面向语义感知的推荐系统:一种基于LOD的方法(IJMECS-V9-N2-7)

合集下载

一种以知识处理为核心的ICAI系统

一种以知识处理为核心的ICAI系统

一种以知识处理为核心的ICAI系统
王晓京
【期刊名称】《四川大学学报:自然科学版》
【年(卷),期】1998(035)005
【摘要】研制了一种用于中学教育的新型能系统-以知识处理为核心的ICAI系统,该系统比普通ICAI系统有更多的智能性,它可以利用化学知识进行推是和问题解答。

【总页数】5页(P682-686)
【作者】王晓京
【作者单位】中国科学院成都计算机应用研究所
【正文语种】中文
【中图分类】G434
【相关文献】
1.一种基于Internet的ICAI系统设计方案 [J], 杨艺清;赵跃龙
2.一种基于语义Tableau的不相容知识处理方法 [J], 刘全;伏玉琛;凌兴宏;孙吉贵
3.一种基于数据集市的产品设计知识处理方法 [J], 欧晓鸥;王志立;邵发森
4.一种开放型的ICAI系统结构模型 [J], 刘薇
5.一种基于移动Agent的远程ICAI系统模型 [J], 高劲松
因版权原因,仅展示原文概要,查看原文内容请购买。

基于隐语义模型推荐算法的优化

基于隐语义模型推荐算法的优化

基于隐语义模型推荐算法的优化
孔欢;黄树成
【期刊名称】《计算机与数字工程》
【年(卷),期】2022(50)10
【摘要】人们的生活已经离不开推荐系统了,而推荐算法的优劣则是推动推荐系统发展的重要因素。

使用比较广泛的推荐技术有基于内容推荐、协同过滤以及混合推荐。

但是以上推荐算法均存在精确率低,覆盖率窄等问题。

论文融合了用户的情感因素以及物品的热门程度提出了一种基于潜在因子模型(LFM)的优化算法:基于动量的学习算法,最后通过实验证明改进后的算法比传统的算法在推荐精确度(Accuracy)以及覆盖率(Coverage)上都有明显的提升。

【总页数】5页(P2197-2201)
【作者】孔欢;黄树成
【作者单位】江苏科技大学计算机学院
【正文语种】中文
【中图分类】TP301.6
【相关文献】
1.基于隐因子模型的P2P借贷推荐算法
2.基于BP神经网络与隐马尔科夫模型的推荐算法
3.基于隐式反馈LDA模型的协同推荐算法研究
4.基于改进的隐马尔可夫模型的新闻推荐算法
5.基于层次隐马尔可夫模型和神经网络的个性化推荐算法
因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于物体追踪的改进语义SLAM_算法

一种基于物体追踪的改进语义SLAM_算法

第 22卷第 10期2023年 10月Vol.22 No.10Oct.2023软件导刊Software Guide一种基于物体追踪的改进语义SLAM算法杜小双,施展,华云松(上海理工大学光电信息与计算机工程学院,上海 200093)摘要:在视觉同步定位与建图(SLAM)算法中,使用语义分割和目标检测以剔除异常点的方法成为主流,但使用中无法对物体语义信息进行充分追踪。

为此,提出一种基于物体追踪的改进语义SLAM算法,通过YOLACT++网络分割物体掩码,提取物体特征点后,利用帧间匹配实现物体追踪。

该方法对匹配特征点进行深度、重投影误差和极线约束三重检测后判断物体动静态,实现物体追踪并判断运动状态。

通过对TUM RGB-D数据集测试,实验表明该方法可有效追踪物体,且轨迹估计精度优于其他SLAM算法,具有较好实用价值。

关键词:视觉SLAM;语义分割;物体追踪;动态场景;几何约束DOI:10.11907/rjdk.222298开放科学(资源服务)标识码(OSID):中图分类号:TP301 文献标识码:A文章编号:1672-7800(2023)010-0205-06 An Improved Semantic SLAM Algorithm Based on Object TrackingDU Xiaoshuang, SHI Zhan, HUA Yunsong(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)Abstract:In the visual SLAM (simultaneous localization and mapping), the method of using semantic segmentation and object detection to detect dynamic objects and remove outliers has become the mainstream, but its disadvantage is that it is unable to fully track the semantic in⁃formation of objects. Therefore, this paper proposes an improved semantic SLAM algorithm based on object tracking, which uses YOLACT++ network to segment object mask, extract object feature points, and use inter frame matching to achieve object tracking. The method detects the depth, reprojection error and epipolar constraint of the matched feature points, and then judges the dynamic and static state of the object to achieve object tracking and judge the motion state. After testing the TUM RGB-D dataset, the experiment shows that the method can effective⁃ly track objects, and the trajectory estimation accuracy is better than other SLAM algorithms, which has practical value.Key Words:visual SLAM; semantic segmentation; object tracking; dynamic environment; geometric constraint0 引言随着机器人技术、无人驾驶、增强现实等领域的发展与普及,视觉SLAM作为其应用的基础技术之一[1],得到了学者们的广泛关注与研究,并成为机器人定位与建图研究领域的一个热点[2]。

