新2019学年度第一学期九年级数学阶段测试卷--学生版

合集下载

北师大新版-九年级(初三)数学上学期-第2章-一元二次方程-章节单元测试卷

北师大新版-九年级(初三)数学上学期-第2章-一元二次方程-章节单元测试卷

北师大新版九年级上学期《第2章 一元二次方程》2019年单元测试卷一.选择题(共10小题)1.(2017秋•白云区期末)下列是一元二次方程的为( ) A .210x y -+=B .2230x x --=C .230x +=D .22100x y +-=2.(2015秋•游仙区校级期末)方程2(1)(1)246y y y y +-=--化为一般形式为( ) A .2450y y -+=B .2450y y --=C .2450y y +-=D .2450y y ++=3.(2018秋•江岸区校级月考)方程2410x -=的根是( ) A .12x =B .112x =,212x =- C .2x =D .12x =,22x =-4.(2016秋•鼎城区期末)把方程2650x x ++=化为2()x h k +=的形式( ) A .2(3)2x +=- B .2(3)2x +=C .2(3)4x +=D .2(3)4x +=-5.利用求根公式求21562x x +=的根时,其中5a =,则b 、c 的值分别是( ) A .1,62B .6,12C .6-,12 D .6-,12-6.(2019•红桥区二模)方程23180x x +-=的两个根为( ) A .16x =-,23x = B .13x =-,26x =C .12x =-,29x =D .19x =-,22x =7.若关于x 的一元二次方程2240bx bx ++=有两个相等的实数根,则b 的值为( ) A .0B .4C .0 或 4D .0 或4-8.若一元二次方程260x x --=的两根为1x ,2x ,则12x x +的值为( ) A .1B .1-C .0D .6-9.(2018秋•营口期末)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .2300(1)1500x += B .300(12)1500x +=C .2300(1)1500x +=D .30021500x +=10.(2009春•西湖区校级期中)一个跳水运动员从10m 高台上跳水,他每一时刻所在高度(单位:)m 与所用时间(单位:)s 的关系是:5(2)(1)h t t =--+,则运动员起跳到入水所用的时间是( ) A .5s -B .2sC .1s -D .1s二.填空题(共5小题)11.(2019秋•宝山区校级月考)方程:2320x x --=的根为 . 12.已知m 是方程210x x +-=的一个根,则2(1)(1)(1)m m m +++-= . 13.解方程222()4()120x x x x ----=,若设2y x x =-,则原方程可化为 . 14.(2017秋•吉州区期末)写一个没有实数根的一元二次方程 . 15.(2019•河东区一模)已知2(1)1x x x +=+,则x = . 三.解答题(共8小题)16.(2015秋•石林县校级月考)解方程.(1)2450x x +-=(用配方法) (2)22710x x -+=(用公式法)(3)2(2)250x +-= (4)(2)20x x x -+-=.17.(2010•佛山)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) ①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--=.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?18.(2018秋•沙依巴克区期末)已知关于x 的方程2(3)(2)0x x p ---=. (1)求证:方程总有两个不相等的实数根; (2)当2p =时,求该方程的根.19.(2011秋•双峰县期末)已知:关于x 的方程222(1)30x m x m -++-=. (1)当m 为何值时,方程总有两个实数根?(2)设方程的两实根分别为1x 、2x ,当22121278x x x x +-=时,求m 的值.20.(2017秋•江都区期中)用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为230a …,所以231a +就有最小值1,即2311a +…,只有当0a =时,才能得到这个式子的最小值1.同样,因为230a -…,所以231a -+有最大值1,即2311a -+…,只有在0a =时,才能得到这个式子的最大值1.(1)当x = 时,代数式23(3)4x ++有最 (填写大或小)值为 . (2)当x = 时,代数式2243x x -++有最 (填写大或小)值为 . (3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?21.(2017秋•宝应县期中)“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y (件)是销售价x (元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件. (1)试求出日销售量y (件)与销售价x (元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?22.(2018秋•高邮市期中)“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?23.(2019春•西湖区校级月考)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨.利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a的值;(3)该厂第二季度的总加工量.北师大新版九年级上学期《第2章 一元二次方程》2019年单元测试卷参考答案与试题解析一.选择题(共10小题)1.(2017秋•白云区期末)下列是一元二次方程的为( ) A .210x y -+=B .2230x x --=C .230x +=D .22100x y +-=【解答】解:A 、210x y -+=,是二元一次方程,故此选项错误;B 、2230x x --=,是一元二次方程,故此选项正确;C 、230x +=,是一元一次方程,故此选项错误;D 、22100x y +-=,是二元二次方程,故此选项错误;故选:B .2.(2015秋•游仙区校级期末)方程2(1)(1)246y y y y +-=--化为一般形式为( ) A .2450y y -+=B .2450y y --=C .2450y y +-=D .2450y y ++=【解答】解:方程整理得:2450y y --=, 故选:B .3.(2018秋•江岸区校级月考)方程2410x -=的根是( ) A .12x =B .112x =,212x =- C .2x =D .12x =,22x =-【解答】解:214x =, 12x =±.故选:B .4.(2016秋•鼎城区期末)把方程2650x x ++=化为2()x h k +=的形式( )A .2(3)2x +=- B .2(3)2x +=C .2(3)4x +=D .2(3)4x +=-【解答】解:2650x x ++=,265x x ∴+=-,26959x x ∴++=-+,即2(3)4x +=,故选:C .5.(2018春•仓山区期末)利用求根公式求21562x x +=的根时,其中5a =,则b 、c 的值分别是( ) A .1,62B .6,12C .6-,12 D .6-,12-【解答】解:215602x x -+=, 所以5a =,6b =-,12c =. 故选:C .6.(2019•红桥区二模)方程23180x x +-=的两个根为( ) A .16x =-,23x = B .13x =-,26x = C .12x =-,29x = D .19x =-,22x =【解答】解:方程分解得:(3)(6)0x x -+=, 可得30x -=或60x +=, 解得:16x =-,23x =, 故选:A .7.(2019春•庐阳区期末)若关于x 的一元二次方程2240bx bx ++=有两个相等的实数根,则b 的值为( ) A .0B .4C .0 或 4D .0 或4-【解答】解:根据题意得:△22(2)444160b b b b =-⨯⨯=-=, 解得4b =或0b =(舍去). 故选:B .8.若一元二次方程260x x --=的两根为1x ,2x ,则12x x +的值为( ) A .1B .1-C .0D .6-【解答】解:方程260x x --=的两根为1x ,2x , 121x x ∴+=,故选:A .9.(2018秋•营口期末)中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为( ) A .2300(1)1500x += B .300(12)1500x +=C .2300(1)1500x +=D .30021500x +=【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x ,可列方程为:2300(1)1500x +=. 故选:A .10.(2009春•西湖区校级期中)一个跳水运动员从10m 高台上跳水,他每一时刻所在高度(单位:)m 与所用时间(单位:)s 的关系是:5(2)(1)h t t =--+,则运动员起跳到入水所用的时间是( ) A .5s -B .2sC .1s -D .1s【解答】解:设运动员起跳到入水所用的时间是xs , 根据题意可知:5(2)(1)0x x --+=, 解得:11x =-(不合题意舍去),22x =, 那么运动员起跳到入水所用的时间是2s . 故选:B .二.填空题(共5小题)11.(2019秋•宝山区校级月考)方程:2320x x --=的根为 123x =-,21x = .【解答】解:2320x x --=, (32)(1)0x x +-=, 320x +=,10x -=, 123x =-,21x =,故答案为:123x =-,21x =.12.(2017秋•抚州期中)已知m 是方程210x x +-=的一个根,则2(1)(1)(1)m m m +++-= 2 . 【解答】解:m 是方程210x x +-=的一个根,21m m ∴+=,22222(1)(1)(1)211222()212m m m m m m m m m m ∴+++-=+++-=+=+=⨯=, 故答案为:2.13.解方程222()4()120x x x x ----=,若设2y x x =-,则原方程可化为24120y y --= .【解答】解:原方程可变形为:222()4()120x x x x ----=2y x x =-,∴原方程可化为:24120y y --=.14.(2017秋•吉州区期末)写一个没有实数根的一元二次方程 210y y ++= . 【解答】解:210y y ++=,只要满足240b ac -<即可. 故答案为:210y y ++=15.(2019•河东区一模)已知2(1)1x x x +=+,则x = 1-或12. 【解答】解:2(1)(1)0x x x +-+=, (1)(21)0x x +-=, 10x +=或210x -=,所以11x =-,212x =, 故答案为1-或12. 三.解答题(共8小题)16.(2015秋•石林县校级月考)解方程. (1)2450x x +-=(用配方法) (2)22710x x -+=(用公式法) (3)2(2)250x +-= (4)(2)20x x x -+-=. 【解答】解:(1)245x x +=, 2449x x ++=,2(2)9x +=, 23x +=±,所以11x =,25x =-; (2)△2(7)42141=--⨯⨯=,722x ±=⨯所以1x ,2x =; (3)(25)(25)0x x +-++=, 250x +-=或250x ++=,所以13x =,27x =-; (4)(2)(1)0x x -+=, 20x -=或10x +=,所以12x =,21x =-.17.(2010•佛山)教材或资料会出现这样的题目:把方程2122x x -=化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项. 现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程2122x x -=所化的一元二次方程的一般形式?(答案只写序号) ①21202x x --=;②21202x x -++=;③224x x -=;④2240x x -++=;⑤20--.(2)方程2122x x -=化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?【解答】解:(1)一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,因此①,②,④,⑤是方程2122x x -=所化的一元二次方程的一般形式.(2)一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,在一般形式中2ax 叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.若设方程2122x x -=的二次项系数为(0)a a ≠,则一次项系数为2a -,常数项为4a -,因此二次项系数:一次项系数:常数项1:(2):(4)=--. 答:这个方程的二次项系数:一次项系数:常数项1:(2):(4)=--. 18.(2018秋•沙依巴克区期末)已知关于x 的方程2(3)(2)0x x p ---=. (1)求证:方程总有两个不相等的实数根; (2)当2p =时,求该方程的根.【解答】(1)证明:方程可变形为22560x x p -+-=, △222(5)41(6)14p p =--⨯⨯-=+.20p …,2410p ∴+>,即△0>,∴这个方程总有两个不相等的实数根.(2)解:当2p =时,原方程为2520x x -+=,∴△254217=-⨯=,x ∴,1x ∴,2x =. 19.(2011秋•双峰县期末)已知:关于x 的方程222(1)30x m x m -++-=. (1)当m 为何值时,方程总有两个实数根?(2)设方程的两实根分别为1x 、2x ,当22121278x x x x +-=时,求m 的值. 【解答】解:(1)△0…时,一元二次方程总有两个实数根,△22[2(1)]41(3)8160m m m =+-⨯⨯-=+…, 2m -…,所以2m -…时,方程总有两个实数根. (2)22121278x x x x +-=,21212()378x x x x ∴+-=,12b x x a +=-,12c x x a=, 22[2(1)]31(3)78m m ∴-+-⨯⨯-=,解得5m =或13-(舍去),故m 的值是5m =.20.(2017秋•江都区期中)用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为230a …,所以231a +就有最小值1,即2311a +…,只有当0a =时,才能得到这个式子的最小值1.同样,因为230a -…,所以231a -+有最大值1,即2311a -+…,只有在0a =时,才能得到这个式子的最大值1.(1)当x = 3- 时,代数式23(3)4x ++有最 (填写大或小)值为 .(2)当x = 时,代数式2243x x -++有最 (填写大或小)值为 .(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m ,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【解答】解:(1)2(3)0x +…, ∴当3x =-时,2(3)x +的最小值为0,则当3x =-时,代数式23(3)4x ++的最大值为4;(2)代数式222432(1)5x x x -++=--+,则当1x =时,代数式2243x x -++的最大值为5;(3)设垂直于墙的一边为xm ,则平行于墙的一边为(162)x m -,∴花园的面积为222(162)2162(816)322(4)32x x x x x x x -=-+=--++=--+,则当边长为4米时,花园面积最大为232m .故答案为:(1)3-,小,4;(2)1,大,5;21.(2017秋•宝应县期中)“双11”即将到来,某网上微店准备销售一种服装,每件成本为50元.市场调查发现其日销售量y (件)是销售价x (元)的一次函数,经试销后发现,当销售价定为60元时,日销售量为800件;当销售价定为65元时,日销售量为700件.(1)试求出日销售量y (件)与销售价x (元)之间的函数关系式;(2)若该网上微店为减少库存积压利用“双11”促销这批服装,打算日获利达到12000元,问这种服装每件售价是多少元?【解答】解:(1)设y 与x 之间的函数关系式为y kx b =+,将(60,800)、(65,700)代入y kx b =+,6080065700k b k b +=⎧⎨+=⎩,解得:202000k b =-⎧⎨=⎩, y ∴与x 之间的函数关系式为202000y x =-+.(2)根据题意得:(50)(202000)12000x x --+=,整理,得:215056000x x -+=,解得:170x =,280x =.减少库存积压,70x ∴=.答:这种服装每件售价是70元.22.(2018秋•高邮市期中)“鲜乐”水果店购进一优质水果,进价为10元/千克,售价不低于10元/千克,且不超过16元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系(1)某天这种水果的售价为14元/千克,求当天该水果的销售量;(2)如果某天销售这种水果获利100元,那么该天水果的售价为多少元?【解答】解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,将(11,28),(12,26)代入y kx b =+,得:11281226k b k b +=⎧⎨+=⎩,解得:250k b =-⎧⎨=⎩,y ∴与x 之间的函数关系式为250y x =-+.当14x =时,2145022y =-⨯+=,∴当天该水果的销售量为22千克.(2)根据题意得:(10)(250)100x x --+=,整理得:2353000x x -+=,解得:115x =,220x =.又1016x 剟,15x ∴=.答:该天水果的售价为15元/千克.23.(2019春•西湖区校级月考)方方同学在寒假社会调查实践活动中,对某罐头加工厂进行采访,获得了该厂去年的部分生产信息如下:①该厂一月份罐头加工量为a 吨;②该厂三月份的加工量比一月份增长了44%;③该厂第一季度共加工罐头182吨;④该厂二月、三月加工量每月按相同的百分率增长;⑤该厂从四月份开始设备整修更新,加工量每月按相同的百分率开始下降;⑥六月份设备整修更新完毕,此月加工量为一月份的2.1倍,与五月份相比增长了46.68吨. 利用以上信息求:(1)该厂第一季度加工量的月平均增长率;(2)该厂一月份的加工量a 的值;(3)该厂第二季度的总加工量.【解答】解:(1)设该厂第一季度加工量的月平均增长率为x ,由题意得:2(1)(144%)a x a +=+2(1) 1.44x ∴+=10.220%x ∴==,2 2.2x =-(舍)答:该厂第一季度加工量的月平均增长率为20%.(2)由题意得:2(1)(1)182a a x a x ++++=将20%x =代入得:2(120%)(120%)182a a a ++++=解得50a =答:该厂一月份的加工量a 的值为50.(3)由题意可知,三月份加工量为:250(120%)72+= 六月份加工量为:50 2.1105⨯=(吨)五月份加工量为:10546.6858.32-=(吨)设四、五两个月的加工量下降的百分率为y ,由题意得: 272(1)58.32y -=解得:10.110%y ==,2 1.9y =(舍)∴四、五两个月的加工量下降的百分率为10% 72(110%)58.32105228.12∴⨯-++=(吨)答:该厂第二季度的总加工量为228.12吨.。

