布丰投针实验详解
蒲丰投针试验讲解课件

该试验不仅在理论上具有重要意义,对 于理解随机性和几何规律的本质有重要 贡献,而且在实际应用中也有广泛的应
用价值。
蒲丰投针试验可以应用于统计学、物理 学、计算机科学等多个领域,为相关领
域的研究提供了重要的启示和工具。
蒲丰投针试验的局限性
01
02
03
04
蒲丰投针试验虽然是一个经典 的试验,但是它也存在一些局
针方向与平行线垂直。
重复投掷蒲丰投针N次,记录每 次投掷的结果。
测量与计算阶段
测量投掷后蒲丰投针 与平行线之间的距离 ,记录下来。
根据公式π=2*n/N ,计算π的近似值, 其中n为相交次数, N为投掷次数。
根据记录的数据,计 算蒲丰投针与平行线 相交的次数。
CHAPTER 03
试验结果分析
蒲丰投针试验的预期结果
蒲丰投针试验是一种估算π值的方法,其预期结果是通过投掷 一根针到一张白纸上,然后统计针与白纸边缘相交的次数, 来估算π的值。
蒲丰投针试验的预期结果是根据概率论和几何学原理推导出 来的,即当投掷次数足够多时,针与白纸边缘相交的频率接 近于π/4。
实际结果与预期结果的比较
在实际进行蒲丰投针试验时,需要记录针与白纸边缘相交的次数,并计 算出相应的π值。
限性。
首先,该试验的结果受到投针 方式、试验环境等因素的影响 ,可能导致结果存在误差。
其次,蒲丰投针试验的应用范 围相对有限,主要适用于一些 特定的几何形状和随机性问题
。
最后,蒲丰投针试验的结论仅 适用于理想化的模型,与实际
情况可能存在差异。
未来研究方向与展望
随着科学技术的发展和研究的深入, 蒲丰投针试验在未来仍有广阔的研究 前景。
蒲丰投针试验讲解课 件
投针实验详解

一、 问题的提出在人类数学文化史中,对圆周率π精确值的追求吸引了许多学者的研究兴趣。
在众多的圆周率计算方法中,最为奇妙的是法国物理学家布丰(Boffon )在1777年提出的“投针实验”。
与传统的“割圆术”等几何计算方法不同的是,“投针实验”是利用概率统计的方法计算圆周率的值,进而为圆周率计算开辟了新的研究途径,也使其成为概率论中很有影响力的一个实验。
本节我们将借助于MATLAB 仿真软件,对“投针实验”进行系统仿真,以此来研究类比的系统建模方法和离散事件系统仿真。
二、 系统建模“投针实验”的具体做法是:在一个水平面上画上一些平行线,使它们相邻两条直线之间的距离都为a ;然后把一枚长为l (0<l <a )的均匀钢针随意抛到这一平面上。
投针的结果将会有两种,一种是针与这组平行线中的一条直线相交,一种是不相交。
设n 为投针总次数,k 为相交次数,如果投针次数足够多,就会发现公式2ln ak计算出来的值就是圆周率π。
当然计算精度与投针次数有关,一般情况下投针次数要到成千上万次,才能有较好的计算精度。
有兴趣的读者可以耐心地做一下这个实验。
为了能够快速的得到实验结果,我们可以通过编写计算机程序来模拟这个实验,即进行系统仿真。
所谓的系统仿真是指以计算机为工具,对具有不确定性因素的、可模型化的系统的一种研究方法。
建立能够反映实验情况的数学模型是系统仿真的基础。
系统建模中需解决两个问题,一个是如何模拟钢针的投掷结果,另一个是如何判断钢针与平行线的位置关系。
这里,设O 为钢针中点,y 为O 点与最近平行线之间的距离,θ为钢针与平行线之间的夹角(0180θ≤< )。
首先,由于人的投掷动作是随机的,钢针落下后的具体位置也是随机的,因此可用按照均匀分布的两个随机变量y 和θ来模拟钢针投掷结果。
其次,人工实验时可以用眼睛直接判断出钢针是否与平行线相交,而计算机仿真实验则需要用数学的方法来判别。
如下图所示,如果y 、l 和θ满足关系式1sin 2y l θ≤,那么钢针就与平行线相交,否则反之,进而可以判断钢针与平行线的位置关系。
蒲丰投针问题