发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型

发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型

发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型吴思远;李泓【期刊名称】《储能科学与技术》【年(卷),期】2024(13)4【摘要】ChatGPT的出现意味着一种以“预训练+微调”为主的新科研范式诞生,以OpenAI为代表的企业正朝着训练通用人工智能(AGI)模型的路线前进,AGI意味着人工智能具备超越人类智力并解决通用性问题的能力,其是为了解决通用问题并具有强大的自学能力来促进人类社会发展。

然而OpenAI等模型仍然是以文本为主结合图像等作为输入,对于电池体系来说,文本信息是少数的,更多的是温度、电压-电流曲线等的多模态数据,其所关注的结果包括电池荷电态、电池健康度、剩余寿命和是否出现电池性能跳水的拐点,甚至包括无数据情况下电池二次(梯度)利用的健康度评估。

这意味着ChatGPT的路线虽然也可能解决电池体系的问题,但是以文本为主的样式或许有些“杀鸡用牛刀”,即使未来OpenAI的AGI可能解决当前电池存在的问题,但是在模型参数和输入方面与电池本质不符会使得模型参数量巨大而不适合电池离线端评估。

对于电池体系的AGI,应该有自己独特的“文本语言”即理解电池运行过程中所发生的一切物理、化学过程以及其之间的关联,从而实现通用性并为后续全固态电池量产上车做铺垫。

本文展望了在电池体系发展AGI过程中应该重新设计模型架构,特别在特征表示、数据结构设计、预训练方法、预训练过程设计和实际任务微调等需要重新设计。

此外,相较于运行在服务器端的大模型,发展低参数量特别是离线的模型对于实时预测和基于我国国情及国际形势发展是十分必要的。

本文主要讨论了发展基于“语义检测”的低参数量、多模态预训练电池通用人工智能模型所需要经历的几个阶段、可能面临的困难和评价指标,同时给出中国科学院物理研究所(以下简称物理所)在电池大模型在预训练、微调和测评三个方面“三步走”计划中的规划和可能线路。

【总页数】9页(P1216-1224)【作者】吴思远;李泓【作者单位】中国科学院物理研究所北京清洁能源前沿研究中心;中国科学院物理研究所凝聚态物质科学数据中心【正文语种】中文【中图分类】TP391.77;TP391.9【相关文献】1.基于预训练模型和联合调参的改进训练算法2.基于双预训练Transformer和交叉注意力的多模态谣言检测3.基于预训练和多模态融合的假新闻检测4.基于预训练模型和编码器的图文跨模态检索算法因版权原因,仅展示原文概要,查看原文内容请购买。

面向语义的物联网战场感知模型

面向语义的物联网战场感知模型


h t R e s e a r c h I n s t i t u t e , A v i a t i o n Un i v e r s i t y o f Ai r F o r c e , C h a n g c h u n 1 3 0 0 2 2 , C h i n a )
Ab s t r a c t : Ai mi n g a t t h e p r o b l e ms t ha t o c c u r i n t h e i n t e r n e t o f t h i n g s s e ma n t i c r e s e a r c h ,e s p e c i a l l y t h e d i ic f u l t i n t e r o p e r a t i o n b e c a us e o f b a t t l e ie f l d s p a c e k n o wl e d g e d e s c r i p t i o n s ys t e m ,e s t a b l i s h t h e i n t e r n e t o f t h i n g s b a t t l e ie f l d
络 关 系 , 实现 了 相 关 概 念 、 关 系 、 属 性 、 实例 的 规 范 化 、 形 式 化 定 义 和 描 述 , 以 及 语 义 模 型 的 可 视 化 , 利 用 J e s s实
现 了 自动 推 理 。 实例分 析表 明 ,该 模 型 为进 一 步研 究基 于 本体 论 的物联 网应 用模 型奠 定 了基础 。 关键 词 :物 联 网; 战 场感 知 ;本体 ;语 义模 型 中图分 类 号 :T P 3 9 1 . 9 文 献标 志 码 :A