黑龙江省哈尔滨市道里区光华中学2019-2020学年度上学期九年级9月阶段测试数学(五四制)学科试卷

黑龙江省哈尔滨市道里区光华中学2019-2020学年度上学期九年级9月阶段测试数学(五四制)学科试卷

哈尔滨市光华中学阶段测试九年级数学试卷2019-10-12一、选择题(每小题3分,共计30分)1.某地某日的最高气温为3℃,最低气温为-9℃,则这一天的最高气温比最低气温高( ). A.-12℃ B .-6℃ C .6℃ D .12℃2. 下列校徽图案中,是轴对称图形的是( ).A B C D3.抛物线的顶点坐标是( ).A (-2,3)B (2,3)C (-2,-3)D (2,-3) 4.Rt△ABC 中,∠C=90°,sinB=,则tanA 的值为( ). A . B .C .D .5. 点(﹣1,4)在反比例函数y =的图象上,则下列各点在此函数图象上的是( ). A.(4,﹣1)B.(﹣,1)C.(﹣4,﹣1)D.(,2)6.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°得到 正方形AB C D ''',图中阴影部分的面积为( ).A.12B.33C.313-D.314-7. 反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ).A.2B.-2C.4D. -4第7题图8.如图,在综合实践活动中,小明在学校门口的点C 处测得树的顶端A 仰角为37°,同时测得BC=20米,则树的高AB(单位:米)为( ). A.020sin 37B.20tan 37°C.020tan 37 D.20sin 37°第8题图9.某农场2016年蔬菜产量为50吨,2018年蔬菜产量为60.5吨,该农场蔬菜产量的年平均增长率相同.设该农场蔬菜产量的年平均增长率为x,则根据题意可列方程为( ). A .50)1(5.602=-x B .5.60)1(502=-x C .5.60)1(502=+x D .50)1(5.602=+x10.已知二次函数的图象如图所示,给出以下结论:① ;② ;③;④.其中所有正确结论的序号是( ).A. ③④B. ②③C. ①④D. ①②二、填空题(每小题3分,共计30分) 11.哈西和谐大道跨线桥总投资250 000 000元,将250 000 000用科学记数法表示为 . 12.在函数y=2x-4x中,自变量x 的取值范围是 . 13.抛物线342+-=x x y 与x 轴于交于A 、B 两点,交y 轴于点C ,则△ABC 的面积是 .14. .若反比例函数2ky x-=的图象位于第二、四象限,则k 的取值范围是 . 15.已知函数y=3x 2-6x+k(k 为常数)的图象经过点A(0.85,y 1),B(1.1,y 2),C(,y 3), 请用“<”连接y 1 、y 2 、y 3 的结果为__________________________.16.图中是抛物线形拱桥,当拱顶离水面 2m 时,水面宽4 m . 水面下降1 m , 水面宽度增加 m.第16题图CDB '错错第6题图第10题图17.如图,在Rt △ABC 中,∠C=900,sinA=53,AB=10,D 是AC 的中点,则BD= . 18.如图,抛物线2(0)y ax bx c a =++≠的部分图象如图所示,则当0y >时,x 的取值范围是 .19.在菱形ABCD 中,∠ABC=60°,点E 在直线AD 上,AE=21AB ,连接BE ,则∠ABE 的正切值为 . 20.如图,四边形ABCD 中∠BCD=90°对角线BD 平分∠ABC ,过点A 作AE ⊥BC 于点E ,AE=BC ,若BE=5,CD=8,则AD= .第17题图 第18题图 第20题图三.解答题(其中21,22题各7分,23,24题各8分,25-27题各10分,共计60分) 21.(本题7分)先化简,再求代数式的值,其中x=4sin45°﹣2cos60°.22.(本题7分)如图,每个小正方形的边长都是1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D 的端点都在小正方形的顶点上.(1)在方格纸中画出一个以线段AB 为一边的菱形ABEF ,所画的菱形的各顶点必须在小正方形的顶点上,并且其面积为20;(2)在方格纸中以CD 为底边画出等腰三角形CDK ,点K 在小正方形的顶点上,且△CDK 的面积为10;(3)在(1)、(2)的条件下,连接EK ,请直接写出线段EK 的长.23.(本题8分) 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?24.(本题8分)在菱形ABCD 中,点O 是对角线的交点,E 点是边CD 的中点,点F 在BC 延长线上, 且CF=BC .(1)如图1,求证:四边形OCFE 是平行四边形;(2)如图2,连接DF ,如果DF ⊥CF ,请你写出图中所有的等边三角形.25.(本题10分) 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x 元(x 为整数)、每星期售出商品的利润为y 元. (1)请写出y 与x 的函数关系式;(2)当降价多少元时,每星期的利润最大?最大利润是多少?DC BA(第22题图)FOED B(第24题图2)OEDB(第24题图1)26(本题10分)已知:Rt△ABC,沿着斜边BC翻折得△BCD,延长AC至点E,AC=CE,连接DE (1)如图1,求证:DE//BC;(2)如图2,连接BE,作AF⊥BE于点F,连接DF,若DC⊥AE,求证:∠BDF=∠BED;(3)在(2)的条件下,连接CF,DF=4,求CF的长. 27.(本题10分)抛物线243y ax ax a=-+交x轴于点B、C两点,交y轴于点A,点D为抛物线的顶点,连接AB、AC,已知△ABC的面积为3.(1)求抛物线的解析式;(2)点P为抛物线对称轴右侧一点,点P的横坐标为m,过点P作PQ∥AC交y轴于点Q,AQ的长度为d ,求d与m的函数关系式;(3)在(2)的条件下,当d=4时,作DN⊥y轴于点N,点G为抛物线上一点,AG交线段PD于点M,连接MN,若△AMN是以MN为底的等腰三角形,求点G的坐标.yxACO BDyxACO BD26题图126题图226题图327题图127题图2。

2018-2019学年度第一学期秦淮区九年级(上)期中数学试题(含答案)

2018-2019学年度第一学期秦淮区九年级(上)期中数学试题(含答案)