此外,随便说出3个正数,以这3个正数为边长可以围成一个钝角三角形的概率P也与π有关,这个概率为 (π-2)/4,证明如下:
设这三个正数为x,y,z,不妨设x≤y≤z,对于每一个确定的z,则必须满足x+y>z,x^2+y^2﹤z^2,容易 证明这两个式子即为以这3个正数为边长可以围成一个钝角三角形的充要条件,用线性规划可知满足题设的可行域 为直线x+y=z与圆x^2+y^2=z^2;围成的弓形,总的可行域为一个边长为z的正方形,则可以围成一个钝角三角形 的概率P=S弓形/S正方形=(πz^2/4-z^2/2)/z^2=(π-2)/4.因为对于每一个z,这个概率都为(π-2)/4, 因此对于任意的正数x,y,z,有P=(π-2)/4,命题得证。
投针步骤
实验数据
证明
下面是利用这个公式,用概率的方法得到圆周率的近似值的一些资料。
公元1901年,意大利数学家拉兹瑞尼宣称进行了多次的投针试验,每次投针数为3408次,平均相交数为1808 次,给出π的值为3.——准确到小数后6位。不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国 犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实 令人惊讶的!
布丰投针实验是第一个用几何形式表达概率问题的例子,他首次使用随机实验处理确定性数学问题,为概率 论的发展起到一定的推动作用。
证明一:找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。可以想象得到,对于这样的圆圈来 说,不管怎么扔下,都将和平行线有两个交点。因此,如果圆圈扔下的次数为n次,那么相交的交点总数必为2n。 设想把圆圈拉直,变成一条长为πd的铁丝。显然,这样的铁丝扔下时与平行线相交的情形要比圆圈复杂些,可能 有4个交点,3个交点,2个交点,1个交点,甚至于都不相交。由于圆圈和直线的长度同为πd,根据机会均等的 原理,当它们投掷次数较多,且相等时,两者与平行线组交点的总数期望也是一样的。这就是说,当长为πd的铁 丝扔下n次时,与平行线相交的交点总数应大致为2n。
蒲丰投针实验原理

蒲丰投针实验原理
蒲丰投针实验是一种检测泥沙粒径分布的实验方法,它是利用悬浮在水中的粒度分布模拟藉由空气流抛掷及落入平板上的控制情形来模拟河流中悬浮颗粒的粒径分布,从而进行检测的。
该实验流程是:将检测的粒料悬浮于水中,利用抛掷及落入平板上的控制条件来模拟河流中悬浮颗粒的粒径分布,然后借助投针实验来观测平面上粒料的分布情况。
最后,根据获得的结果计算出每种粒径的百分率,从而可以得出泥沙粒径分布情况。
蒲丰(Buffon)投针试验

一、利用Matlab计算机语言验证蒲丰(Buffon)投针试验问题给定a=10,b=5时,模拟100万次投针实验的Matlab程序如下:a=10;b=5;n=1000000;p=10; % a为平行线间距,b为针的长度,n为投掷次数,p为有效数字位数x=unifrnd(0,a/2,[n,1]);phi=unifrnd(0,pi,[n,1]); % 产生均匀分布的随机数,分别模拟针的中点与最近平行线的距离和针的倾斜角y=x<0.5*b*sin(phi); m=sum(y); % 计数针与平行线相交的次数PI=vpa(2*b*n/(a*m),p)运行结果PI =3.138919145二、利用C++计算机语言编程通过大量重复实验验证以下结论:三个阄,其中一个阄内写着“有”字,两个阄内不写字,三人依次抓取,各人抓到“有”字阄的概率均为1/3。
程序如下:#include<stdio.h>#include<stdlib.h>#include<time.h>void main(){int n=500000;int i,a[3]={0};srand(time(NULL));for(i=0;i<n;i++)a[rand()%3]++;printf("共测试%d次,其中有字事件有%d次, 占%.2f%%\n""抓到无字事件1有%d次,占%.2f%%\n""抓到无字事件2有%d次,占%.2f%%\n""抓到无字事件共%d次,占%.2f%%",n,a[0],a[0]*100.0/n,a[1],a[1]*100.0/n,a[2],a[2]*100.0/n,a[1]+a[2],(a[1]+a[2])*100.0/n);return 0;}。
蒲丰投针实验模拟