一种基于特征提取的高效蠕虫自动防御系统

一种基于特征提取的高效蠕虫自动防御系统

一种基于特征提取的高效蠕虫自动防御系统
涂浩;李之棠;柳斌
【期刊名称】《小型微型计算机系统》
【年(卷),期】2009(030)006
【摘要】蠕虫的快速传播给因特同安全带来极大的挑战,设计和实现了一种有效的蠕虫检测和防御系统,提出二分聚类等方法改进了前期过滤和检测技术,有效降低后期处理数据量的同时提高了数据纯度,并提出一种基于Bloom Filter的位置相关的特征提取方法,降低资源消耗并产生更准确的特征.实验结果表明该系统能够有效地发现蠕虫活动并提取出准确的特征,实现基于内容特征的自动防御.
【总页数】6页(P1113-1118)
【作者】涂浩;李之棠;柳斌
【作者单位】华中科技大学,网络与计算中心,湖北,武汉,430074;华中科技大学,计算机学院,湖北,武汉,430074;华中科技大学,网络与计算中心,湖北,武汉,430074;华中科技大学,计算机学院,湖北,武汉,430074;华中科技大学,网络与计算中心,湖北,武汉,430074;华中科技大学,计算机学院,湖北,武汉,430074
【正文语种】中文
【中图分类】TP393
【相关文献】
1.基于自动特征提取的大规模网络蠕虫检测 [J], 王平;方滨兴;云晓春
2.一种改进的多态蠕虫特征提取算法 [J], 秦燊;劳翠金
3.基于本地网保护的蠕虫防御系统研究 [J], 巩永旺
4.基于人工免疫的蠕虫防御系统研究与设计 [J], 王道俊;王海峰
5.基于人工免疫的蠕虫防御系统研究与设计 [J], 王道俊;王海峰
因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于本体的语义Web服务发现模型


1 引言
We b服务是一种基于网络环境 的自适应的 、自描
成) 提供一 种基于分 布式商 业注册 中心机制来进 行服 务管理、注册和发现 。基于 U D 的服务发现机 制的 D I 不足在于服务发现时的 匹配过程是基于框 架的关键字 匹配 ,无法提 供服务功能性 描述 ,即 :服 务的语义信 息 ,也没有内在对服务 自动发现和 组合 的支持 ,这显 然无法满足用户对服 务发现智能化的要求。因此 ,对
计 算 机 系 统 应 用
21 年 第1 0 0 9卷 第 4 期

种 基于本体 的语义 We b服务发现模型①
曹渝 昆 丁明伟 ( 重庆大学 计算机 学院 重庆 4 0 3 ) 0 0 0

要 : We b服务 已经成为互联 网中最为重要 的一种计算资源和软件资产 ,We b服务的大量涌现对服务发现
提 出了挑 战。 b服务发现 的关键是 We We b服务的语 义描述的准确性 和 We b服务检 索引擎的检 索效率。 提 出了一种基 于本体的 We b服务描述方法 ,采 用 O — WL S对 We b服务进行语义描 述 ,并提 出了针对 性 的 We b服务检 索引擎。通过试验 ,该模型结合语 义 We b服 务技 术实现 We b服务 的动 态查找与组 合 ,可提 高 We 服 c i e W e e v c , n as s p itd m ac i g ag rt m . r u h e p rm e t,i i d l e h b sr ie a d r ie n e th n lo i o h Th o g x e i n s n t smo e , h o e r wi t e n i t g t e t e s m a tc W e e v c e h o o y he d n m ia e c i g a d c mp st n o e h h h b s r ie tc n l g ,t y a c s a h n l r n o o io fW b i s r iea ei lm e t , Ot a ep e ii nr t n erc l a i f e e iec nb p o e . e c mp e n e S tt r cso a o a dt e a t o W b s r c a i r v v r d h h i h l r o v e m d Ke ywo d : e e ie o tl g ; L r s W b s r c ; n o y OW v o ; L OW - UD DI S:

一种基于多传感器数据融合的3D目标检测方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利(10)授权公告号 (45)授权公告日 (21)申请号 201911423880.2(22)申请日 2019.12.31(65)同一申请的已公布的文献号申请公布号 CN 111209840 A(43)申请公布日 2020.05.29(73)专利权人 浙江大学地址 310058 浙江省杭州市西湖区余杭塘路866号(72)发明人 丁勇 李佳乐 朱子奇 罗述杰 孙阳阳 (74)专利代理机构 杭州求是专利事务所有限公司 33200代理人 郑海峰(51)Int.Cl.G06V 20/64(2022.01)G06V 10/26(2022.01)G06V 10/40(2022.01)G06V 10/80(2022.01)G06V 10/82(2022.01)G01S 7/48(2006.01)G01S 17/02(2020.01)G01S 17/93(2020.01)(56)对比文件CN 110543858 A ,2019.12.06CN 110570457 A ,2019.12.13US 2003177450 A1,2003.09.18CN 108509918 A ,2018.09.07CN 109712105 A ,2019.05.03CN 110175576 A ,2019.08.27CN 110428008 A ,2019.11.08CN 110032962 A ,2019.07.19CN 110008843 A ,2019.07.12郑少武等.基于激光点云与图像信息融合的交通环境车辆检测.《仪器仪表学报》.2019,(第12期),全文.Zetong Yang et al.STD: Sparse-to-Dense 3D Object Detector for Point Cloud.《Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)》.2019,1951-1960.审查员 靳超 (54)发明名称一种基于多传感器数据融合的3D目标检测方法(57)摘要本发明公开了一种基于多传感器数据融合的3D目标检测方法。

一种基于UCL语义标引的视频推荐方法与装置[发明专利]