2018-2019学年度第一学期第一阶段学业质量监测试卷九年级数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净 后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定 位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.下列方程中,是一元二次方程的是 A .x 3+2x +1=0 B .x 2=(y +1)(y -1) C .2x 2+1=x +1 D .1x+x 2=12.用配方法解方程x 2-4x -3=0时,配方后的方程为A .(x +2)2=1B .(x -2)2=1C .(x +2)2=7D .(x -2)2=73.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是 A .90分B .91分C .92分D .93分4.如图,在以点O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切,切点为C .若大圆的半径是13,AB =24,则小圆的半径是 A .4B .5C .6D .75.某班第一小组共有6名学生,某次数学考试的成绩分别为(单位:分):72,80,77,81,89,81,则这组数据的众数与中位数分别是A .81分、80.5分B .89分、80.5分C .81分、81分D .89分、81分(第4题)(第6题)6.如图,在Rt △ABC 中,∠ACB =90°,⊙O 是△ABC 的内切圆,三个切点分别为D 、E 、F .若BF =3,AF =4,则△ABC 的面积是 A .6B .7C .7 3D .12二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 7.一元二次方程x 2-x =0的解为 ▲ .8.圆锥的母线长为12,底面圆的半径为6,则圆锥的侧面积是 ▲ .(结果保留π) 9.已知x 1、x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1·x 2的值是 ▲ . 10.若一个正六边形的半径是3,则这个正六边形的周长是 ▲ .11.若一组数据a 、b 、c 、d 的方差是2,则a +1、b +1、c +1、d +1的方差是 ▲ . 12.如图,点A 、B 、C 、D 、E 都在⊙O 上,AB 是⊙O 的直径,则∠A +∠B +∠D 的度数为 ▲ °.13.如图,“甜筒”形ABC 是由AB ︵和两条长度相等的线段AC 、BC 围成,若AC =2,AB ︵为180°,∠ACB =60°,则AB ︵的长度是 ▲ .(结果保留π)14.关于x 的一元二次方程ax 2+bx +c =0(a 、b 、c 是常数,a ≠0)配方后为 (x +1)2=d(d 是常数),则b2a= ▲ . 15.某商店经销的某种商品,每件成本为30元.经市场调研,售价为40元时,可销售150件;售价每上涨1元,销售量将减少10件.如果这种商品全部销售完,那么该商店可盈利1560元.设这种商品的售价上涨x 元,根据题意,可列方程为 ▲ . 16.已知线段AB 是⊙O 中与半径相等的弦,点C 在⊙O 上(不与A 、B 重合),连接AC 、BC ,若△ABC 是等腰三角形,则∠ABC = ▲ °.(第12题)(第13题)AB三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解方程(x -1)2-15=0.18.(6分)已知y 1=x 2-9,y 2=3-x .x 为何值时,y 1与y 2相等?19.(6分)求证:无论k 为何值,关于x 的一元二次方程x (x -2)+k (x -2)=0必有两个实数根.20.(8分)如图,AB 、CD 是⊙O 的直径,弦CE ∥AB ,CE ︵为40°.求∠AOC 的度数.21.(8分)如图,在长40 m 、宽22 m 的矩形地面内,修筑三条同样宽且垂直于矩形的边的道路,余下的部分铺上草坪(即阴影部分).要使草坪的面积达到760 m 2,道路的宽应为多少?(第20题) ABCD EO(第21题)22.(8分)如图,AB 是⊙O 的直径,C 是⊙O 外一点,AB =AC ,连接BC ,交⊙O 于点D ,过点D 作DE ⊥AC ,垂足为E . (1)求证:DE 与⊙O 相切;(2)若∠B =30°,AB =4,则图中阴影部分的面积是 ▲ .(结果保留根号和π)23.(8分)甲、乙两名射击队员在相同条件下分别射靶5次,成绩统计如下(单位:环):(1)分别计算甲、乙两人成绩的平均数;(2)比较两人的成绩, ▲ 更稳定;(填“甲”或“乙”)(3)如果甲、乙两人分别再射击一次,都命中了8环,分别记甲、乙两人6次成绩的方差为S 2甲和S 2乙,则S 2甲 ▲ S 2乙.(填“>”、“<”或“=”)24.(8分)如图,在圆的内接四边形ABCD 中,AB =AD ,BA 、CD 的延长线相交于点E ,且AB =AE .求证:BC 是该圆的直径.(第24题) EB CAD(第22题)25.(10分)如图,正方形ABCD 内接于⊙O ,E 为AD ︵的中点.(1)作等边三角形EFG ,使点F 、G 分别在AB ︵和CD ︵上;(用直尺和圆规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求BG ︵的度数;(3)若正方形ABCD 的边长为4,则(1)中等边三角形EFG的边长为 ▲ .26.(10分)某校数学兴趣班上学期共有32名学生,本学期又有若干名学生新加入了该兴趣班.王老师上学期和本学期各买了a 本笔记本平均分给全班学生.与上学期相比,本学期全班学生人数增加的百分率恰好是每名学生分得的笔记本数减少的百分率的54.(1)当a =160时.①上学期该兴趣班每名学生分得的笔记本数是 ▲ ; ②求本学期新加入该班的学生的人数.(2)当a ≠160时,本学期新加入该班的学生的人数与(1)②中求出的结果是否相同?请通过计算说明理由.(第25题)27.(10分)图①是一把两条边有公共零刻度的角尺,该角尺两边的夹角可以改变.(图②的∠BAC 是该角尺有刻度的一侧的示意图,∠BAC 的大小可以改变.)将这个角尺摆放在圆上,利用其刻度,可以计算出圆的半径.(1)当∠BAC =90°时.①按图③的方式摆放角尺——线段AB 与图中的圆相切,切点为D ,线段AC 与该圆有一个公共点E .若D 、E 在角尺上的刻度分别为3 cm 和1 cm ,求该圆的半径;②按图④的方式摆放角尺——线段AB 与图中的圆有一个公共点D ,线段AC 与该圆有两个公共点E 、F .若D 、E 、F 在角尺上的刻度分别为1 cm 、2 cm 和6 cm ,求该圆的半径.(2)当∠BAC =60°时,类似图④的方式摆放角尺,如图⑤.若D 、E 、F 在角尺上的刻度分别为1 cm 、2 cm 和6 cm ,则图中圆的半径为▲ cm .A BCDE③A BCD EF④A BCD EF ⑤(第27题)ACB①②(第27题)2018-2019学年度第一学期第一阶段学业质量监测九年级数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(每小题2分,共计12分)二、填空题(每小题2分,共计20分)7.x 1=0,x 2=1 8.72π 9.-32 10.18 11.2 12.9013.14.115.(40+x -30)(150-10x )=1560 16.15、30、75或120三、解答题(本大题共11小题,共计88分)17…………………………………… 2分4分2=16分18.(本题6分)解:根据题意,得x 2-9=3-x .……………………………………1分原方程可化为(x -3)(x +4)=0.…………………………………………4分 x -3=0或x +4=0. x 1=3,x 2=-4.6分19.(本题6分)解:方法一原方程可化为x 2+(k -2)x -2k =0.……………………………………………1分 ∵a =1,b =k -2,c =-2k ,…………………………………………2分∴b 2-4ac =(k -2)2-4(-2k )=k 2-4k +4+8k =k 2+4k +4=(k +2)2.………4分 ∵(k +2)2≥0,即b 2-4ac ≥0,……………………5分∴无论k 为何值,原方程必有两个实数根.……………………………………6分 方法二原方程可化为(x -2)(x +k )=0.…………………………………………2分解这个方程,得x 1=2,x 2=-k .………………………………………………5分 ∴无论k 为何值,原方程必有两个实数根.……………………………………6分20.(本题8分)解:连接OE .∵CE ︵为40°,∴∠COE =40°. ······································ 2分 ∵OC =OE , ····························································· 3分 ∴∠C =∠E =12(180°-∠COE )=70°. ···························· 6分∵CE ∥AB ,∴∠AOC =∠C =70°. ······························· 8分21.(本题8分)解:设道路的宽为x m .…………………………1分根据题意,得(40-x )(22-x )=760.………………………………4分 整理,得x 2-62x +120=0.解这个方程,得x 1=2,x 2=60(不合题意,舍去).…………………………7分 答:道路的宽度为2 m .……………………………………8分(说明:只设未知数,不列方程,不得分;设了未知数,方程错误,但方程中“40-x ”(或“22-x ”)表示正确,得2分)22.(本题8分)(1)证明:连接OD .∵OB =OD ,∴∠B =∠ODB . ···································· 1分 ∵AB =AC ,∴∠B =∠C . ········································· 2分 ∴∠ODB =∠C . ····················································· 3分 ∴OD ∥AC . ··························································· 4分 ∵DE ⊥AC ,∴∠CED =90°.∴∠ODE =∠CED =90°,即DE ⊥OD . ························ 5分 ∵点D 在⊙O 上,∴DE 与⊙O 相切. ·························· 6分 (2)3+2 3. ································································ 8分23.(本题8分)解:(1)x 甲—=15(7+8×3+9)=8(环),………………………………2分x 乙—=15(7×3+9+10)=8(环).………………………………4分(2)甲.……………………………………6分 (3)<.………………………………………………8分A BCD E O24.(本题8分) 证明:方法一如图1,连接AC .∵AB =AD ,AB =AE ,∴AD =AE . ···························· 1分 ∴∠ADE =∠E . ···················································· 2分 ∵四边形ABCD 内接于圆,∴∠B +∠ADC =180°. ······· 3分 ∵∠ADE +∠ADC =180°,∴∠B =∠ADE . ················· 4分 ∴∠B =∠E . ························································ 5分 ∴BC =CE . ·························································· 6分 ∵BC =CE ,AB =AE ,∴∠CAB =90°. ······················· 7分 ∴BC 是该圆的直径. ·············································· 8分 方法二如图2,连接BD .∵AB =AD ,AB =AE ,∴AD =AE . ···························· 1分 ∴∠ADE =∠E . ···················································· 2分 ∵AB =AD ,∴∠ADB =∠ABD . ································ 3分 ∵∠ADE +∠E +∠ADB +∠ABD =180°, ···················· 4分 ∴2∠ADE +2∠ADB =180°,∴∠ADE +∠ADB =90°,即∠BDE =90°. ··················· 6分 ∴∠BDC =180°-∠BDE =90°. ································ 7分 ∴BC 是该圆的直径. ·············································· 8分25.(本题10分)解:(1)如图,等边三角形EFG 即为所求.……………………………………3分(2)∵正方形ABCD 内接于⊙O ,∴AD ︵=CD ︵=BC ︵,其度数都为360°÷4=90°.……………………4分 ∵E 是AD ︵的中点,∴DE ︵=12AD ︵.∴DE ︵的度数为45°.…………………5分EB CA D图1EB CAD 图2∵等边三角形EFG 内接于⊙O ,∴EG ︵的度数为360°÷3=120°.……6分 ∴DG ︵=EG ︵-DE ︵.∴DG ︵的度数为75°.∴BG ︵=CD ︵+BC ︵-DG ︵.∴BG ︵的度数为105°.…………………………8分(3)26.………………………………10分 26.(本题10分)解:(1)①5.…………………………1分②设本学期每名学生分得的笔记本数减少的百分率为x .………………2分根据题意,得32⎝⎛⎭⎫1+54x ·5(1-x )=160.……………………5分由等式性质,得⎝⎛⎭⎫1+54x (1-x )=1. (*)整理,得5x 2-x =0.解这个方程,得x 1=15=20%,x 2=0(不合题意,舍去).……………7分则32×54x =8.答:本学期新加入该班的学生的人数是8人.……………………8分(2)相同.设本学期每名学生分得的笔记本数减少的百分率为x .根据题意,得32⎝⎛⎭⎫1+54x ·a32(1-x )=a .由等式性质,得⎝⎛⎭⎫1+54x (1-x )=1.该方程与(*)相同,故结果相同.…………………………10分27.(本题10分)解:(1)①如图1,设该圆的圆心为O ,连接OD 、OE ,过点O 作OF ⊥AC ,垂足为F .由题意,得AD =3,AE =1.∵AB 与⊙O 相切,切点为D ,∴OD ⊥AB ,即∠ODA =90°∵OF ⊥AC ,即∠OF A =90°,且∠BAC =90°,∴四边形ADOF 是矩形. ∴OF =AD =3. ··········· 1分 设OD =OE =r ,则AF =OD =r .∴EF =r -1. ················································· 2分 ∵在Rt △EOF 中,∠OFE =90°,图1第11页 ∴OF 2+EF 2=OE 2.∴32+(r -1)2=r 2. ·············· 3分解这个方程,得r =5.即⊙O 的半径为5 cm . ······································· 4分②如图2,设该圆的圆心为O ,连接OD 、OE ,过点O 作OG ⊥AB ,OH ⊥AC ,垂足分别为G 、H .由题意,得AD =1,AE =2,AF =6.∴EF =4.∵OH ⊥AC ,∴∠OHA =90°,且EH =12EF =2. ……………………5分 ∴AH =4.∵OG ⊥AB ,即∠OGA =90°,且∠BAC =90°,∴四边形AGOH 是矩形.∴OG =AH =4.设DG =x ,则OH =AG =x +1.∵在Rt △GOD 中,∠OGD =90°,∴OG 2+GD 2=OD 2.∵在Rt △EOH 中,∠OHE =90°,∴OH 2+EH 2=OE 2.∵OD =OE ,∴OG 2+GD 2=OH 2+EH 2.∴42+x 2=(x +1)2+22.……7分解这个方程,得x =112. ∴OD 2=42+⎝⎛⎭⎫ 112 2=1854.∴OD =1852. 即⊙O 的半径为1852cm .……………………8分 (2)31.…………………10分图2。

2019-2020年九年级第一学期阶段性检测数学试卷

2019-2020年九年级第一学期阶段性检测数学试卷

2019-2020年九年级第一学期阶段性检测数学试卷的解为.这种解法体现的数学思想是A、50°B、80°C、100°D、130°6.有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中,相等的两条弦所对的弧是等弧,其中真命题是A.③④ B.①③ C.①④ D.②③7.如图,在△ABC中,∠CAB=65°.将△ABC在平面内绕点A旋转到△的位置,使得∥AB,则旋转角的度数为A.35° B.40° C.50° D.65°8.在同一坐标系中,一次函数与二次函数的图象可能是A. B. C. D.9.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数为A. 116°B. 64°C. 58°D. 32°10.已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说(第5题)法正确的是A .有最小值-5、最大值0B .有最小值-3、最大值6C .有最小值0、最大值6D .有最小值2、最大值6二、填空题(每小题3分,共15分.)11.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是 .12.直角坐标系中点A 坐标为(5,3),B 坐标为(1,0),将点A 绕点B 逆时针旋转90°得到点C ,则点C 的坐标为 .13.将抛物线向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为 .14.如图,AB 是半圆O 的直径,AC =AD ,OC =2,∠CAB =30°,则点O 到CD 的距离OE = . 15.如图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b -2a =0; ②4a -2b+c <0; ③a -b +c =-9a ;④若(-3,y 1),(,y 2)是抛物线上两点,则y 1>y 2.其中正确的序号是 .(第10题)(第15题)ACD BO (第14题)E ABCB ′C ′(第7题)(第9题)三、解答题(本大题共8小题,共75分)16.解方程(每小题5分,共10分)⑴2-4+2=0 ⑵17.(本题7分)如图:在平面直角坐标系中,网格中每一个小正方形的边长为1 个单位长度;已知△ABC.⑴作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1,(只画出图形).⑵作出△ABC关于原点O成中心对称的△A2B2C2,(只画出图形),写出B2和C2的坐标.18.(本题7分)⑴把二次函数y=2x2-8x+6代成的形式.⑵写出抛物线的顶点坐标、对称轴和最值,并说明该抛物线是由哪一条形如的抛物线经过怎样的变换得到的?⑶求该抛物线与坐标轴的交点坐标。

