 B解析 由题意,∠SMN =45°,∠SNM =105°,∠NSM =30°. 由正弦定理得MN sin 30°=MSsin 105°.∴MN =MS sin 30°sin 105°=106+24=10(6-2).则v 货=20(6-2) 海里/小时.6.甲船在岛B 的正南A 处,AB =10千米,甲船以每小时4千米的速度向正北航行,同时,乙船自B 出发以每小时6千米的速度向北偏东60°的方向驶去.当甲、乙两船相距最近时,它们所航行的时间是( )A.1507 分钟B.157小时 C .21.5 分钟 D .2.15 分钟 答案 A解析 设行驶x 小时后甲到点C ,乙到点D ,两船相距y km , 则∠DBC =180°-60°=120°.∴y 2=(10-4x )2+(6x )2-2(10-4x )·6x cos 120° =28x 2-20x +100=28(x 2-57x )+100=28⎝⎛⎭⎪⎫x -5142-257+100∴当x =514(小时)=1507(分钟)时,y 2有最小值.∴y 最小.二、填空题7.如图,A 、B 两点间的距离为________.答案 32- 28.如图,A 、N 两点之间的距离为________.答案 40 39.如图所示,为了测定河的宽度,在一岸边选定两点A 、B ,望对岸标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则河的宽度为______.答案 60 m解析 在△ABC 中,∠CAB =30°,∠CBA =75°, ∴∠ACB =75°.∠ACB =∠ABC .∴AC =AB =120 m. 作CD ⊥AB ,垂足为D ,则CD 即为河的宽度.由正弦定理得AC sin ∠ADC =CDsin ∠CAD,∴120sin 90°=CD sin 30°, ∴CD =60(m)∴河的宽度为60 m.10.太湖中有一小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,汽车行驶1 km 后,又测得小岛在南偏西75°的方向上,则小岛到公路的距离是________ km.答案 36解析如图,∠CAB =15°,∠CBA =180°-75°=105°, ∠ACB =180°-105°-15°=60°,AB =1 km. 由正弦定理得BC sin ∠CAB =ABsin ∠ACB∴BC =1sin 60°·sin 15°=6-223 (km).设C 到直线AB 的距离为d ,则d =BC ·sin 75°=6-223·6+24=36 (km).三、解答题11.如图,某货轮在A 处看灯塔B 在货轮的北偏东75°,距离为12 6 n mile ,在A 处看灯塔C 在货轮的北偏西30°,距离为8 3 n mile ,货轮由A 处向正北航行到D 处时,再看灯塔B 在北偏东120°方向上,求:(1)A 处与D 处的距离; (2)灯塔C 与D 处的距离.解 (1)在△ABD 中,∠ADB =60°,∠B =45°,由正弦定理得AD =AB sin Bsin ∠ADB =126×2232=24(n mile).(2)在△ADC 中,由余弦定理得CD 2=AD 2+AC 2-2AD ·AC ·cos 30°, 解得CD =83≈14(n mile).即A 处与D 处的距离为24 n mile , 灯塔C 与D 处的距离约为14 n mile.12.如图,为测量河对岸A 、B 两点的距离,在河的这边测出CD的长为32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,求A 、B 两点间的距离.解 在△BDC 中,∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CDsin 45°,则BC =CD sin 30°sin 45°=64(km).在△ACD 中,∠CAD =180°-60°-60°=60°,∴△ACD 为正三角形.∴AC =CD =32(km).在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC ·cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).答 河对岸A 、B 两点间距离为64km.能力提升13.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的持续时间为( )A .0.5小时B .1小时C .1.5小时D .2小时 答案 B解析 设t 小时时,B 市恰好处于危险区,则由余弦定理得: (20t )2+402-2×20t ×40·cos 45°=302. 化简得:4t 2-82t +7=0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=t 1+t 22-4t 1t 2=1.14.如图所示,甲船以每小时302海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里.当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问乙船每小时航行多少海里?解 如图所示,连结A 1B 2,由已知A 2B 2=102,A 1A 2=302×2060=102,∴A 1A 2=A 2B 2,又∠A 1A 2B 2=180°-120°=60°, ∴△A 1A 2B 2是等边三角形, ∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200.∴B 1B 2=10 2.因此,乙船速度的大小为 10220×60=302(海里/小时). 答 乙船每小时航行302海里.1.解三角形应用问题的基本思路是:实际问题――→画图数学问题――→解三角形数学问题的解――→检验实际问题的解.2.测量距离问题:这类问题的情境一般属于“测量有障碍物相隔的两点间的距离”.在测量过程中,要根据实际需要选取合适的基线长度,测量工具要有较高的精确度.。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下列解△ABC问题 分别属于那种类型? 问题, 下列解△ABC问题, 分别属于那种类型?根据哪 个定理可以先求什么元素? 个定理可以先求什么元素?