申请人:东南大学 地址:211189 江苏省南京市江宁区东南大学路2号 国籍:CN 代理机构:南京苏高专利商标事务所(普通合伙) 代理人:孟红梅 更多信息请下载全文后查看
专利内容由知识产权出版社提供
专利名称:一种基于UCL语义标引的视频推荐方法与装置 专利类型:发明专利 发明人:杨鹏,张晓刚,李幼平,万兵申请号:CN20191004 24 26.6 申请日:20190117 公开号:CN1098714 64 A 公开日:20190611
摘要:本发明公开了一种基于UCL语义标引的视频推荐方法与装置。首先,本发明基于SSD神经 网络模型,过滤最后一层生成的无用提案框,并且拼接中间层生成的人脸特征,对视频进行目标检测 与人脸识别,提高视频信息提取的速度与精度。接着,采用UCL国家标准对视频进行语义标引,并基 于检测目标的重合度,对视频进行自动分段,实现视频的规范化、细粒度标引。最后,构建知识库存 储UCL之间的关系,并基于知识库提出两阶段智能化个性化推荐策略,解决传统推荐冷启动、运算复 杂等问题,提高推荐系统的性能。本发明既能提高视频信息抽取的速度和精度,又能灵活、准确地进 行视频个性化推荐。

基于深度学习的动态目标快速感知方法及系统[发明专利]

专利名称:基于深度学习的动态目标快速感知方法及系统专利类型:发明专利
发明人:刘宁,李连鹏,刘福朝,赵辉,袁超杰,苏中,范军芳,李擎申请号:CN202210042492.5
申请日:20220114
公开号:CN114386522A
公开日:
20220422
专利内容由知识产权出版社提供
摘要:本发明公开了一种基于深度学习的动态目标快速感知方法及系统。

其中,该方法包括:基于感知系统联合标定,进行环境感知,从不同数据源采集数据;基于所采集的数据,进行场景获取,获取地图数据和位姿信息;基于所获取的地图数据和位姿信息,进行多元特征的归一化数据预处理,并通过超像素分割和语义分析来对归一化数据预处理后的数据进行特征匹配;基于特征匹配得到的数据,利用稀疏卷积网络和运动估计融合,来感知所述动态目标。