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷(含解析)印刷版

2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.32.(3分)下列几何体的主视图与众不同的是()A.B.C.D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×1044.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤25.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PBC.点A、B到PQ的距离不相等D.∠APQ=∠BPQ7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>38.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第象限.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为度.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.2019-2020学年吉林省第二实验学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列各数中,最小的数是()A.﹣1B.﹣6C.2D.3【分析】根据①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.即可判断出答案.【解答】解:四个选项中,最小的数是﹣6.故选:B.2.(3分)下列几何体的主视图与众不同的是()A.B.C.D.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:A、主视图是下面两个正方形,上面一个正方形相叠;B、主视图是下面两个正方形,上面一个正方形相叠;C、主视图是下面两个正方形,上面一个正方形相叠;D、主视图上下都是两个正方形相叠.故选:D.3.(3分)2019年6月5日,长征十一号运载火箭成功完成了”一箭七星”海上发射技术试验,该火箭重58000kg,将数58000用科学记数法表示为()A.58×103B.5.8×103C.0.58×105D.5.8×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将数58000用科学记数法表示为5.8×104.故选:D.4.(3分)不等式组的解集是()A.x≥2B.x>﹣2C.x≤2D.﹣2<x≤2【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解①得:x>﹣2,解②得:x≤2,则不等式组的解集是:﹣2<x≤2.故选:D.5.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】已知抛物线顶点式y=a(x﹣h)2+k,顶点坐标是(h,k).【解答】解:∵抛物线y=3(x﹣1)2+1是顶点式,∴顶点坐标是(1,1).故选A.6.(3分)观察图中尺规作图痕迹,下列结论错误的是()A.PQ为∠APB的平分线B.P A=PB C.点A、B到PQ的距离不相等D.∠APQ=∠BPQ 【分析】根据角平分线的作法进行解答即可.【解答】解:∵由图可知,PQ是∠APB的平分线,∴A,B,D正确;∵PQ是∠APB的平分线,P A=PB,∴点A、B到PQ的距离相等,故C错误.故选:C.7.(3分)函数y1=ax2+bx+c与y2=x的图象如图所示,当y1<y2时,自变量x的取值范围是()A.1<x<3B.x<1C.x>3D.x<1或x>3【分析】求y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围.【解答】解:y1<y2的自变量x的取值范围,从图上看就是二次函数图象在一次函数图象下方时,横坐标x的取值范围,从图上看当1<x<3时二次函数图象在一次函数图象下方,所以1<x<3.故选:A.8.(3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.二、填空题(本大题共6小题,每小题3分,共18分9.(3分)计算:=.【分析】原式利用二次根式乘法法则计算即可得到结果.【解答】解:原式==,故答案为:10.(3分)一元二次方程x2﹣5x+3=0根的判别式的值为13.【分析】直接利用根的判别式△=b2﹣4ac求出答案.【解答】解:一元二次方程x2﹣5x+3=0根的判别式的值是:△=(﹣5)2﹣4×3=13.故答案为:13.11.(3分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线x=2.【分析】点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.【解答】解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.12.(3分)已知二次函数y=ax2﹣2x+c的图象如图所示,则点P(a,c)在第二象限.【分析】观察图形得抛物线开口向下,抛物线与y轴的交点在x轴的上方,根据二次函数图形与系数的关系得到a<0,c>0,即可判断P点所在的象限.【解答】解:∵抛物线开口向下,∴a<0;∵抛物线与y轴的交点在x轴的上方,∴c>0.∴点P(a,c)在第二象限.故答案为二.13.(3分)如图,以△ABC的顶点A为圆心,以BC长为半径作弧;再以顶点C为圆心,以AB长为半径作弧,两弧交于点D;连结AD、CD.若∠B=65°,则∠ADC的大小为65度.【分析】根据作法可得AB=CD,BC=AD,然后利用“边边边”证明△ABC和△CDA全等,再根据全等三角形对应角相等解答.【解答】解:∵以点A为圆心,以BC长为半径作弧;以顶点C为圆心,以AB长为半径作弧,两弧交于点D,∴AB=CD,BC=AD,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS),∴∠ADC=∠B=65°.故答案为:65.14.(3分)如图,在平面直角坐标系中,点A是抛物线y=a(x﹣3)2+k与y轴的交点,点B是这条抛物线上另一点,且AB∥x轴,则以AB为边的菱形ABCD的周长为24.【分析】根据题意和二次函数的性质可以求得线段AB的长度,从而可以求得菱形ABCD的周长.【解答】解:∵在平面直角坐标系中,点点A是抛物线y=a(x﹣3)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=3,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是6,∴AB=6,∴菱形ABCD的周长为:6×4=24,故答案为:24.三、解答题(本大题共10小题,共78分)15.(6分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A、B的坐标分别代入函数解析式求得b、c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).16.(6分)小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度.【分析】设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,根据时间=路程÷速度结合小刚比小明提前4min到达公园,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设小明骑自行车的平均速度为x米/分钟,则小刚乘公交车的平均速度为3.5x米/分钟,依题意,得:﹣=4,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴3.5x=700.答:小刚乘公交车的平均速度为700米/分钟.17.(6分)如图所示,直线AC∥DE,DA⊥AC,隧道BC在直线AC上.某施工队要测量隧道BC的长,在点D处观测点B,测得∠BDA=45°,在点E处观测点C,测得∠CEF=53°,且测得AD=600米,DE=500米,试求隧道BC的长.【参考数据:sin53°≈,cos53°≈,tan53°≈】【分析】作EM⊥AC于M,解直角三角形即可得到结论.【解答】解:在Rt△ABD中,AB=AD=600,作EM⊥AC于M,则AM=DE=500,∴BM=100,在Rt△CEM中,tan53°=,∴CM=800,∴BC=CM﹣BM=800﹣100=700(米)答:隧道BC长为700米18.(7分)如图,菱形EFGH的顶点E、G分别在矩形ABCD的边AD,BC上,顶点F,H在矩形ABCD 的对角线BD上.(1)求证:BG=DE;(2)若AB=3,BC=4,则菱形EFGH的面积最大值是.【分析】(1)证明△BFG≌△DHE(AAS),即可得出BG=DE;(2)当点F与B重合,点H与D重合时,菱形EFGH的面积最大,由菱形的性质得出EG⊥BD,BE =DE=BG,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得出方程32+(4﹣x)2=x2,解得x=,得出CG=AE=4﹣=,菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积,即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠FBG=∠HDE,∵四边形EFGH是菱形,∴FG=EH,∠EFG=∠EHG,∠GFH=∠EFG,∠EHF=∠EHG,∴∠GFH=∠EHG,∴∠BFG=∠DHE,在△BFG和△DHE中,,∴△BFG≌△DHE(AAS),∴BG=DE;(2)解:当点F与B重合,点H与D重合时,菱形EFGH的面积最大,如图所示:∵四边形EFGH是菱形,∴EG⊥BD,BE=DE=BG,∵四边形ABCD是矩形,∴∠BAD=90°,设BE=DE=x,则AE=4﹣x,在Rt△ABE中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴CG=AE=4﹣=,∴菱形EFGH的面积最大值=矩形ABCD的面积﹣△ABE的面积﹣△CDG的面积=3×4﹣2×××3=;故答案为:.19.(7分)如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(4,﹣3),该图象与x轴相交于点A、B,与y轴相交于点C,其中点A的横坐标为1.(1)求该二次函数的表达式;(2)求tan∠ABC.【分析】(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,将A(1,0)代入解析式来求a的值.(2)由锐角三角函数定义解答.【解答】解:(1)由题意可设抛物线解析式为:y=a(x﹣4)2﹣3,(a≠0).把A(1,0)代入,得0=a(1﹣4)2﹣3,解得a=.故该二次函数解析式为y=(x﹣4)2﹣3;(2)令x=0,则y=(0﹣4)2﹣3=.则OC=.因为二次函数图象的顶点坐标为(4,﹣3),A(1,0),则点B与点A关系直线x=4对称,所以B(7,0).所以OB=7.所以tan∠ABC===,即tan∠ABC=.20.(7分)图①、图②是两个7×7网格,网格中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点,请仅用无刻度的直尺按要求作图(保留作图痕迹,不写作法).(1)在图①网格内画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图②网格内以OM为边画一个OMPQ,使OMPQ面积等于5且点P、Q均在格点上.(画出一种即可)【分析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可(答案不唯一).【解答】解:(1)如图,△MON即为所求.(2)四边形OMPQ即为所求.21.(8分)如图①,甲、乙两车同时从A地出发,分别匀速前往B地与C地,甲车到达B地休息一段时间后原速返回,乙车到达C地后立即返回.两车恰好同时返回A地.图②是两车各自行驶的路程y(千米)与出发时间x(时)之间的函数图象.根据图象解答下列问题:(1)甲车到达B地休息了3小时;(2)求甲车返回A地途中y与x之间的函数关系式;(3)当x为何值时,两车与A地的路程恰好相同.(不考虑两车同在A地的情况)【分析】(1)根据题意和图象中的数据可以求得甲车到达B地休息了多长时间;(2)根据函数图象中的数据可以求得甲车返回A地途中y与x之间的函数关系式;(3)根据函数图象中的数据可以求得甲乙的速度,从而可以解答本题.【解答】解:(1)由题意可得,甲车到达B地休息了:7﹣2﹣2=3(小时),故答案为:3小;(2)设甲车返回A地途中y与x之间的函数关系式是y=kx+b,,得,即甲车返回A地途中y与x之间的函数关系式是y=80x﹣240;(3)甲车的速度为160÷2=80km/h,乙车的速度为:420÷7=60km/h,令60x=160,得x=,令60x=210+(210﹣160),得x=,当x为或时,两车与A地的距离恰好相同.22.(9分)教材呈现:如图是华师版八年级下册数学教材第75页的部分内容.请根据教材的内容,运用此性质解决下列问题:如图①,Rt△ABC与Rt△EDC是两个全等的三角形,当两个三角形完全重合时,将△EDC绕直角顶点C顺时针旋转60°,点D恰好落在AB边上,连结DE,BE.【探究】(1)求证:DE∥BC.(2)判断S△ADC与S△BCE的大小关系S△ADC=S△BCE(填”>””<”或”=”);【应用】如图②,在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,过点D作DE∥BC交AC于点F,交CD的垂线CE于点E,连结BE,AE.若S△BCE=2,EF=4FD,则四边形ADCE的面积为10【分析】【探究】(1)由旋转的性质可得CB=CD,∠CBD=∠CDE,∠BCD=60°,可得△BCD是等边三角形,可得∠CBD=60°=∠BCD=∠CDE,可得DE∥BC;(2)由平行线之间的距离处处相等,且底相同,可得S△BCE=S△BCD,通过证明AD=BD,可得S△BCD =S△ADC,可得S△ADC=S△BCE;【应用】由中线的性质可求S△BCD=S△ADC,由平行线的性质可求S△BCE=S△BCD=S△ADC=2,由三角形面积公式可求S△ACE=8,即可求解.【解答】证明:【探究】(1)∵将△EDC绕直角顶点C顺时针旋转60°,∴CB=CD,∠CBD=∠CDE,∠BCD=60°,∴△BCD是等边三角形,∴∠CBD=60°,∵∠CDE=60°=∠CBD,∴∠BCD=∠CDE,∴DE∥BC;(2)∵DE∥BC,∴S△BCE=S△BCD,∵∠ACB=90°,∠CBD=∠BCD=60°,∴∠A=∠ACD=30°,∴AD=CD,∴AD=BD,∴S△BCD=S△ADC,∴S△ADC=S△BCE,故答案为:=;【应用】∵CD是斜边AB的中线,∴S△BCD=S△ADC,∵DE∥BC,∠ACB=90°,∴S△BCE=S△BCD=S△ADC=2,∠AFD=∠ACB=90°,∵S△ACD=AC×DF=2,S△ACE=×AC×EF,且EF=4DF,∴S△ACE=8,∴四边形ADCE的面积=S△ADC+S△ACE=10,故答案为:10.23.(10分)如图,在平行四边形ABCD中,对角线AC与BD相交于点O,BD⊥AB,AB=3,BD=4.动点P从点A出发,沿AC方向以每秒个单位长度的速度向终点C运动,过点P作PE⊥直线AB于点E.设点P的运动时间为t.(1)用含t的代数式表示线段PE的长;(2)当线段PE被线段BC平分时,求t的值;(3)设△APE与△ABC重合部分图形的面积为S,求S与t的函数关系式;(4)点Q是射线PE上一点,在点P的运动过程中,始终保持PQ=1,将△AEQ沿AQ翻折,使点E 的对应点为E′,直接写出当点E′落在直线AD上时t的值.【分析】(1)证明△APE∽△AOB,可得=,由此即可解决问题.(2)如图2中,当PE被BC平分时,设PE交BC于F.由PF∥OB,BF=CF,推出OP=PC=OC,求出AP即可解决问题.(3)分两种情形:①如图3﹣1中,当0<t≤1时,重叠部分是△APE,根据S=•AE•PE求解.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,根据S=S△APE﹣S△BFE求解即可.(4)分两种情形:①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.证明∠EAQ=∠BNM,推出tan∠EAQ=tan∠BNM,可得=,由此构建方程即可解决问题.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.由BM∥QE,推出△ABM∽△AEQ,可得=,由此构建方程即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD是平行四边形,∴OB=OD=BD=2,∵BD⊥AB,PE⊥AB,∴OA===,PE∥BD,∴△APE∽△AOB,∴=,即=,解得:PE=2t;(2)如图2中,当PE被BC平分时,设PE交BC于F.∵PF∥OB,BF=CF,∴OP=PC=OC=,∴AP=OA+OP=,∴t=.(3)①如图3﹣1中,当0<t≤1时,重叠部分是△APE,S=•AE•PE=•3t•2t=3t2.②如图3﹣2中,当1<t≤2时,重叠部分是四边形ABFP,S=S△APE﹣S△BFE=3t2﹣•(3t﹣3)•(4t﹣4)=﹣3t2+12t﹣6.综上所述,S=.(4)①如图4﹣1中,当点E′落在DA的延长线上时,作BM⊥AD于M,在AD上截取AN,使得AN=AB,连接BN.在Rt△ABD中,AD===5,∵S△ABD=•AB•BD=•AD•BM,∴BM==,∴AM=MN===,∴NM=AN﹣AM=3﹣=,∵∠E′=∠AEQ=90°,QE=QE′.AQ=AQ,∴Rt△AQE≌Rt△AQE(HL),∴∠QAE=∠QAE′,∵∠E′AE=∠ABN+∠ANB,∠ANB=∠ABN,∴∠EAQ=∠BNM,∴tan∠EAQ=tan∠BNM,∴=,∴=,∴t=.②如图4﹣2中,当点E′落在AD的延长线于E′,作MN⊥AD于N.∵∠QAB=∠QAE′,MB⊥AB,MN⊥AD,∴BM=MN,∠ABM=∥ANM=90°,∵AM=AM,∴△AMN≌△AMB(HL),∴AB=AN=3,设BM=MN=x,则DM=4﹣x,在Rt△DMN中,则有(4﹣x)2=x2+22,解得x=,∵BM∥QE,∴△ABM∽△AEQ,∴=,∴=,解得t=2,综上所述,满足条件的t的值为s或2s.24.(12分)已知,在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于A,B两点(点A在点B 的左侧),顶点为C,与y轴交点为D.(1)求点C和点A的坐标;(2)把y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折前与翻折后共同组成的图形记为“W”.①点E为“W”上一点,当△EAB的面积等于3时,求点E的横坐标;②点P在“W”,点Q在x轴上,当以点P、Q、C、D为顶点的四边形为平行四边形时,直接写出点Q的坐标;③点M为y=x2﹣4x+3(x≥0)上一点,作点M关于y轴的对称点N,以MN为边向上作正方形MNRS,当直线MD把正方形面积分为1:5两部分时,求点M的横坐标m的值.【分析】(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,即可求解;(2)①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即可求解;②分DA是平行四边形的一条边、DA是平行四边形的对角线两种情况,分别求解即可;③直线MD把正方形面积分为1:5两部分时,则S△MKS=S正方形MNRS,即可求解.【解答】解:(1)y=x2﹣4x+3,令x=0,则y=3,令y=0,则x=1或3,故点A、B、C、D的坐标为:(1,0)、(3,0)、(2,﹣1)、(0,3),答:点C和点A的坐标分别为:(0,3)、(1,0);(2)y=x2﹣4x+3(x≥0)的图象沿着y轴翻折,翻折后的抛物线表达式为:y=x2+4x+3,①△EAB的面积S=×AB×|y E|=2×|y E|=3,则y E=±3,即:x2﹣4x+3=±3或x2+4x+3=±3,解得:x=0或4或﹣4;答:点E的横坐标为:0或4或﹣4;②设点P(m,n),n=m2±4m+3,点Q(s,0),﹣﹣﹣﹣当DA是平行四边形的一条边时,当x≥0时,点D向右平移1个单位向下平移3个单位得到A,同样,点P(Q)向右平移1个单位向下平移3个单位得到Q(P),故:m+1=s,n﹣3=0或m﹣1=s,n+3=0,且n=m2﹣4m+3,解得:m=0或4(舍去0),故s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);当DA是平行四边形的对角线时,当x≥0时,m+s=1,n+0=3,且n=m2﹣4m+3,解得:s=5,即点Q(5,0);当x<0时,同理可得:点Q(﹣3,0);综上,Q的坐标为:(5,0)或(﹣3,0);③如下图:设边RS交直线AC于点K,设点M(m,m2﹣4m+3),则点N(﹣m,m2﹣4m+3),则MN=2m,直线MD函数表达式中的k值为:k ==m﹣4,tan∠MA=﹣k=4﹣m=tanα,则∠RSM=α,直线MD把正方形面积分为1:5两部分时,则S△MKS =S正方形MNRS,即×2m ×=×(2m)2,解得:m=1.第21页(共21页)。