一、蒲丰投针问题在平面上画有等距离的一些平行线,平行线间的距离为a(a>0) ,向平面上随机投一长为l(l<a)的针,针与平行线相交的概率p,结果发现π =2*l/(a*p).二、试验方法能够采纳MATLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。
1、基来源理因为针投到纸上的时候,有各样不一样方向和地点,但是,每一次投针时,其地点和方向都能够由两个量独一确立,那就是针的中点和偏离水平的角度。
以 x 表示针的中点到近来的一条平行线的距离,β表示针与平行线的交角。
明显有0<=x<=a/2 ,0<=β <=Pi 。
用边长为 a/2 及 Pi 的长方形表示样本空间。
为使针与平行线相交,一定x<=l*sinβ * ,知足这个关系的地区面积是从0 到Pi的l*sinβ对β的积分,可计算出这个概率值是(2l)/(Pi*a)。
只需随机生成n 对这样的x 和β,就能够模拟 n 次的投针实验,而后统计知足 x<=l*sin β * 的 x 的个数,就能够以为这是订交的次数。
而后利用公式求得π值。
2、MATLAB编程clear ('n')clear('a')clear('x')clear('f')clear ('y')clear ('m')disp(' 本程序用来进行投针实验的演示, a 代表两线间的宽度,针的长度 l=a/2 ,n 代表实验次数 '); a=input(' 请输入 a:');n=input(' 请输入 n:');x=unifrnd(0,a/2,[n,1]);f=unifrnd(0,pi,[n,1]);y=x<*a*sin(f);m=sum(y);PI=vpa(a*n/(a*m))三、实验数据 ( 部分程序截屏见后 )a n PI第一次310000第二次310000第三次3100000第四次3100000第五次31000000第六次31000000第七次3第八次3第九次3第十次3四、实验结论从上述数据剖析可知,跟着模拟次数的愈来愈多, PI 的值渐渐稳固在π值邻近,即愈来愈趋近于π,故蒲丰投针实验的确能够模拟出π的值。
蒲丰投针原理

/4.因为对于每一个z,这个概率都为(π-2)/4,因此对于任意的正数x,y,z,有P=(π-2)/4,命题得证。
为了估算π的值,我们需要通过实验来估计它的概率,这一过程可交由计算机编程来实现,事实上x+y>z,x²+y²;﹤z²;等价于(x+y-z)(x²+y²-z²;)﹤0,因此只需检验这一个式子是否成立即可。
若进行了m 次随机试验,有n次满足该式,当m足够大时,n/m趋近于(π-2)/4,令n/m=(π-2)/4,解得π=4n/m+2,即可估计出π值。
值得注意的是这里采用的方法:设计一个适当的试验,它的概率与我们感兴趣的一个量(如π)有关,然后利用试验结果来估计这个量,随着计算机等现代技术的发展,这一方法已经发展为具有广泛应用性的蒙特卡罗方法。
计算π最稀奇方法之一计算π的最为稀奇的方法之一,要数18世纪法国的博物学家C·布丰和他的投针实验:在一个平面上,用尺画一组相距为d的平行线;一根长度小于d的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.布丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于d,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值.公元1901年,意大利数学家拉兹瑞尼作了3408次投针,给出π的值为3.1415929——准确到小数后6位.不过,不管拉兹瑞尼是否实际上投过针,他的实验还是受到了美国犹他州奥格登的国立韦伯大学的L·巴杰的质疑.通过几何、微积分、概率等广泛的范围和渠道发现π,这是着实令人惊讶的!证明下面就是一个简单而巧妙的证明。
找一根铁丝弯成一个圆圈,使其直径恰恰等于平行线间的距离d。
可以想象得到,对于这样的圆圈来说,不管怎么扔下,都将和平行线有两个交点。
蒲丰投针概率推导过程