本发明解决了相关技术中对动态目标识别准确率不高的技术问题。

申请人:北京信息科技大学
地址:100192 北京市海淀区清河小营东路12号
国籍:CN
代理机构:北京航信高科知识产权代理事务所(普通合伙)
代理人:高原
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I.J. Modern Education and Computer Science, 2017, 2, 55-61Published Online February 2017 in MECS (/)DOI: 10.5815/ijmecs.2017.02.07Towards Semantics-Aware Recommender System: A LOD-Based ApproachAsmaa FridiEEDIS Laboratory, Djillali Liabes University of Sidi Bel Abbes, Sidi Bel Abbes, 22000, AlgeriaEmail: fridi.asmaa@univ-sba.dzSidi Mohamed BenslimaneLabRI-SBA Laboratory, École Supérieure en Informatique, Sidi Bel Abbes, AlgeriaEmail: s.benslimane@esi-sba.dzAbstract—Recommender systems have contributed to the success of personalized websites as they can automatically and efficiently select items or services adapted to the user's interest from huge datasets. However, these systems suffer of issues related to small number of evaluations; cold start system and data sparsity. Several approaches have been explored to find solutions to related issues. The advent of the Linked Open Data (LOD) initiative has spawned a wide range of open knowledge bases freely accessible on the Web. They provide a valuable source of information that can improve conventional recommender systems, if properly exploited. In this paper, we aim to demonstrate that adding semantic information from LOD enhance the effectiveness of traditional collaborative filtering. To evaluate the accuracy of the semantic approach, experiments on standard benchmark dataset was conducted. The obtained results indicate that the accuracy and quality of the recommendation are improved compared with existing approaches.Index Terms—Recommender system; Collaborative filtering; Content-based filtering; Linked Open Data; Clustering.I.I NTRODUCTIONRecommender Systems are software tools and techniques exploiting the maximum amount of data available in the net to meet user needs, minimize time spent on research, but also to suggest relevant items that would not have spontaneously and so consulted increase its overall satisfaction. The quality of recommendations is dependent on the nature of details (in terms of quality and quantity) available to users [1]. The data available on the web are in large quantities that needs a filtering to make the best data. Several techniques and algorithms have been proposed in literature for performing recommendation, including collaborative, content-based, knowledge-based and other techniques. However, these approaches suffer from several problems such as cold start, the sparsity and new user or new item. A variety of hybrid recommender systems have also been introduces in an attempt to combine two or more recommendation to produce more effective recommendations and gain better performance with fewer of the drawbacks of any individual one [2].Thanks to the Semantic Web standards and technologies, a massive amount of RDF data have been published using open and liberal licenses. The availability of such data is for sure an opportunity to feed personalized information access tools such as recommender systems [3].In this paper, we propose a novel approach that collects data from Linked Open Data (LOD) in order to improve the accuracy and the quality of recommendation systems. This is achieved by a pipeline of processes divided into two phases. The first phase include the enrichment of semantic description of items, their clustering and generating of data model. The second phase consist of generating, filtering and ranking paths. Finally, the Top-K items targeted by the best paths are recommended to the user.The rest of the paper is structured as follows. In section 2, we provide an overview of related work on acquisition of semantics from unstructured and semi-structured resources. In section 3, we outline the proposed approach and discuss the detailed steps. Section 4 introduces an experimental methodology to evaluate the approach. Finally, section 5 concludes the paper and points directions for future work.II.R ELATED W ORKSeveral approaches have been proposed to incorporate semantic in recommenders system, particularly LOD. In the following we review some recent literature on LOD-based approaches, that will be composed in three categories relatives to the classification.A. Collaborative filteringHeitmann and Hayes [4] proposed an open music system that collected data items and users of different LOD sources and turn them into an RDF representation to apply the collaborative filtering.Yang et al. [5] introduced a new approach for enhancing Slope-One algorithm using semantic technologies. They explore the implicit relationshipsbetween items based on Linked Data and some measures for computing the semantic distances.Ko et al. [6] proposed new approach that allows recommending potentially interesting content for users using semantic groups generated by each user viewing. The LOD were used in the generation of clusters by collecting more information about the films seen by users.B. Content-based filteringPan et al. [7] uses Linked Data sets to recommend music artists based on the specified user interest. The system proved as effective when making discoveries of relevant artists.Lasek [8] proposes a hybrid news articles recommendation system, which merges content processing techniques and data enrichment via LOD.Di Noia et al. [9] and [3] are one of authors that have using content-based filtering. The system allows upgrading a recommendation system with linked data and using the Vector Space Model (VSM) and apply it to the recommendation of movies.C. Hybrid filteringZarrinkalam and Kahani [10] propose in an approach that uses citation recommendation related to improving local data. This approach is a combination of filtering based on content and multi-criteria collaborative filtering. Ostuni et al. [11] offer the best recommendations relative to implicit feedback by using Linked Data. This approach allows recommending items by exploiting their properties and attributes that are defined in a semantic graph.The main idea of [12] is to automatically enricher the attributes of objects using Linked Data to improve the content-based recommendation.Meymandpour and Davis [13] present a hybrid approach that combines the semantic analysis of items using LOD with collaborative filtering approaches. The proposed approach demonstrated a higher accuracy in comparison with a user-based collaborative filtering technique.Alhamid et al. [14] introduce a hybrid collaborative context approach that use a