最新2019-2020年度人教版九年级数学上册《旋转》单元测试卷及解析-精品试题

最新2019-2020年度人教版九年级数学上册《旋转》单元测试卷及解析-精品试题

《第23章旋转》一、选择题1.下面的图形中,是中心对称图形的是()A. B.C.D.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图C.C图D.D图5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60°D.90°9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过,并且被平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是三角形.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1在第象限.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四= .边形ABCD三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?20.如图,请画出△ABC关于点O点为对称中心的对称图形.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.25.如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.26.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.27.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.《第23章旋转》参考答案与试题解析一、选择题1.下面的图形中,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3) C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.3.3张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180°后得到如图(2)所示,则她所旋转的牌从左数起是()A.第一张B.第二张C.第三张D.第四张【考点】中心对称图形.【分析】旋转前后图形的形状一样,从而可判断旋转的那一张牌是中心对称图形,由此可得出答案.【解答】解:旋转前后图形的形状一样,图1中从左边数第二、三张扑克牌旋转180度后,图形不能和原来的图形重合,而第一张旋转180度后正好与原图重合.故选A.【点评】本题考查的是中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.4.在下图右侧的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.A图 B.B图C.C图D.D图【考点】旋转的性质;平移的性质.【专题】操作型.【分析】根据平移和旋转的性质解答【解答】解:A、可由△ABC逆时针旋转一个角度得到;B、可由△ABC翻折得到;C、可由△ABC逆时针旋转一个角度得到;D、可由△ABC逆时针旋转一个角度得到.故选B.【点评】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.准确的找到对称中心和旋转角是解题的关键.5.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格【考点】生活中的轴对称现象;生活中的平移现象.【专题】压轴题;网格型.【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB为对称轴作轴对称,再向右平移7格.故选D.【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是()A.A N E G B.K B X N C.X I H O D.Z D W H【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念,分析各组大写英文字母的特征求解.【解答】解:A、有轴对称图形A、E,有中心对称图形N;B、有轴对称图形K、B、X,有中心对称图形X、N;C、所有字母既是轴对称,又是中心对称;D、有轴对称图形D、W、H,有中心对称图形Z、H.故不同于另外三组的一组是C,这一组的特点是各个字母既是轴对称,又是中心对称.故选:C.【点评】本题考查利用轴对称与中心对称解决问题的能力,分析字母的结构特点是解决本题的关键.7.如图,C是线段BD上一点,分别以BC,CD为边在BD同侧作等边△ABC和等边△CDE,AD 交CE于F,BE交AC于G,则图中可通过旋转而相互得到的全等三角形对数有()A.1对B.2对C.3对D.4对【考点】旋转的性质;全等三角形的判定;等边三角形的性质.【分析】根据等边三角形的三边相等、三个角都是60°,以及全等三角形的判定方法(SSS、SAS、ASA、AAS),进行证明.【解答】解:△EBC≌△DAC,△GCE≌△FCD,△BCG≌△ACF.理由如下:∵∠ACB=∠ECD,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD∴△EBC≌△DAC.∴△GCE≌△FCD.∴△BCG≌△ACF.故选:C.【点评】本题考查的是全等三角形的判定、等边三角形的性质以及旋转的性质的综合运用.8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度正确的是()A.30° B.45° C.60°D.90°【考点】利用旋转设计图案.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【解答】解:每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【点评】本题中确定旋转角的方法是需要掌握的内容.9.如图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.4个B.3个C.2个D.l个【考点】生活中的旋转现象.【分析】根据旋转的性质,找出图中图形的关键处(旋转中心和对应点)按顺时针方向旋转90°后的形状即可选择答案.【解答】解:根据旋转的性质可知,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的是和.故选C.【点评】本题考查旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.10.如图1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,点C在AE上,△ABC绕着A点经过逆时针旋转后能够与△ADE重合得到图1,再将图1作为“基本图形”绕着A 点经过逆时针连续旋转得到图2.两次旋转的角度分别为()A.45°,90°B.90°,45°C.60°,30°D.30°,60°【考点】旋转的性质;等腰直角三角形.【专题】应用题.【分析】图1中可知旋转角是∠EAB,再结合等腰直角三角形的性质,易求∠EAB;图2中是把图1作为基本图形,那么旋转角就是∠FAB,结合等腰直角三角形的性质易求∠FAB.【解答】解:根据图1可知,∵△ABC和△ADE是等腰直角三角形,∴∠CAB=45°,即△ABC绕点A逆时针旋转45°可到△ADE;如右图,∵△ABC和△ADE是等腰直角三角形,∴∠DAE=∠CAB=45°,∴∠FAB=∠DAE+∠CAB=90°,即图1可以逆时针连续旋转90°得到图2.故选A.【点评】本题考查了旋转的性质、等腰直角三角形的性质,解题的关键是理解旋转的性质,能找对旋转中心、旋转角.二、填空题11.关于某一点成中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分.【考点】中心对称.【分析】中心对称的性质:对称点的连线都经过对称中心,并且被对称中心平分.【解答】解:根据中心对称的性质,得对称点的连线都经过对称中心,并且被对称中心平分.【点评】本题考查成中心对称的两个图形的性质:对称点的连线都经过对称中心,并且被对称中心平分.12.在平行四边形、矩形、菱形、正方形、等腰梯形5种图形中,既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【考点】轴对称图形;中心对称图形.【分析】根据轴对称图形和中心对称图形的概念作答.【解答】解:两者都是的是矩形,菱形,正方形;其中平行四边形只是中心对称图形;等腰梯形只是轴对称图形.故既是轴对称,又是中心对称的图形有矩形,菱形,正方形.【点评】考查了轴对称图形和中心对称图形的概念,能够正确判断特殊图形的轴对称性.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是90°.【考点】生活中的旋转现象.【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,借助图形,找出时针和分针之间相差的大格数,用大格数乘30°即可.【解答】解:∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.【点评】此题主要考查了旋转及钟面的认识,解决本题的关键是在钟面上指针每走一个数字,绕中心轴旋转30°.14.如图,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则△ABB′是等边三角形.【考点】等边三角形的判定;旋转的性质.【分析】由旋转的性质可得AB=AB′,∠BAB′=60°,即可判定△ABB'是等边三角形.【解答】解:因为,△ABC以点A旋转中心,按逆时针方向旋转60°得到△AB′C′,则AB=AB′,∠BAB′=60°,所以△ABB'是等边三角形.【点评】此题主要考查学生对等边三角形的判定及旋转的性质的理解及运用.15.已知a<0,则点P(a2,﹣a+3)关于原点的对称点P1在第三象限.【考点】关于原点对称的点的坐标.【分析】首先根据a的符号判断得出P点所在象限,进而得出关于原点的对称点P1所在象限.【解答】解:∵a<0,∴a2>0,﹣a+3>0,∴P点在第一象限,∴关于原点的对称点P1在第三象限.故答案为:三.【点评】此题主要考查了关于原点对称点的性质,根据题意得出P点位置是解题关键.16.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是60 °.【考点】旋转的性质.【分析】由旋转角∠AOC=40°,∠AOD=90°,可推出∠COD的度数,再根据点C恰好在AB 上,OA=OC,∠AOC=40°,计算∠A,利用内角和定理求∠B,根据对应关系可知∠D=∠B.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.【点评】本题考查了旋转性质的运用,等腰三角形的性质运用,角的和差关系问题.17.如图,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为2π.【考点】轴对称的性质;圆的认识.【专题】压轴题.【分析】结合图形,不难发现阴影部分的面积是圆面积的一半.【解答】解:∵大圆的面积=π×22=4π,∴阴影部分面积=×4π=2π.故答案为:2π.【点评】利用图形特点把阴影部分的面积整体计算.18.如图,四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,若线段AE=5,则S四= 25 .边形ABCD【考点】全等三角形的判定与性质.【专题】计算题.【分析】过A点作AF⊥CD交CD的延长线于F点,由AE⊥BC,AF⊥CF,∠C=90°可得四边形AECF为矩形,则∠2+∠3=90°,而∠BAD=90°,根据等角的余角相等得∠1=∠2,加上∠AEB=∠AFD=90°和AB=AD,根据全等三角形的判定可得△ABE≌△ADF,由全等三角形的性质有AE=AF=5,S△ABE=S△ADF,则S四边形ABCD=S正方形AECF,然后根据正方形的面积公式计算即可.【解答】解:过A点作AF⊥CD交CD的延长线于F点,如图,∵AE⊥BC,AF⊥CF,∴∠AEC=∠CFA=90°,而∠C=90°,∴四边形AECF为矩形,∴∠2+∠3=90°,又∵∠BAD=90°,∴∠1=∠2,在△ABE和△ADF中∴△ABE≌△ADF,∴AE=AF=5,S△ABE=S△ADF,∴四边形AECF是边长为5的正方形,∴S四边形ABCD=S正方形AECF=52=25.故答案为25.【点评】本题考查了全等三角形的判定与性质:有两组对应角相等,并且有一条边对应相等的两个三角形全等;全等三角形的对应边相等;全等三角形的面积相等.也考查了矩形的性质.三、解答题(共66分)19.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)如果点A是旋转中心,那么点B经过旋转后,点B旋转到什么位置?【考点】旋转的性质;正方形的性质.【分析】(1)根据图形确定旋转中心即可;(2)对应边AE、AF的夹角即为旋转角,再根据正方形的每一个角都是直角解答;(3)因为△AFD≌△AEB,所以可知点B旋转到什么位置是点D.【解答】解:(1)由图可知,点A为旋转中心;(2)∠EAF为旋转角,在正方形AECF中,∠EAF=90°,所以,旋转了90°;(3)∵△BEA旋转后能与△DFA重合,∴△BEA≌△DFA,∴可知点B旋转到什么位置是点D.【点评】本题考查了旋转的性质,正方形的性质以及旋转中心的确定,旋转角的确定,以及旋转变换只改变图形的位置不改变图形的形状与大小的性质.20.如图,请画出△ABC关于点O点为对称中心的对称图形.【考点】作图-旋转变换.【专题】作图题.【分析】连接AO并延长至A′,使A′O=AO,连接BO并延长至B′,使B′O=BO,连接CO 并延长至C′,使C′O=CO,然后顺次连接即可.【解答】解:如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握旋转的性质并确定出对应点的位置是解题的关键.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.【考点】作图-旋转变换;作图-平移变换.【专题】作图题;网格型.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为16 ;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)【考点】利用平移设计图案.【专题】网格型.【分析】(1)求小鱼的面积利用长方形的面积减去周边的三角形的面积即可得到;(2)直接根据平移作图的方法作图即可.【解答】解:(1)小鱼的面积为7×6﹣×5×6﹣×2×5﹣×4×2﹣×1.5×1﹣××1﹣1﹣=16;(2)将每个关键点向左平移3个单位,连接即可.【点评】本题考查的是平移变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.如图:E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】首先将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,进而得出△FBM≌△FBE,即可求出∠MBF=∠EBF,求出度数即可.【解答】解:将△BCE以B为旋转中心,逆时针旋转90°,使BC落在BA边上,得△BAM,则∠MBE=90°,AM=CE,BM=BE,∵CE+AF=EF,∴MF=EF,在△FBM和△FBE中,∵,∴△FBM≌△FBE(S.S.S),∴∠MBF=∠EBF,∴∠EBF=×90°=45°.【点评】此题主要考查了旋转的性质以及全等三角形的判定与性质,将△BCE逆时针旋转90°,使BC落在BA边上,得△BAM是解题关键.24.如图所示是一种花瓣图案,它可以看作是一个什么“基本图案”形成的,试用两种方法分析其形成过程.【考点】利用旋转设计图案.【分析】仔细观察图形,基本图形可以不同,但对于不同的基本图形需要作的几何变换也不同.【解答】解:方法一:可看作整个花瓣的六分之一部分,图案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个图案.方法二:可看作是绕中心O依次旋转60°、120°得到整个图案的.【点评】本题考查利用旋转设计图案的知识,基本图案的寻找较为灵活,本题还可以看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.25.(2009•株洲)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1.(1)线段OA1的长是 6 ,∠AOB1的度数是135°;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.【考点】旋转的性质;平行四边形的判定.【分析】(1)图形在旋转过程中,边长和角的度数不变;(2)可证明OA∥A1B1且相等,即可证明四边形OAA1B1是平行四边形;(3)平行四边形的面积=底×高=OA×OA1.【解答】(1)解:因为,∠OAB=90°,OA=AB,所以,△OAB为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA1=OA=6,对应角∠A1OB1=∠AOB=45°,旋转角∠AOA1=90°,所以,∠AOB1的度数是90°+45°=135°.(2)证明:∵∠AOA1=∠OA1B1=90°,∴OA∥A1B1,又∵OA=AB=A1B1,∴四边形OAA1B1是平行四边形.(3)解:▱OAA1B1的面积=6×6=36.【点评】此题主要考查旋转的性质和平行四边形的判定以及面积的求法.26.(2004•厦门)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】几何图形问题;综合题.【分析】(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.【解答】解:(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,则DF=>a,BF=|AB﹣AF|=|a﹣b|<a,∴DF>BF,即此时DF≠BF;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.【点评】注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.27.(2008•太原)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,∠AFD与∠DCA的数量关系是;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由;(3)在图③中,连接BO,AD,探索BO与AD之间有怎样的位置关系,并证明.【考点】全等三角形的判定;平行四边形的性质.【专题】压轴题;探究型.【分析】(1)要证∠AFD=∠DCA,只需证△ABC≌△DEF即可;(2)结论成立,先证△ABC≌△DEF,再证△ABF≌△DEC,得∠BAF=∠EDC,推出∠AFD=∠DCA;(3)BO⊥AD,由△ABC≌△DEF得BA=BD,点B在AD的垂直平分线上,且∠BAD=∠BDA,继而证得∠OAD=∠ODA,OA=OD,点O在AD的垂直平分线上,即BO⊥AD.【解答】解:(1)∠AFD=∠DCA.证明:∵AB=DE,BC=EF,∠ABC=∠DEF,∴△ABC≌△DEF,∴∠ACB=∠DFE,∴∠AFD=∠DCA;(2)∠AFD=∠DCA(或成立),理由如下:方法一:由△ABC≌△DEF,得:AB=DE,BC=EF(或BF=EC),∠ABC=∠DEF,∠BAC=∠EDF,∴∠ABC﹣∠FBC=∠DEF﹣∠CBF,∴∠ABF=∠DEC,在△ABF和△DEC中,,∴△ABF≌△DEC(SAS),∠BAF=∠EDC,∴∠BAC﹣∠BAF=∠EDF﹣∠EDC,∠FAC=∠CDF,∵∠AOD=∠FAC+∠AFD=∠CDF+∠DCA,∴∠AFD=∠DCA;方法二:连接AD,同方法一△ABF≌△DEC,∴AF=DC,∵△ABC≌△DEF,∴FD=CA,在△AFD和△DCA中,,∴△AFD≌△DCA,∴∠AFD=∠DCA;(3)如图,BO⊥AD.方法一:由△ABC≌△DEF,点B与点E重合,得∠BAC=∠BDF,BA=BD,∴点B在AD的垂直平分线上,且∠BAD=∠BDA,∵∠OAD=∠BAD﹣∠BAC,∠ODA=∠BDA﹣∠BDF,∴∠OAD=∠ODA,∴OA=OD,点O在AD的垂直平分线上,∴直线BO是AD的垂直平分线,即BO⊥AD;方法二:延长BO交AD于点G,同方法一,OA=OD,在△ABO和△DBO中,,∴△ABO≌△DBO,∴∠ABO=∠DBO,在△ABG和△DBG中,,∴△ABG≌△DBG,∴∠AGB=∠DGB=90°,∴BO⊥AD.【点评】本题综合考查全等三角形、等腰三角形和旋转的有关知识.注意对三角形全等知识的综合应用.。