(1)a = 2 3, b = 6, c = 3 + 3 (2)b = 1, c = 2, A = 105
o o o
(3)A = 45 , B = 60 , a = 10 (4)a = 2 3, b = 6, A = 30
两点间的距离为65.7米。 答:A,B两点间的距离为 两点间的距离为 米
问题一: 问题一:测量距离问题
例 、如图 A, B两点都在河的对岸 不可到 2 , ( 达), 设计一种测量A, B两点间距离的方法 .
两点都在河的对岸( 例2、A、B两点都在河的对岸(不可到达), 、 、 两点都在河的对岸 不可到达), 设计一种测量两点间的距离的方法。 设计一种测量两点间的距离的方法。
应用举例
复习
a b c = = = 2R 正弦定理: 正弦定理: sin A sin B sin C
a = b + c − 2bc cos A 2 2 余弦定理: 2 余弦定理: b = a + c − 2ac cos B 2 2 2 c = a + b − 2ab cos C
2 2 2
余弦定理推论: 余弦定理推论:
b +c −a cos A = , 2bc 2 2 2 c + a −b cos B = , 2ac 2 2 2 a +b −c 三角形问题:
(1)已知两角和任意一边,求其他两边和一角; )已知两角和任意一边,求其他两边和一角; ( 2)已知两边和其中一边的对角,求其他的边 )已知两边和其中一边的对角, 和角。 和角。 (3)已知两边和它们的夹角,求第三边和其他 )已知两边和它们的夹角, 两个角; 两个角; (4)已知三边,求三个角。 )已知三边,求三个角。
o
第4小题A变更为A=150o呢? 无解 小题A变更为A=150
问题一: 问题一:测量距离问题
例、 图设 , B两 在 的 岸要 量 点 间 距 . 点 河 两 , 测 两 之 的 离 1 如 , A 测 者 A 同 , 所 的 岸 选 一 C,测 AC的 量 在 的 侧在 在 河 边 定 点 出 A 距 是 m, ∠BAC = 510, ∠ACB = 750,求 , B两 间 距 离 55 点 的 离 (精 到 m). 确 0.1
根据正弦定理, 解:根据正弦定理,得
AB AC = sin ∠ACB sin∠ABC
ACsin∠ACB 55sin ∠ACB AB = = sin∠ABC sin∠ABC 55sin75o 55sin75o = = ≈ 65.7(m) o o o o sin(180 − 51 − 75 ) sin54
AB = AC + BC − 2AC × BC cosα
2 2
问题 1:什么叫仰角与俯角?
仰角:目标视线在水平线上方的叫仰角; 俯角:目标视线在水平线下方的叫俯角.
练习讲解 2.如图,自动卸货汽车采用液压机构,设 .如图,自动卸货汽车采用液压机构, 计时需要计算油泵顶杆BC的长度(如图).已 计时需要计算油泵顶杆 的长度(如图).已 的长度 ). 知车厢的最大仰角为60° 油泵顶点B与车厢支 知车厢的最大仰角为 °,油泵顶点 与车厢支 之间的距离为1.95m,AB与水平线之间的 点A之间的距离为 之间的距离为 , 与水平线之间的 长为1.40m,计算 的长 夹角为 6 20′ ,AC长为 长为 ,计算BC的长 保留三个有效数字). (保留三个有效数字). 什么是最大仰角? (1)什么是最大仰角? (2)例题中涉及一个怎样 最大角度 的三角形? 的三角形?