蒲丰投针概率推导过程蒲丰投针是一种古老的传统技艺,也是一项非常有挑战性的技巧活动。
它要求将一个小针投入到一个竹筒中,而这个竹筒的直径通常只有针的两倍大小。
这项技艺的成功率非常低,但是许多人仍然对此感兴趣,并且希望了解一下成功的概率是多少。
那么,蒲丰投针的成功概率是多少呢?要回答这个问题,我们需要做一些概率推导。
首先,我们可以假设竹筒的直径为d,针的直径为r。
为了成功投针,针必须以正确的角度进入竹筒,而且针的位置必须足够准确以免碰到竹筒的边缘。
假设针的投射角度为α,我们可以将投射角度分为两个范围:一个是α1,表示针的一端离开竹筒的范围;另一个是α2,表示针的另一端离开竹筒的范围。
这两个范围的和必须小于等于竹筒的直径d。
根据几何原理,我们可以得到以下关系:2r*sin(α1)+2r*sin(α2)≤d。
这个关系表明,针的两端在竹筒中的投射范围之和不能超过竹筒的直径。
现在,我们可以进一步推导出针的投射角度α的范围。
假设针的长度为l,我们可以得到以下关系:2r*sin(α1)+2r*sin(α2)≤l。
这个关系表明,针的两端在竹筒中的投射范围之和不能超过针的长度。
现在,我们可以将这个关系进一步转化为概率问题。
假设针的长度l=2r,我们可以得到以下关系:2*sin(α1)+2*sin(α2)≤1。
这个关系表明,针的两端在竹筒中的投射范围之和不能超过1。
为了计算针的成功概率,我们需要确定针的投射角度α的范围。
根据上述关系,我们可以得到以下范围:0≤α1≤π/2,0≤α2≤π/2。
这个范围表明,针的投射角度α的范围在0到π/2之间。
现在,我们可以计算针的成功概率。
假设针的投射角度α的范围在0到π/2之间均匀分布,我们可以得到以下概率:P(针成功)=∫[0,π/2]∫[0,π/2]2*sin(α1)*2*sin(α2)dα1dα2。
由于文章要求不包含数学公式或计算公式,我们不再具体计算上述积分。
但是,我们可以肯定地说,这个积分是一个正值,因此针的成功概率是一个大于零的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布丰投针实验详解
1777年,法国数学家布丰(D,Buffon,1707年-1788年)提出了随机投针法并通过投针实验计算出了圆周率π的值,与刘徽的“割圆术”不同的是,随机投针法是利用概率统计的方法来计算圆周率π的值,开辟了计算圆周率的新途径,因此,“布丰投针实验”成为概率论中很有影响力的一个实验。
程序运行时,计算机上将显示出每次“投针实验”的具体情况,即显示当前总投掷的次数、钢针与平行线相交的次数以及由此计算出来的圆周率的值,当满足所设置的精度要求后,程序就停止运行,当钢针投掷276427次后,所计算出来的圆周率值满足精度要求,此时钢针与平行线相交131984次,圆周率计算结果为3.14159670869196.当然,由于“投掷动作”具有随机性,因此每次“投针实验”的仿真结果不一定相同,为了使计算结果更趋近于π,可以减小误差,取更小的s的值来提高计算的精度,当然仿真实验的时间也会随之变长,
值得说明的是,若将一根钢丝弯成一个圆圈,使其直径恰好等于平行线间的距离a,投掷的结果不外乎有两种:一种是与一条平行线相交,一种是与相邻两条平行线相切,这两种情况都将导致圆圈和平行线有两个交点,因此,如果圆圈扔下的次数为n,那么相交的交点数必为2n。
若将圆圈拉直变成一根长为πa的钢针,显然,这样的钢针被扔下时与平行线相交的情形要比弯成圆圈的情况复杂得多,可能没有交点,还可能有1个交点、2个交点、3个交点、4个交点,由于圆圈和拉直后的钢针的长度相同,根据机会均等的原理可知,当投掷的次数足够多时,两者与平行线组的交点的总数将是一样的,换句话说,当长度为πa的钢针被扔下无穷多次后,它与平行线相交的交点总数也为2n。
從本质上看,上述投针实验运用了离散事件系统仿真,如果按照布丰的做法,进行成千上万次的投针实验和手工计算,势必要消耗大量的人力、物力和财力,而通过运用类比的方法,对实验进行系统建
模,在此基础上使用计算机进行系统仿真来解决问题,事情就会变得非常简单,我们只需要根据已掌握的经验与认识,通过对比分析1,运用数学语言、数学符号、数学公式、数学概念等来表达这些量,从多种复杂的因素中抽取主要因素,忽略次要因素,抓住事物的本质特征,运用一系列等式或不等式来表达各个量之间的关系,从而建立起研究对象的数学模型,这有助于掌握复杂事物的内在规律。
20世纪40年代以后,随着电子计算机的出现和发展,人们可以选择适当的软件和编程方法,使用计算机来模拟仿真一些实验和计算,计算机具有计算速度快和存储容量大的优点,采用系统仿真技术可以代替许多实际上非常庞大而复杂的实验,并将实验结果快速地进行处理和分析,上述“投针实验”已经证明了这一点,这说明,在建好数学模型的基础上,运用计算机进行系统仿真,可对研究对象进行快速有效的模拟。
END。