2019-2020学年人教版九年级数学上册 第二十一章 一元二次方程 达标测试卷(含答案)

第二十一章达标测试卷一、选择题(每题3分,共30分)1.下列方程是关于x的一元二次方程的是()A.ax2+2=x(x+1) B.x2+1x=3C.x2+2x=y2-1 D.3(x+1)2=2(x+1)2.如果2是方程x2-3x+k=0的一个根,那么常数k的值为()A.1 B.2 C.-1 D.-23.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x-2)2=3 C.(x-2)2=5 D.(x+2)2=54.方程x2-42x+9=0的根的情况是()A.有两个不相等的实根B.有两个相等的实根C.无实根D.以上三种情况都有可能5.等腰三角形的两边长为方程x2-7x+10=0的两根,则它的周长为() A.12 B.12或9 C.9 D.76.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了x行(或列),则列方程得() A.(8-x)(10-x)=8×10-40 B.(8-x)(10-x)=8×10+40C.(8+x)(10+x)=8×10-40 D.(8+x)(10+x)=8×10+40(第7题) 7.如图,在▱ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x -3=0的根,则▱ABCD的周长为()A.4+2 2 B.12+6 2C.2+2 2 D.2+2或12+6 28.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()9.在直角坐标系xOy中,已知点P(m,n),m,n满足(m2+1+n2)(m2+3+n2)=8,则OP的长为()A. 5 B.1 C.5 D.5或110.如图,某小区规划在一个长为40 m,宽为26 m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种植草坪,若使每块草坪(阴影部分)的面积都为144 m2,则路的宽为()(第10题) A.3 m B.4 mC.2 m D.5 m二、填空题(每题3分,共30分)11.方程(x-3)2+5=6x化成一般形式是__________________,其中一次项系数是________.12.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长为________________.13.已知x=1是一元二次方程x2+ax+b=0的一个根,则(a+b)2 019的值为________.14.若关于x的一元二次方程2x2-5x+k=0无实数根,则k的最小整数值为________.15.已知x1,x2是关于x的一元二次方程x2-5x+a=0的两个实数根,且x21-x22=10,则a=________.16.对于任意实数a,b,定义f(a,b)=a2+5a-b,如f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是________.17.下面是某同学在一次测试中解答的填空题:①若x2=a2,则x=a;②方程2x(x-2)=x-2的解为x=12;③已知x1,x2是方程2x2+3x-4=0的两根,则x1+x2=32,x1x2=-2.其中错误的答案序号是__________.18.已知a,b,c是△ABC的三边长,若方程(a-c)x2+2bx+a+c=0有两个相等的实数根,则△ABC是______三角形.19.若x2-3x+1=0,则x2x4+x2+1的值为________.20.如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15 m,一面利用墙,其余三面用篱笆围,篱笆长为24 m.当围成的花圃面积为40 m2时,平行于墙的边BC的长为________m.(第20题) 三、解答题(21、26题每题12分,22、23题每题8分,其余每题10分,共60分) 21.用适当的方法解下列方程:(1)x(x-4)+5(x-4)=0;(2)(2x+1)2+4(2x+1)+4=0;(3)x2-2x-2=0; (4)(y+1)(y-1)=2y-1.22.已知关于x的一元二次方程x2-(t-1)x+t-2=0.(1)求证:对于任意实数t,方程都有实数根;(2)当t为何值时,方程的两个根互为倒数?请说明理由.23.已知关于x的方程(a-1)x2-4x-1+2a=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.24.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2.(1)求实数k的取值范围;(2)若方程的两实根x1,x2满足|x1|+|x2|=x1·x2,求k的值.25.为了贯彻党中央、国务院关于倡导开展全民阅读的重要部署,落实《关于实施中华优秀传统文化传承发展工程的意见》.某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2015年图书借阅总量是7 500本,2017年图书借阅总量是10 800本.(1)求该社区从2015年至2017年图书借阅总量的年平均增长率;(2)已知2017年该社区居民借阅图书人数有1 350人,预计2018年达到1 440人.如果2017年至2018年图书借阅总量的增长率不低于2015年至2017年的年平均增长率,那么2018年的人均借阅量比2017年增长a%,求a的值至少是多少?26.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动.问:(1)P,Q两点出发多长时间后,四边形PBCQ的面积是33 cm2?(2)P,Q两点出发多长时间后,点P与点Q之间的距离是10 cm?(第26题)答案一、1.D 2.B 3.A 4.C 5.A 6.D7.A 8.B 9.B 10.C 二、11.x 2-12x +14=0;-1212.6或10或1213.-1 点拨:将x =1代入方程x 2+ax +b =0,得1+a +b =0,∴a +b =-1,∴(a +b )2 019=-1.14.415.214 点拨:由根与系数的关系,得x 1+x 2=5,x 1·x 2=a .由x 21-x 22=10得,(x 1+x 2)(x 1-x 2)=10,∴x 1-x 2=2,∴(x 1-x 2)2=(x 1+x 2)2-4x 1·x 2=25-4a =4,∴a =214.16.-6或1 17.①②③ 18.直角19.18 点拨:由已知x 2-3x +1=0得x 2=3x -1,则x 2x 4+x 2+1=x 2(3x -1)2+x 2+1=x 210x 2-6x +2=3x -110(3x -1)-6x +2=3x -124x -8=3x -18(3x -1)=18.20.4三、21.解:(1)原方程可化为(x -4)(x +5)=0,∴x -4=0或x +5=0, 解得x =4或x =-5. (2)原方程可化为(2x +1+2)2=0,即(2x +3)2=0, 解得x 1=x 2=-32. (3)∵a =1,b =-2,c =-2,∴Δ=4-4×1×(-2)=12>0, ∴x =2±122=2±232=1±3. ∴x 1=1+3,x 2=1- 3. (4)原方程化为一般形式为y 2-2y =0.因式分解,得y(y-2)=0.∴y1=2,y2=0.22.(1)证明:在关于x的一元二次方程x2-(t-1)x+t-2=0中,Δ=[-(t-1)]2-4×1×(t-2)=t2-6t+9=(t-3)2≥0,∴对于任意实数t,方程都有实数根.(2)解:设方程的两根分别为m,n,则mn=t-2.∵方程的两个根互为倒数,∴mn=t-2=1,解得t=3.∴当t=3时,方程的两个根互为倒数.23.解:(1)将x=3代入方程(a-1)x2-4x-1+2a=0中,得9(a-1)-12-1+2a=0,解得a=2.将a=2代入原方程中得x2-4x+3=0,因式分解得(x-1)(x-3)=0,∴x1=1,x2=3.∴方程的另一个根是x=1.(2)∵三角形的三边长都是这个方程的根.∴①当三边长都为1时,周长为3;②当三边长都为3时,周长为9;③当两边长为3,一边长为1时,周长为7;④当两边长为1,一边长为3时,不满足三角形三边关系,∴不能构成三角形.故三角形的周长为3或9或7.24.解:(1)∵原方程有两个不相等的实数根,∴Δ=(2k+1)2-4(k2+1)=4k2+4k+1-4k2-4=4k-3>0,解得k>3 4.(2)∵k>34,∴x1+x2=-(2k+1)<0.又∵x1·x2=k2+1>0,∴x1<0,x2<0,∴|x1|+|x2|=-x1-x2=-(x1+x2)=2k+1.∵|x1|+|x2|=x1·x2,∴2k+1=k2+1,解得k1=0,k2=2.又∵k >34,∴k =2.25.解:(1)设该社区从2015年至2017年图书借阅总量的年平均增长率为x ,根据题意,得7 500(1+x )2=10 800, 即(1+x )2=1.44,解得x 1=0.2=20%,x 2=-2.2(舍去).因此该社区从2015年至2017年图书借阅总量的年平均增长率为20%. (2)10 800×(1+0.2)=12 960(本),10 800÷1 350=8(本),12 960÷1 440=9(本). (9-8)÷8×100%=12.5%. 故a 的值至少是12.5.26.解:(1)设P ,Q 两点出发x s 后,四边形PBCQ 的面积是33 cm 2,则由题意得(16-3x +2x )×6×12=33,解得x =5.即P ,Q 两点出发5 s 后,四边形PBCQ 的面积是33 cm 2.(2)设P ,Q 两点出发t s 后,点P 与点Q 之间的距离是10 cm ,过点Q 作QH ⊥AB 于点H .在Rt △PQH 中,有(16-5t)2+62=102,解得t 1=1.6,t 2=4.8.即P ,Q 两点出发1.6 s 或4.8 s 后,点P 与点Q 之间的距离是10 cm.。