physiological data to enhance the recommendation process and show the importance of using contextual information for the improvement of the quality of recommender system.Abderrahim and Benslimane [15] propose a system for providing recommendation based on the Social Trust Network. The system combines Social Networks of users and Social Networks of Web service to provide recommendations for a target user. The provided recommendations are based not only on the similarity between users and between Web services, but also on the trust value of user and Web service.III.T HE P ROPOSED A PPROACHThis section presents our approach in detail for semantics-enhanced recommender system. We describe the overall architecture of our system based on the LOD.This architecture is divided into two parts. The first part, which is executed in offline mode, relates to the preparation of the data. It is divided in three steps: enrichment, clustering and generating of data model. The second part is executed on online mode concerning the recommendation. It include generating, filtering and ranking paths. The overall process is depicted in Fig. 1.A. ResourcesThree resources (U, I, E) that represent user, item and entities descript our recommender system. User is the person that uses the recommender system. He gives his opinion and he receives the recommendations. User is described by its profile (i.e. preferences).Each user U i is represented by (id, name, {(Keyword1: value), (Keyword2: value),.., (Keyword n,: value)}).Example 1U1= (365, Mohamed, {(Actress: Angelina Jolie), (Sports: football), (Movie: MI), (Singer: Celine Dion)}). The item I is the term used to denote what the system should recommend to a user U. Each item I is represented by (id, name, {(Keyword1: value), (Keyword2: value),.., (Keyword n: value)}).Example 2I1= (128, Peugeot 206, {(Color: Black), (Energy: Diesel)}).Fig.1. Semantics-enhanced recommender systemB. Preparation of dataThe first part of our recommender system concerns the preparation of the data, it is divided in three steps: enrichment, clustering and generating of data model.1.EnrichmentEnrichment increases the semantic description of data. Several semantic sources are used to ensure this enrichment (Metadata, ontologies, LOD, etc.). DBpedia as a central, large and best-interlinked LOD data source fits good for this purpose. DBpedia is one of the main projects of the Linked Open Data community, which “focuses on the task of converting Wikipedia content into structured knowledge, such that Semantic Web techniques can be employed against it”[16]. Our system maintains one or more SPARQL Endpoints to various LOD datasets, and then it harvest the description of each item of the system from these endpoints.In the same way, user’s profiles have to be enriched. We obtain in output of this phase an enriched user’s profile and an improved item’s d escription.Example 3User U1of example 1, will be transformed after enrichment into U1’,Where U1’= (365, Mohamed, {(Actress: Angelina Jolie), (Sports: Football), (Movie: MI), (Singer: Celine Dion), (Book: Harry Potter)}).In the same way, the item I1of example 2, will be transformed into I1’,Where I1’= (128, Peugeot 206, {(Color: Black), (Energy: Diesel), (Power: 4CV)}).2.ClusteringIn this phase, items will be grouped according to their semantic similarities. We calculate the similarity between semantic descriptions of items. Similarly, users will also be grouped using their profiles and evaluations.Many clustering algorithms have been applied to document data sets. These algorithms include, but not limited to, K-means [17], Graph similarity [18], and VSM [19].The purpose of K-means is to divide the observations into K clusters in which each observation belongs to the cluster with the nearest mean.Graph similarity is a graph in which the nodes and edges represent its entities and the relationships between these entities.VSM calculates a degree of similarity between the query and the document. The queries and documents are represented by the vectors of the weight of the words that form them. The degree of similarity is expressed as the similarity between the query vector and document vector. In this paper, we have tested the three techniques.3.Data Model GenerationThe collected data from the enrichment phase will be used for the generation of data model. The data model is a semantic graph represented by two sub-graph that consist of nodes connected to each other through edges (Fig. 2).The first sub-graph represents a contextual user feedback. Contextual plays an important role regarding the perception of the usefulness of an item for a user. It can greatly influence the recommendation accuracy. Many researchers have worked on improving the quality of recommender systems by utilizing users' context.Three context dimensions area exploited in this work: spatial, social and temporal (see Definition 1). Definition 1. Contextual user feedback model Formally, a contextual user feedback is modeled as G1 (U, I,) where U is a set of users, I a set of items, and represents the feedback value (specified on a scale of 1 to 5) of user U on item I. t represents the context of the feedback (e.g., time, location), and j the value of the context (e.g, day or night for the context time).The second sub-graph represents semantic item description (see Definition 2).Definition 2. Semantic item description model Formally, a semantic item description is modeled as G2 (I, P, E), where I and E are respectively a set of items and semantic proprieties, and P represents the weight of the semantic properties.Fig.2. Representation of graph data modelC. RecommendationThe second part include generating, filtering and ranking paths. Top-K items targeted by the paths classified according to the path average are recommended to the user.1.Generating and Filtering PathsTo recommend a new item I j to a user U i, we have to extract all the paths C k that lead the user U i to this item I j. Example 4For the query (U3, I1), that checks if the item I1 can be recommended the user U3, nine paths will be extracted.