BC 2 = AB 2 + AC 2 − 2 ⋅ AB ⋅ AC ⋅ cos A = 1.95 2 + 1.40 2 − 2 × 1.95 × 1.40 × cos 66o 20′ A = 3.751
∴ BC ≈ 1.89( m )
答:BC长约 BC长约1.89m。 长约 。
B
问题二: 问题二:测量高度问题
解:在∆ABC中,∠BCA=900 +β , ∠ABC = 900 -α , ∠BAC=α − β , ∠BAD = α .
BC sin(90 +β ) BC cos β 根据正弦定理,AB= = . sin(α − β ) sin(α − β ) 解Rt∆ABD, BC cos β sin α 得BD=ABsin∠BAD = . sin(α − β )
(1):底部不可以到达 ):底部不可以到达
例 、AB是底部B不可到达的一个建筑物 A 3 , 为建筑物的 最高点设计一种测量建筑物高度AB . 的方法 .
解:选择一条水平基线HG , 使H , G, B三点在同一条直线上。
由在H , G, 两点用测角仪测得A的仰角分别是
α,β,CD = a, 测角仪器的高是h.
o
中已知什么, 在△ABC中已知什么, 中已知什么 要求什么? 要求什么?
抽象数学模型
C
1.40m
600
A
1.95m
60 20′
D B
已知∆ABC的两边AB = 1.95, AC = 1.40, 夹角A = 66 20′, 求第三边的长.
0
练习讲解 已知△ 的两边AB= 已知△ABC的两边 =1.95m,AC=1.40m, 的两边 , = , 夹角A= ° , 夹角 =66°20′,求BC. . 由余弦定理, 解:由余弦定理,得 C
解斜三角形在实际中应用的一般步骤: 解斜三角形在实际中应用的一般步骤:
分析转化
实际问题
校 验
数学问题 画出图形) (画出图形)
结论
解斜三角形
0
BC cos β sin α CD=BD-BC= = − BC. sin(α − β ) 把测量数据代人,CD ≈ 150 m). (
答:山的高度约为150米.
问题三: 问题三:测量角度问题
例 如 , 艘 轮 A 发 沿 偏 750的 向 6、 图一 海 从 出 , 北 东 方 航 67.5nmile后 达 岛 ,然 从B 发 沿 偏 行 到 海 B 后 出 , 北 东 0的 向 行 32 方 航 54.0nmile后 达 岛C.如 下 到 海 果 次 航 直 从 出 到 C,此 应 沿 样 方 行 接 A 发 达 船 该 怎 的 向 航 , 要 行 少 离角 精 到 0, 距 精 行需 航 多 距 ( 度 确 0.1 离 确 0.01nmile). 到
a sin β 在∆ACD中,AC= , sin(α − β ) AB=AE+h
=ACsinα +h a sin α sin β = + h. sin(α − β )
问题二: 问题二:测量高度问题
(2):底部可以到达 ):底部可以到达
例 、 图在 顶 4 如 , 山 铁 上 处 得 塔 B 测 地 面 一 A的 角 上 点 俯 0 α = 54 40' , 在塔底 C处 得 处 俯 测 A 的 0 角 = 50 1'. 知 已 铁 β 塔 部 的 为 BC 分 高 27.3m, 求 山 C 出 高 D(精 到 m). 确 1
分析:用例 的方法 的方法, 分析:用例1的方法,可以计算出河的 这一岸的一点C到对岸两点的距离 到对岸两点的距离, 这一岸的一点 到对岸两点的距离,再 测出∠ 的大小, 测出∠BCA的大小,借助于余弦定理 的大小 可以计算出A、 两点间的距离 两点间的距离。 可以计算出 、B两点间的距离。
解:测量者可以在河岸边选定两点C、D,测得 测量者可以在河岸边选定两点 、 , CD=a,并且在 、D两点分别测得∠BCA=α, 并且在C、 两点分别测得 两点分别测得∠ 并且在 ∠ACD=β, ∠CDB=γ, ∠BDA=δ.在⊿ADC和 在 和 ⊿BDC中,应用正弦定理得 中
asin(γ +δ ) asin(γ +δ ) AC = = o sin[180 − (β + γ +δ )] sin(β + γ +δ )
asinγ asinγ = BC = o sin[180 − (α + β + γ )] sin(α + β + γ )
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦 中 定理计算出AB两点间的距离 定理计算出 两点间的距离