蒲丰投针试验

合集下载

蒲丰投针――MonteCarlo算法

蒲丰投针――MonteCarlo算法

蒲丰投针 ―― Monte Carlo 算法背景:蒙特卡罗方法(Monte Carlo ),也称统计模拟方法,是在二次世界大战期间随着科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的一类非常重要的数值计算方法。

蒙特卡罗方法在应用物理、原子能、固体物理、化学、生态学、社会学以及经济行为等领域中得到广泛利用。

蒙特卡罗方法的名字来源于世界著名的赌城 —— 摩纳哥的蒙特卡罗。

其历史起源可追溯到1777年法国科学家蒲丰提出的一种计算圆周的方法 —— 随机投针法,即著名的蒲丰投针问题。

问题:设在平面上有一组平行线,间距为d ,把一根长L 的针随机投上去,则这根针和平行线相交的概率是多少?(其中 L < d )分析:由于 L < d ,所以这根针至多只能与一条平行线相交。

设针的中点与最近的平行线之间的距离为 y ,针与平行线的夹角为 θ (0 ≤ θ ≤ π)。

相交情形 不相交情形易知针与平行线相交的充要条件是:sin 2Ly x θ≤=由于1[0,], [0, ]2y d θπ∈∈,且它们的取值均满足平均分布。

建立直角坐标系,则针与平行线的相交条件在坐标系下就是曲线所围成的曲边梯形区域(见右图)。

所以有几何概率可知针与平行线相交的概率是sin d 2212LL p d d πθθππ==⎰Monte Carlo 方法:随机产生满足平均分布的 y 和 θ,其中1[0,], [0, ]2y d θπ∈∈,判断 y 是否在曲边梯形内。

重复上述试验,并统计 y 在曲边梯形内的次数 m ,其与试验次数 n 的比值即为针与平行线相交的概率的近似值。

clear;n = 100000; L = 1; d = 2; m = 0;for k = 1 : ntheta = rand(1)*pi; y = rand(1)*d/2;if y < sin(theta)*L/2m = m + 1; end endfprintf('针与平行线相交的概率大约为 %f\n', m/n)计算π的近似值利用该方法可以计算 π 的近似值:sin d 22 22 1n LL m p d m d L d n πθθπππ⇒≈==≈⎰下面是一些通过蒲丰投针实验计算出来的 π 的近似值:蒲丰投针问题的重要性并非是为了求得比其它方法更精确的π值,而是在于它是第一个用几何形式表达概率问题的例子。

蒲丰投针试验讲解课件

蒲丰投针试验讲解课件

该试验不仅在理论上具有重要意义,对 于理解随机性和几何规律的本质有重要 贡献,而且在实际应用中也有广泛的应
用价值。
蒲丰投针试验可以应用于统计学、物理 学、计算机科学等多个领域,为相关领
域的研究提供了重要的启示和工具。
蒲丰投针试验的局限性
01
02
03
04
蒲丰投针试验虽然是一个经典 的试验,但是它也存在一些局
针方向与平行线垂直。
重复投掷蒲丰投针N次,记录每 次投掷的结果。
测量与计算阶段
测量投掷后蒲丰投针 与平行线之间的距离 ,记录下来。
根据公式π=2*n/N ,计算π的近似值, 其中n为相交次数, N为投掷次数。
根据记录的数据,计 算蒲丰投针与平行线 相交的次数。
CHAPTER 03
试验结果分析
蒲丰投针试验的预期结果
蒲丰投针试验是一种估算π值的方法,其预期结果是通过投掷 一根针到一张白纸上,然后统计针与白纸边缘相交的次数, 来估算π的值。
蒲丰投针试验的预期结果是根据概率论和几何学原理推导出 来的,即当投掷次数足够多时,针与白纸边缘相交的频率接 近于π/4。
实际结果与预期结果的比较
在实际进行蒲丰投针试验时,需要记录针与白纸边缘相交的次数,并计 算出相应的π值。
限性。
首先,该试验的结果受到投针 方式、试验环境等因素的影响 ,可能导致结果存在误差。
其次,蒲丰投针试验的应用范 围相对有限,主要适用于一些 特定的几何形状和随机性问题

最后,蒲丰投针试验的结论仅 适用于理想化的模型,与实际
情况可能存在差异。
未来研究方向与展望
随着科学技术的发展和研究的深入, 蒲丰投针试验在未来仍有广阔的研究 前景。
蒲丰投针试验讲解课 件