(U3, i3, e2, i2, U1, I1);(U3, i2, U1, I1);(U3, i3, U2, I1);(U3, i2, e3, e1, I1);(U3, i3, e2, e4, e1, I1);(U3, i3, e5, e4, e1, I1);(U3, i2, U4, i4, i3, U2, I1);(U3, i3, i4, e5, e4, e1, I1);(U3, i3, e2, i2, e3, e1,i2, U1, I1).Once, all the paths extracted, we calculate the weight of each paths C k and we retain those having an average greater than or equal to the threshold value given by the user or predefined by the recommender system.The weight of a path is calculated using the weight of the properties connecting the vertices of a path. Example 5Assume that for Example 4, the weights of the properties are respectively P1=3; P2=1; P3=2; P4=5. After calculation, we obtain the following paths.C1(5, 1, 3, 3, 2): 14/5= 2.8 ;C2(1, 3, 2): 6/3=2 ;C3(1, 1, 3): 5/3=1.6 ;C4(1, 3, 2, 3): 10/4= 2,5 ;C5(5, 1, 2, 1, 3): 12/5= 2,4 ;C6(5, 3, 1, 1, 3): 13/5=2,6 ;C7(1, 5, 4, 5, 2, 4): 21/6=3,5 ;C8(5, 5, 1, 1, 1, 3): 16/6=2,67 ;C9(5, 1, 3, 1, 2, 1, 3, 2): 18/8=2,25.Considering the threshold= 2.5, we will retain respectively the paths C4, C6, C7, and C8.2.Path RankingThe results of the previous step are shown in Fig. 03.Fig.3. Filtering the resulting paths relative to the thresholdWe can notice that there are three types of paths that will be treated differently: Content-based, Collaborative, and Hybrid.Content-based pathsIf the path is based on content (i.e., if there is in the path one user and items connected with entities), we check if the items that constitute the path are the in the same cluster.Collaborative pathsIf the path is collaborative (i.e., the path is a list of items and users), we check if the users that make up the path belong to the same cluster.Hybrid pathsIf the path is hybrid (i.e., in which there are items, users and entities), we check whether the two cases above are checked.Finally, all items targeted by the paths satisfying the above conditions are classified according to the path average and recommended to the user.IV.E XPERIMENTSWe have conducted a couple of experiments in order to evaluate the quality of provided recommendations. In this section, we conduce the experimental setup and provide comprehensive analysis on the experimental results.A.Experimental SettingThe experiments were performed with the following resources and conditions.1.Data SetWe conducted several experiments on the popular Movie Lens dataset. The dataset, taken from the real world in the field of films, contains 1,000,209 ratings for 3,883 movies provided by 6,040 users. MovieLens datasets are mainly aimed at evaluating collaborative recommender systems in the movie domain. Since our approach is based on a content-based recommendation, in order to use such datasets to test the performances of our algorithms, we linked resources represented in MovieLens to DBpedia ones.puting EnvironmentThe proposed approach was coded in java programming environment. The experiments were conducted on a desktop computer that runs under Windows 7 (64bit) with Intel Core i7-2600 CPU @3.40GHz, 8.00GB of RAM.B.Results and AnalysisTo demonstrate the effectiveness and the performance of LOD-based recommender system, we conducted several experiments. In the following, we present results of experiments conducted on the abode-synthesized dataset. In each experiment, we randomly choose twenty users as the target users for making recommendation.1.Impact of User-graph Constructing TechniqueTo study the effect of the technique of constructing the graph of user provided by recommender system, we compare the results using alternately three techniques: 1) personal information, 2) ranking, and 3) hybridization of the two techniques. We notice that hybridization leads to better results (Fig. 4).Fig.4. Evaluation of system with different methods to construct thegraph of users.2. Parameter Impact on ClusteringTo study the parameter impact on VSM clustering, weperformed four tests while changing the values of three parameters of the Movie-Lens dataset, namely Genre, Actor and Writer. We take respectively the values: VSM (genre=1, actor=1, writer=1) VSM (genre=5, actor=3, writer=1) VSM (genre=1, actor=5, writer=3)VSM (genre=3, actor=1, writer=5)The performance of VSM clustering is measured in terms of three external validity measures namely Recall, Precision and F-measure.Fig. 5 shows that changing the settings of VSM leads to change the quality of recommendation. We notice that giving the same value to the three parameters generates the best results.Fig.5. The evaluation of VSM.3. Impact of the Number of Clusters KLet us evaluate the impact of the number of clusters K on the characteristics of each cluster. We repeat the previous test with the number of clusters varying from 1 to 5.In Fig. 6, we note that varying the number of clusters from 1 to 5, affects the quality of the recommendation. We deduce that the value 4 leads to better results. Based on this observation, we have chosen k=4 for the rest ofthe experiments.Fig.6. Impact of the number of cluster on recommendation4. Impact of the clustering techniqueThe main objective of this experiment is to explore the impact of the techniques used for clustering users and items on the quality of recommendation.We perform four tests to compare between different techniques used for clustering users and items respectively.First, we use K-means for clustering users and items. Second, we use K-means for clustering users and VSM for clustering items. Third, we use Graph similarity for clustering users and K-means for clustering items. Finally, we use Graph similarity for clustering users and VMS for clustering items. The performance of each clustering algorithm is measured in terms of the external validity measures F-measure.As mentioned in Fig. 7, it is obvious that the best results are achieved while using K-means for clustering users and VSM for clustering items.Fig.7. Comparison between different clustering techniques.5. Impact of UsingLOD on ImprovingRecommendationsIn this phase of experiment, our aim is to demonstrate that adding semantic information from LOD can improve recommender systems capability. For each pair of objects visited by the same user, we have computed content based similarity either including or not including DBPedia data.In Fig. 8, we note that the use of LOD helps in the improvement of the recommendation and gives the best results.Fig.8. The influence of LOD on recommendation quality.6. Impact of Using ContextIn context-aware content-based recommendations, the content-based algorithm is extended to take into account the context of the user. Before generating the recommendations, the user feedback is processed by a contextual pre-filter. Contextual information is used to determine the relevance of the feedback and filter these data based on the current situation.To compare the contextual and un-contextual approaches, we conducted experiments across the following experimental settings: 1) Contextual user feedback model