河北省唐山市路北区2019-2020第一学期期中检测学生素质中期评价人教版九年级数学试卷 含解析

2019-2020第一学期期中学生素质中期评价九年级数学试卷一、选择题(本大题共14个小题,每题2分,共28分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.若关于x的方程(a+1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠﹣1 B.a>﹣1 C.a<﹣1 D.a≠02.方程﹣5x2=1的一次项系数是()A.3 B.1 C.﹣1 D.03.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或34.下面的函数是二次函数的是()A.y=3x+1 B.y=x2+2x C.D.5.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣3)6.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1)B.(2,2)C.(1,2)D.(1,3)7.抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A.0 B.1 C.﹣1 D.±18.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+39.如图,⊙O的弦AB垂直平分半径OC,垂足为D,若CD=,则AB的长为()A.B.C.D.10.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3 B.2.4 C.2.5 D.2.611.如图,B,C是⊙O上两点,且∠α=96°,A是⊙O上一个动点(不与B,C重合),则∠A为()A.48°B.132°C.48°或132°D.96°12.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0 B.3x2﹣5x+1=0 C.3x2﹣5x﹣1=0 D.3x2+5x﹣1=0 13.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根14.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)15.已知函数y=(x+1)2+1,当x<时,y随x的增大而减小.16.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为.17.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽m.18.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为.三、解答题(本题共8道题,满分60分)19.解下列一元二次方程(1)用配方法解方程:x2﹣8x+1=0(2)用因式分解法解方程:2x2+1=3x20.已知抛物线的顶点为(4,﹣8),并且经过点(6,﹣4),试确定此抛物线的解析式.并写出对称轴方程.21.已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.22.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.23.某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?24.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+2x+.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?25.如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF.(1)若CD=2,AF=3,求⊙O的周长;(2)求证:直线BE是⊙O的切线.26.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA(1)求抛物线解析式;(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S 的值.参考答案与试题解析一.选择题(共14小题)1.若关于x的方程(a+1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠﹣1 B.a>﹣1 C.a<﹣1 D.a≠0【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得a+1≠0,再解即可.【解答】解:由题意得:a+1≠0,解得:a≠﹣1.故选:A.2.方程﹣5x2=1的一次项系数是()A.3 B.1 C.﹣1 D.0【分析】方程整理为一般形式,找出一次项系数即可.【解答】解:方程整理得:﹣5x2﹣1=0,则一次项系数为0,故选:D.3.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或3【分析】根据一元二次方程解的定义把x=1代入x2+mx+2=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=1代入方程x2+mx+2=0得1+m+2=0,解得m=﹣3.故选:A.4.下面的函数是二次函数的是()A.y=3x+1 B.y=x2+2x C.D.【分析】根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,判断各选项即可.【解答】解:A、y=3x+1,二次项系数为0,故本选项错误;B、y=x2+2x,符合二次函数的定义,故本选项正确;C、y=,二次项系数为0,故本选项错误;D、y=,是反比例函数,故本选项错误.故选:B.5.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(2,﹣3)D.(﹣3,﹣3)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【解答】解:由题意,得点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3),故选:C.6.二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1)B.(2,2)C.(1,2)D.(1,3)【分析】根据顶点坐标公式,可得答案.【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.7.抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A.0 B.1 C.﹣1 D.±1【分析】把原点坐标代入抛物线y=x2﹣mx﹣m2+1,即可求出.【解答】解:根据题意得:﹣m2+1=0,所以m=±1.故选:D.8.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3【分析】根据向下平移,纵坐标相减,即可得到答案.【解答】解:∵抛物线y=x2+2向下平移1个单位,∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.故选:C.9.如图,⊙O的弦AB垂直平分半径OC,垂足为D,若CD=,则AB的长为()A.B.C.D.【分析】连接OC,由题意即可推出OC的长度可得OA的长度,运用勾股定理即可推出AD 的长度,然后,通过垂径定理即可推出AB的长度.【解答】解:连接OA,∵⊙O的弦AB垂直平分半径OC,CD=,∴OC=,∴OA=,∵OC⊥AB,∴AD=,∵AB=2AD,∴AD=.故选:D.10.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3 B.2.4 C.2.5 D.2.6【分析】首先根据题意作图,由AB是⊙C的切线,即可得CD⊥AB,又由在直角△ABC中,∠C=90°,AC=3,BC=4,根据勾股定理求得AB的长,然后由S△ABC=AC•BC=AB•CD,即可求得以C为圆心与AB相切的圆的半径的长.【解答】解:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,即CD===,∴⊙C的半径为,故选:B.11.如图,B,C是⊙O上两点,且∠α=96°,A是⊙O上一个动点(不与B,C重合),则∠A为()A.48°B.132°C.48°或132°D.96°【分析】在优弧BC上取一点A′,连接BA′,CA′.利用圆周角定理以及圆内接四边形的性质即可解决问题.【解答】解:在优弧BC上取一点A′,连接BA′,CA′.∵∠A′=∠BOC,∠BOC=96°,∴∠A′=48°,∵∠A+∠A′=180°,∴∠A=132°,∴∠A=48°或132°.故选:C.12.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0 B.3x2﹣5x+1=0 C.3x2﹣5x﹣1=0 D.3x2+5x﹣1=0 【分析】用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值;②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.【解答】解:A.3x2+5x+1=0中,x=,不合题意;B.3x2﹣5x+1=0中,x=,不合题意;C.3x2﹣5x﹣1=0中,x=,不合题意;D.3x2+5x﹣1=0中,x=,符合题意;故选:D.13.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根【分析】结合平方根和算术平方根的定义可做选择.【解答】解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.14.如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.【解答】解:A、由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下,故选项错误;B、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,故选项正确;C、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣>0,和x轴的正半轴相交,故选项错误;D、由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,故选项错误.故选:B.二.填空题(共4小题)15.已知函数y=(x+1)2+1,当x<﹣1 时,y随x的增大而减小.【分析】由抛物线解析式可知,抛物线开口向上,对称轴为x=﹣1,由此判断增减性.【解答】解:抛物线y=(x+1)2+1,可知a=2>0,开口向上,对称轴x=﹣1,∴当x<﹣1时,函数值y随x的增大而减小.故答案为:﹣1.16.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为45°.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:连接OA,如图,∵∠ACO=45°,OA=OC,∴∠ACO=∠CAO=45°,∴∠AOC=90°,∴∠B=45°.故答案为:45°17.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽4m.【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=﹣2代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2=﹣0.5x2+2,解得:x=±2,所以水面宽度增加到4米,故答案为:4.18.如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、N两点,若点M的坐标是(﹣4,﹣2),则弦MN的长为 3 .【分析】可先设半径的大小,由此得出A点的方程.连接AM、AN根据等腰三角形的性质即可得出AN的长度,再根据两点之间的距离公式即可解出N点的坐标,从而求得MN的长度.【解答】解:分别过点M、N作x轴的垂线,过点A作AB⊥MN,连接AN设⊙A的半径为r.则AN=OA=r,AB=2,∵AB⊥MN,∴BM=BN,∴BN=4﹣r;则在Rt△ABN中,根据勾股定理,得AB2+BN2=AN2,即:22+(4﹣r)2=r2,解得r=2.5,则N到y轴的距离为1,又∵点N在第三象限,∴N的坐标为(﹣1,﹣2);∴MN=3;故答案为:3.三.解答题(共8小题)19.解下列一元二次方程(1)用配方法解方程:x2﹣8x+1=0(2)用因式分解法解方程:2x2+1=3x【分析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)先移项,然后利用十字相乘法对等式的左边进行因式分解.【解答】解:(1)x2﹣8x+1=0,配方,得:x2﹣8x+42=﹣1+(﹣2)2,即(x﹣4)2=3,解这个方程,得:x﹣4=±,即x1=4+,x2=4﹣.(2)2x2+1=3x,2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,解得x1=,x2=1.20.已知抛物线的顶点为(4,﹣8),并且经过点(6,﹣4),试确定此抛物线的解析式.并写出对称轴方程.【分析】根据题意可以设出该抛物线的顶点式,然后根据该抛物线过点(6,﹣4),即可求得a的值,本题得以解决.【解答】解:∵抛物线的顶点为(4,﹣8),∴可设抛物线解析式为y=a(x﹣4)2﹣8,将点(6,﹣4)代入,得:4a﹣8=﹣4,解得:a=1,则此抛物线的解析式为y=(x﹣4)2﹣8=x2﹣8x+8,其对称轴方程为x=4.21.已知关于x的一元二次方程x2+x+m﹣1=0.(I)当m=0时,求方程的实数根.(Ⅱ)若方程有两个不相等的实数根,求实数m的取值范围.【分析】(Ⅰ)令m=0,用公式法求出一元二次方程的根即可;(Ⅱ)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【解答】解:(Ⅰ)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0.∴x=,∴x1=,x2=.(Ⅱ)∵方程有两个不相等的实数根,∴△>0即(﹣1)2﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0∵5﹣4m>0∴m<.22.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,求线段OE的长.【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【解答】解:连接OD,如图所示:∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又CD=16,∴CE=DE=CD=8,又OD=AB=10,∵CD⊥AB,∴∠OED=90°,在Rt△ODE中,DE=8,OD=10,根据勾股定理得:OE2+DE2=OD2,∴OE==6,则OE的长度为6.23.某文具店购进一批纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?【分析】(1)利用待定系数法求解可得;(2)根据所获得总利润=每本利润×销售数量列出函数解析式,配方成顶点式可得答案.【解答】解:(1)设y与x的关系式为y=kx+b,把(22,36)与(24,32)代入,得:,解得:,则y=﹣2x+80;(2)由题意可得:w=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,此时当x=30时,w最大,∴即当x=30时,w最大=﹣2×(30﹣30)2+200=200(元),答:该纪念册销售单价定为30元时,才能使文具店销售该纪念册所获利润最大,最大利润是200元.24.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+2x+.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他因素,那么水池半径至少为多少时,才能使喷出的水流都落在水池内?【分析】(1)根据题意列函数关系式即可得到结论;(2)列方程即可得到结论.【解答】解:(1)y=﹣x2+2x+=﹣(x﹣1)2+1.8.答:喷出的水流距水面的最大高度为1.8米.(2)当y=0时,﹣x2+2x+=0,即(x﹣1)2=1.8,解得x1=1+,x2=1﹣<0(舍去).答:水池半径至少为(1+)米.25.如图,⊙O是△ABC的外接圆,AB经过点O,CD是弦,且CD⊥AB于点F,连接AD,过点B的直线与线段AD的延长线交于点E,且∠E=∠ACF.(1)若CD=2,AF=3,求⊙O的周长;(2)求证:直线BE是⊙O的切线.【分析】(1)连接OC.设半径为r,在RT△OFC中利用勾股定理即可解决问题.(2)只要证明CD∥EB,即可得到∠AFD=∠ABE=90°,由此可以得出结论.【解答】(1)解:连接OC.设半径为r,∵OA⊥CD,∴DF=FC=,在RT△OFC中,∵∠OFC=90°,FC=,OF=r﹣3,OC=r,∴r2=(r﹣3)2+()2,∴r=4,∴⊙O的周长为8π.(2)证明:∵OA⊥CD,∴DF=FC,AD=AC,∠AFD=90°∴∠ADC=∠ACD,∵∠E=∠ACD,∴∠ADC=∠E,∴CD∥EB,∴∠AFD=∠ABE=90°,∴BE是⊙O的切线.26.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(1,0)两点,与y轴交于点C,且OC=OA(1)求抛物线解析式;(2)过直线AC上方的抛物线上一点M作y轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S 的值.【分析】(1)先求出点A坐标,再运用待定系数法求解即可;(2)先求出直线AC的解析式,待定点M,N的坐标,用m表示线段MN的长度,运用二次函数分析其最值即可.【解答】解:(1)由A(﹣3,0),且OC=OA可得A(﹣3,0)设抛物线解析式为y=a(x+3)(x﹣1),将C(0,3)代入解析式得,﹣3a=3,解得a=﹣1,∴抛物线解析式为y=﹣x2﹣2x+3.(2)如图,设直线AC解析式为y=kx+d∵A(﹣3,0),C(0,3),∴,解得,∴直线AC解析式为y=x+3,设M(m,﹣m2﹣2m+3),则N(m,m+3),则MN=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m(﹣3<m<0),S△ACM=S△AMN+S△CMN=MN×3=﹣m2﹣m,MN=﹣m2﹣3m=﹣(m+)2+,∵a=﹣1<0,﹣3<m=﹣1.5<0,∴m=﹣时,MN最大,此时S=.。