蒲丰投针问题

蒲丰投针问题

蒲丰投针问题1.蒲丰简介蒲丰有的时候翻译成布丰,是18世纪法国著名的博物学家。

他喜欢研究数学和生物学。

主要的贡献有:(1)翻译了牛顿的《流数法》,流数法按现在的说法就叫微积分。

(2)写了一本巨著,这部巨著的名字叫《自然史》,因为他特别喜欢研究生物。

这个自然史一共有44卷,其中他生前写了36卷,后来他学生又完成了。

这本书对后来的世界有很大的影响,尤其影响到一个人叫达尔文,所以蒲丰这个人其实是很厉害的。

2.蒲丰投针1777年,在蒲丰晚年的时候,他有一次举行了一个家庭宴会。

邀请了一大堆他的朋友来帮他做实验。

做什么实验呢,就“投针”。

那朋友来了之后发现,就是桌子上有很多根间距相等的平行线。

然后蒲丰就说了,给你们同样大的针,你把这些针随机扔到这个桌子上。

然后宾客就随便扔吗,有可能这样,有可能这样……,随便扔是吧,这都有可能,什么情况都有可能。

有的针就没有跟平行线相交,比如这个,这个,这个,就没有相交,也有相交的,比如这个,这个,这个,这是相交的,对吧,然后他就数,他说这个针一共投了多少个呢?一共投了n =2212个。

其中与这个平行线相交的针有多少个,数了一下有m =704个。

然后他说,我现在可以计算圆周率了,别人都不信,他说你看我圆周率怎么算,我只要把这两个数相除就行了。

我用n 除以m ,这个数除完了大概是3.142,这个就是圆周率了。

别人说好神奇,这怎么回事儿,蒲丰说我给你解释解释这个原理是什么?其实这个原理并不复杂,我们来看一下它的原理是什么。

3. 蒲丰投针原理(1)首先,它这个平行线是严格平行的,那平行线之间的距离是固定的,是a 。

然后我随意地把一根针投上去,也许相交,也许不相交,这不一定。

比如说这个针投上去了,投上去了之后,针的总长是b ,针有一个中点叫M ,对吧,这个M 到它比较近的平行线之间的距离我们设为x ,大家注意,这个是针的中点到比较近的平行线的距离是x ,所以我们应该知道x 的范围。

x 的最小值就是这个终点正好落在平行线上,那最小值是0,对吧。

蒲丰(Buffon)投针试验

蒲丰(Buffon)投针试验

一、利用Matlab计算机语言验证蒲丰(Buffon)投针试验问题给定a=10,b=5时,模拟100万次投针实验的Matlab程序如下:a=10;b=5;n=1000000;p=10; % a为平行线间距,b为针的长度,n为投掷次数,p为有效数字位数x=unifrnd(0,a/2,[n,1]);phi=unifrnd(0,pi,[n,1]); % 产生均匀分布的随机数,分别模拟针的中点与最近平行线的距离和针的倾斜角y=x<0.5*b*sin(phi); m=sum(y); % 计数针与平行线相交的次数PI=vpa(2*b*n/(a*m),p)运行结果PI =3.138919145二、利用C++计算机语言编程通过大量重复实验验证以下结论:三个阄,其中一个阄内写着“有”字,两个阄内不写字,三人依次抓取,各人抓到“有”字阄的概率均为1/3。

程序如下:#include<stdio.h>#include<stdlib.h>#include<time.h>void main(){int n=500000;int i,a[3]={0};srand(time(NULL));for(i=0;i<n;i++)a[rand()%3]++;printf("共测试%d次,其中有字事件有%d次, 占%.2f%%\n""抓到无字事件1有%d次,占%.2f%%\n""抓到无字事件2有%d次,占%.2f%%\n""抓到无字事件共%d次,占%.2f%%",n,a[0],a[0]*100.0/n,a[1],a[1]*100.0/n,a[2],a[2]*100.0/n,a[1]+a[2],(a[1]+a[2])*100.0/n);return 0;}。

蒲丰投针实验模拟

蒲丰投针实验模拟

一、蒲丰投针问题在平面上画有等距离的一些平行线,平行线间的距离为a(a>0) ,向平面上随机投一长为l(l<a)的针,针与平行线相交的概率p,结果发现π =2*l/(a*p).二、试验方法能够采纳MATLAB软件进行模拟实验,即用MATLAB编写程序来进行“蒲丰投针实验”。