Context Model, 2) Un-contextual user feedback model.In Fig. 9, we note that contextual information affects positively the quality of the recommendations.Fig.9. The influence of context on the provided recommendations.7. Global ComparisonThe goal of this experiment is to explore the quality of generated recommendations by their comparison with existing recommendation systems. The measurements performed in this experiment were done by taking into consideration, all the findings mentioned in the previous tests.While comparing our approach with [9] and [11], wenotice that our approach surpasses its competitors.parison of approachesV. C ONCLUSIONThis paper demonstrated the applicability of LOD for improving the accuracy and the quality of recommendation systems. The experiments showed that the accurate measurement of item similarities using LOD has the potential to improve the performance of recommender systems, especially, in situations where an insufficient amount of user ratings is available. The combination of semantic enrichment of items and users with collaborative filtering-based recommendation in the proposed hybrid recommender system presented comparable overall accuracy, in addition to significant improvement in resolving the item cold-start and data sparsity problems.For future work, we plan to improve the approach in several aspects. This includes using others resources of linked data (e.g., DBTrope, Freebase and LinkedMDB) and others datasets (e.g., LastFM). We also plan make hybridization between implicit and explicit feedback.A CKNOWLEDGMENTThe work described in this paper was supported by the National Research Project of Algeria under grant No. C00L07UN220120130004.R EFERENCES[1] N. Abderrahim, S.M. Benslimane, 2015. TowardsImproving Recommender System: A Social Trust-aware Approach. International Journal of Modern Education and Computer Science (IJMECS), 7(2):8-15.[2] R. Burke, 2007. Hybrid web recommender systems. In P.Brusilovsky, A. Kobsa, and W. Nejdl, editors, The Adaptive Web: Methods and Strategies of Web Personalization, volume 4321 of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg New York.[3] Tommaso Di Noia, Vito Claudio Ostuni, 2015.Recommender Systems and Linked Open Data. Reasoning Web. Web Logic Rules. LNCS 9203, pp 88-113.[4] Benjamin Heitmann and Conor Hayes, 2010. Using LinkedData to Build Open, Collaborative Recommender Systems, In AAAI Spring Symposium: Linked Data Meets Artificial Intelligence.[5] Rui Yang, Wei Hu, and Yuzhong Qu, 2012. UsingSemantic Technology to Improve Recommender Systems Based on Slope One, CSWS.[6] Han-Gyu Ko, Eunae Kim and In-Young Ko, 2014.Semantically based Recommendation by using Semantic Clusters of Users’ Viewing History.[7] Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,Horrocks, I., Glimm, B, 2010. Music Recommendations Using DBpedia. In ISWC’10.[8] Lasek, I., 2011. Dc proposal: Model for news filtering withnamed entities. In The Semantic Web – ISWC 2011, LNCS, vol. 7032, pp. 309–316.[9] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni,Davide Romito and Markus Zanker, 2012. Linked Open Data to support Content-based Recommender Systems. In the 8th International Conference on Semantic Systems, Graz, Austria.[10] Fattane Zarrinkalam, Mohsen Kahani, 2012. A Multi-Criteria Hybrid Citation Recommendation System Based on Linked Data, In Computer and Knowledge Engineering (ICCKE).[11] Vito Claudio Ostuni, Tommaso Di Noia, Eugenio DiSciascio, Roberto Mirizzi, 2013. Top-N Recommendations from Implicit Feedback leveraging Linked Open Data, In the 7th ACM conference on Recommender Systems, RecSsys.[12] Ladislav Peska and Peter Vojtas, 2013. EnhancingRecommender System with Linked Open Data.In the International Conference on Flexible Query Answering Systems, Granada, Spain.[13] Rouzbeh Meymandpour and Joseph G. Davis, 2015.Enhancing Recommender Systems Using Linked Open Databased Semantic Analysis of Items. In the Proceedings of the 3rd Australasian Web Conference (AWC 2015), Sydney, Australia.[14] M. F. Alhamid, M. Rawashdeh, H. Al Osman, M. ShamimHossain, A. El Saddik, 2014. Towards context-sensitive collaborative media recommender system, International Journal of Multimedia Tools and Applications, 74(24):11399–11428.[15] Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,Z. Ives (2007). DBpedia: A Nucleus for a Web of Open Data. The Semantic Web, Lecture Notes in Computer Science 4825, 722–735.[16] Naziha Abderrahim, Sidi Mohamed Benslimane. TowardsImproving Recommender System: A Social Trust-aware Approach. International Journal of Modern Education and Computer Science (IJMECS), Vol.7, No. 2, January 2015. [17] MacQueen, J.B.: Some methods for classification andanalysis of multivariate observations. In: Proceedings of fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, vol. 1, pp. 281–297. University of California Press, California (1967)[18] Salton G, Wong A, Yang CS (1975) A vector space modelfor automatic indexing. Communications of the ACM, 18(11):613–620. 1975.Authors ProfilesAsmaa Fridi is a PhD student in computer science Department at the University of Sidi Bel-Abbes, Algeria. She received a M.S. degree in computer science in 2011 from the Computer Science Department of Sidi Bel Abbes University. Her research interests include web services, social networks, semantic web, and recommendersystems.Sidi Mohamed Benslimane is a full Professor at École Supérieure en Informatique, Sidi Bel-Abbès, Algeria. He received his PhD degree in computer science from Sidi Bel Abbes University in 2007. He also received a M.S. and a technical engineer degree in computer science in 2001 and 1994 respectively from the Computer Science Department ofSidi Bel Abbes University, Algeria. He is currently Head of Higher School of Computer Science, Sidi Bel-Abbès, Algeria. From 2001 to 2015, he was a member of the Evolutionary Engineering and Distributed Information Systems Laboratory, EEDIS. Actually, he heads the Research Team 'Service Oriented Computing' at LabRI-SBA Laboratory. His research interests include, semantic web, service oriented computing, ontology engineering, information and knowledge management, distributed and heterogeneous information systems and context-aware computing.How to cite this paper: Asmaa Fridi, Sidi Mohamed Benslimane,"Towards Semantics-Aware Recommender System: A LOD-Based Approach", International Journal of Modern Education and Computer Science(IJMECS), Vol.9, No.2, pp.55-61, 2017.DOI: 10.5815/ijmecs.2017.02.07。

相关文档
最新文档