2019-2020年九年级数学上学期第一次调研考试试题新人教版

2019-2020年九年级数学上学期第一次调研考试试题新人教版注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卡上。

2. 将答案写在答题卡上。

写在本试卷上无效。

3. 考试结束后,将答题卡交回。

一、选择题(本大题共12小题,每小题3分,共36分)1.抛物线y=-(x+)2-3的顶点坐标是()A.(,-3)B.(-,-3)C.(,3)D.(-,3)2.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x-2)2+1B.y=5(x+2)2+1C.y=5(x-2)2-1D.y=5(x+2)2-13.下列关于抛物线y=-x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(-1,2)C.在对称轴的右侧,y随x的增大而增大D.抛物线与x轴有两个交点4.下列方程中,是一元二次方程的是()A.2x-y=3B.x2+=2C.x2+1=x2-1D.x(x-1)=05.若抛物线y=x2-2x+m与x轴有交点,则m的取值范围是()A.m>1B.m≥1C.m<1D.m≤16.抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a-b+c的值为()A.-1B.0C.1D.27.某景点的参观人数逐年增加,据统计,xx年为10.8万人次,xx年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.88.如图,将△ABC绕顶点A旋转到△ADE处,若∠BAD=40°,则∠ADB的度数是()A.50°B.60°C.70°D.80°9.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.10. 已知抛物线y=x2-x-2与x轴的一个交点为(m,0),则代数式m2-m+xx的值为()A.xxB.xxC.2019D.202011.已知点(-1,y1)、(-2,y2)、(2,y3)都在二次函数y=-3x2-6x+12的图象上,则y1、y2、y3的大小关系为( )A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y312.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0;④c<-3a;⑤a+b≥m(am+b),其中正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共8小题,每小题3分,共24分)13.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t-t2,则飞机着陆后滑行的最长时间为 ______ 秒.14.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是 ______ .15.正三角形绕其中心至少旋转 ______ 度能与原三角形重合.16.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x…-5 -4 -3 -2 -1 …y… 3 -2 -5 -6 -5 …17. 已知关于x的方程(m-1)x+2x-3=0是一元二次方程,则m的值为 ______ .18.已知关于x的方程x2-(m+2)x+m2+1=0的两个实数根的平方和为5,则实数m的取值是______ .19.与抛物线y=-(x-2)2-4关于原点对称的抛物线的解析式为 ______ .20.用配方法把二次函数y=2x2+2x-5化成y=a(x-h)2+k的形式为 ______ .三、(本大题共6小题,共60分)21.(8分)解方程:①3x(2x+1)=4x+2②x2-5x+1=0.22. (8分)二次函数的图象经过A(-1,0),B(1,-8),C(3,0)三点:(1)求这个函数的解析式;(2)求抛物线与坐标轴的交点围成的三角形的面积.23.(10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?24(10分).如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A的坐标为(-1,0),与y轴交于点C(0,-2).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.25.(12分)“4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.(1)求拱桥所在抛物线的解析式;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.26.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.-----如有帮助请下载使用,万分感谢。

2019届江苏省九年级上学期第一次月考数学试卷【含答案及解析】(3)

A.10°B.20°C.40°D.70°
6.如图,点P是OO直径AB的延长线上一点,PC切OO于点C,已知0B=3 PB=2则PC等 于()
A. 2B.3C.4D.5
7.如图,若点O是厶AC内心,/ABC=80°,ZACB=60。则/度数为()
A. 140°造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程,已知
16.若四边形ABCD是圆内接四边形,且/BAC=120°,则/BDC=
17.如下图所示,一圆弧过方格的格点AB C,试在方格中建立平面直角坐标系,使点
A的坐标为(-2,4),则该圆弧所在圆的圆心 坐标是
三、解答题
fa;土6)
18•对于实数a,b,定义运算“*”:••例如4*2,因为4>2,所
L■和■沖■卜仃・靠朴
(1)通过计算(结果保留根号与n)•
(1)图①能盖住三个正方形所需的圆形硬纸板最小直径应为
(□)图②能盖住三个正方形所需的圆形硬纸板最小直径为
(川)图③能盖住三个正方形所需的圆形硬纸板最小直径为
(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬 纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并 求出此时圆形硬纸板的直径.
26.(10分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。调查 表明:这种台灯的售价每上涨一元,其销售量就将减少10个.
(1)没有涨价前每台利润是元,月销售利润是元.
(2)为了实现平均每月10000元的销售利润。这种台灯的售价应定为多少?这时应进台 灯多少个?
27.(10分))阅读下面的材料,回答问题:
10.写出一个两实数根符号相反的一元二次方程:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a b c x a b c x a b
c x a b c x F E D C B A D E K H G F M C B A D C
B A 2014学年度第一学期九年级数学阶段测试卷
(完成时间:100分钟 满分:150分)
一、选择题(本大题共6题,每题4分,满分24分)
1、四边形ABCD 和四边形EFGH 形状相同,点A 、B 、C 分别对应点E 、F 、G ,且已知AB=2厘米,BC=5厘米,EF=3厘米,那么FG 的长度是( )
(A )1.2厘米; (B )1.5厘米 (C )7.5厘米 (D )103
厘米 2、已知P 是线段AB 的黄金分割点,且AP>BP ,则下列比例式能成立的是( )
(A )AB BP AP AB = (B )BP AB AP BP = (C )AP BP AB AP
= (D )512AB AP -= 3、已知线段a 、b 、c ,求作第四比例项:线段x ,下列作图正确的是( )
(A ) (B ) (C ) (D )
4、如图是正方形网络,里面有许多三角形。

在下面所列出的各三角形中,与△ABC 不相似的是( )
(A )△FGH (B )△FEK (C )MDE (D )MFG
(第4题图) (第5题图)
5、如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )
(A )AD BC DF CE = (B )BC DF CE AD = (C )CD BC EF CE = (D )CD AD EF AF
= 6、如图,梯形ABCD 中,AB ∥CD ,对角线AC 、BD 相交于O ,下面四个结论:○1△AOB △COD ;○2△AOD △BOC; ○3::DOC BOA S S DC AB =;○4AOD BOC S S =.其中结论始终正确的有( )
(A )○
1○4 (B )○1○3 (C )○1○2 (D )○2○4 二、填空题(本大题共12题,每题4分,满分48分)
7、已知若0234x y z ==≠,则2x y z
+= 。

(第6题图) 8、线段a=4厘米,c=9厘米,如果线段c 是线段a 和b 的比例中项,那么b= 厘米
9、A 、B 两地的实际距离是200千米,地图上的比例尺为1:1000000,则A 、B 两地在地图上的距离是 厘米
E D
F C B A
G F E D C B A N M D C B A Q P D C B A
H K G F E D C B A C D B
A 10、如果两个相似三角形的相似比为2:3,那么它们的对应的角平分线之比为
11、在△ABC 中,∠ACB=90°,CD 是AB 边上的高,如果AC:BC=4:3,则
:ACD ABC C C =
12、两个相似三角形周长比为2:3,面积差为102cm ,则较大三角形的面积为
13、如图,△ABC 中,点D 、E 、F 分别在边BC 、AC 、AB 上,且DE ∥AB ,DF ∥AC ,若BD :DC=1:2,△ABC 的面积为92cm ,则四边形AEDF 的面积为 2cm
14、已知:如图,在平行四边形ABCD 中,E 是边AB 的中点,点F 在边BC 上,且CF=3BF ,EF 与BD 相交于点G 。

则BG :DG=
第13题 第14题 第15题
15、如图,若点M 是△ABC 的中线AD 的中点,延长BM 交AC 于N ,则AN :NC=
16、如图,已知在△ABC 中,AB=9,AD=4,D 是边AB 上的一点,∠ACD=∠B ,∠BAC 的平分线AQ 与CD 、BC 分别相交于点P 和点Q ,那么AP :AQ=
17、已知:如图,矩形DEFG 的一边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,AH 是边BC 上的高,AH 与GF 相交于点K ,已知BC=12,AH=6,EF :GF=1:2, 求EF=
18、如图,在直角梯形ABCD 中,AB ∥DC ,∠ADC=90°。

AB=2,CD=3,AD=7.在腰AD 上存在点P 。

使△ABP 和△DCP 相似,试求△ABP 与△DCP 的面积之比=
第16题 第17题 第18题
三、简答题(本大题共7题,满分78分)
19.(本题满分10分)
如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于点E 。

求证:2
OC OA OE =⋅
树标杆人F E B
A D
C 20、(本题满分10分)如图已知点A '、B '、C '分别在射线OA 、OB 、OC 上,AB ∥A 'B ',BC ∥B 'C '。

求证:AC ∥A 'C '.
21、(本题满分10分)如图,竖立在点B 处的标杆AB 长2.1米,某测量工作人员站在D 点处,此时人眼睛C 与标杆顶端A 、树顶端E 在同一直线上(点D 、B 、F 也在同一直线上,已知此人眼睛与地面的距离CD 长1.6米,且BD=1米,BF=5米,求所测量树的高度.
22、(本题满分10分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,∠CED=∠BDC 。

(1)求证:△DCE ∽△CBD;
(2)若BC=2CD ,ADE S △=1,求ABC S △的值
M G Q
P D C B A 23、(本题满分12分)
如图,在Rt △ACB 中,∠ACB=90°,点D 在边AB 上,DE 平分∠CDB 交边BC 于点E ,EM 是线段BD 的垂直平分线。

(1)求证:CD BE BC BD
(2)若AB=10,AC=6,求CD 的长
24、(本题满分12分,其中第(1)小题4分,第(2)小题4分,第(3)小题4分) 如图,已知在△ABC 中,AB=AC ,AB=15,BC=18,点G 是△ABC 的重心,AG 的延长线交边BC 于点D 。

过点G 的直线分别交边AB 于点P 、交射线AC 于点Q 。

(1) 求AG 的长;
(2) 当∠APQ=90°时,直线PG 与边BC 相交于点M 。

求证:△MCQ ∽△AGQ
(3) 在(2)的条件下,求
AQ MQ 的值。

25、(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)
如图1,已知等腰梯形ABCD中,AD∥BC,AD:BC=1:2,点E为边AB中点,点F是边BC上一动点,线段CE与线段DF交于点G。

(1)若
1
3
BF
FC
,求
DG
FG
的值;
(2)联结AG在(1)的条件下,写出线段AG和线段DC的位置关系和数量关系,并说明理由;
(3)联结AG,若AD=2,AB=3,且△ADG与△CDF相似,求BF的长。

图1 备用图。

相关文档
最新文档