1、基来源理因为针投到纸上的时候,有各样不一样方向和地点,但是,每一次投针时,其地点和方向都能够由两个量独一确立,那就是针的中点和偏离水平的角度。

以 x 表示针的中点到近来的一条平行线的距离,β表示针与平行线的交角。

明显有0<=x<=a/2 ,0<=β <=Pi 。

用边长为 a/2 及 Pi 的长方形表示样本空间。

为使针与平行线相交,一定x<=l*sinβ * ,知足这个关系的地区面积是从0 到Pi的l*sinβ对β的积分,可计算出这个概率值是(2l)/(Pi*a)。

只需随机生成n 对这样的x 和β,就能够模拟 n 次的投针实验,而后统计知足 x<=l*sin β * 的 x 的个数,就能够以为这是订交的次数。

而后利用公式求得π值。

2、MATLAB编程clear ('n')clear('a')clear('x')clear('f')clear ('y')clear ('m')disp(' 本程序用来进行投针实验的演示, a 代表两线间的宽度,针的长度 l=a/2 ,n 代表实验次数 '); a=input(' 请输入 a:');n=input(' 请输入 n:');x=unifrnd(0,a/2,[n,1]);f=unifrnd(0,pi,[n,1]);y=x<*a*sin(f);m=sum(y);PI=vpa(a*n/(a*m))三、实验数据 ( 部分程序截屏见后 )a n PI第一次310000第二次310000第三次3100000第四次3100000第五次31000000第六次31000000第七次3第八次3第九次3第十次3四、实验结论从上述数据剖析可知,跟着模拟次数的愈来愈多, PI 的值渐渐稳固在π值邻近,即愈来愈趋近于π,故蒲丰投针实验的确能够模拟出π的值。

蒲丰投针问题

蒲丰投针问题

蒲丰投针问题
1.有一只小猫,抓到20只老鼠,他准备每次吃掉奇数位置的老鼠,直到最后一只老鼠就把它放生,有一只很聪明的老鼠听到这里,就站到了一个位置上,最后它果然是那只被放生的老鼠,请问它站的是第几个位置?
2.伟大的数学家蒲丰,他邀请了他的很多朋友到他家,他在纸上画了很多间距相同的平行线,他给了他朋友很多长度是平行线间距一半的针,经过几千次的数据收集,针与平行线相交的数量与总数量的比值是
3.14,与π接近,各位知道是什么原因吗?。

浦丰投针问题

浦丰投针问题

怎么办呢?
如果我们将针的每一个位置看作是一个基 本事件,此时,假定每一个位置都“同等可能” 是合理的。这样就可以用几何概率去解决。

模型建立与求解
x 以M 表示针落下后的中点, 表示中点 M 到最近一条平行线的距离, 表示针于平行线
x
a 2
的交角
则基本事件区域为 a 0 x : 2 0
这种方法由于来源于浦丰投针问题,常常被 称为随机投针法。更进一步的,这种方法成为了 现代计算机模拟的基础——蒙特卡洛方法。
结束
L ( A)
a
x
x
a 2
投针简图


0
1 l sin d l 2
o

从而所求概率为 L( A) l 2l p L ( ) 1 a a 2
模型分析
2l 2)由于 p a
l 1)当比值 不变时, 值始终不变 p a
2l a 所以可以利用它来计算 的近似值
o

基本事件简图
它为 ox 平面上的一个矩形,其面积为:
a L() 2M 为使针与平线(这线必定是它与 最近的一条平行线)相交,其充要条件是 l 0 x sin , A 2 (为什么?) 0 显然A 是Ω 中的一个区域(如图) , 而 A 的面积为
对于一些不确定的自然现象和科学实验 结果,我们通常用概率统计学去研究,建立 概率统计模型(随机现象)
问题:平面上画有等距离为a ( a 0) l 的一些平行线,向此平面投一长为 (l a ) 的针,试求此针与任一平行线 相交的概率?
分析: 针投到平面上与平行线的关系有两种可能:
针与这些平行线中的某一根相交,或不相交。 这两种可能性一般来说不一样大,即不具有等 可能性。因此无法用古典概率来求解。

浦丰投针

浦丰投针
l/2(浦Biblioteka 问题)aMx
l
l sin 2

l 针与一平行线相交 0 x sin , 2
设 A=“针与一平行线相交”,则
l A : 0 x sin , 2 m ( A) P ( A) m (Ω)
l x sin 2
x a/2 A
0

0

l sin d 2l 2 . a a 2
1777年,法国科学家蒲丰( Buffon )提出了投针 试验问题.平面上画有等距离a (a>0)的一些平行线, 向平面任意投一长为l (l<a)的针,试求针与平行线 相交的概率. 解 设M表示针落下后,针 的中心,x 表示M与最近 一平行线的距离, 表示 针与这平行线的夹角,则 样本空间: a 0 x , 0 , 2
试验者
Wolf Smith De Morgan
时间
1850 1855 1860
针长 投掷次数
0.8 0.6 1.0 5000 3204 600
相交次 π的近似值 数
2532 1218 382 3.1596 3.1554 3.137
Fox Lazzerini Reina
1884 1901 1925
0.75 0.83 0.5419
1030 3408 2520
489 1808 859
3.1595 3.1415929 3.1795

蒲丰投针试验的应用及意义
2l P ( A) = aπ
根据频率的稳定性,当投针试验次数n很大时, m 算出针与平行直线相交的次数m,则频率值 即可 n 作为P(A)的近似值代入上式,那么
m 2l 2ln π n aπ am
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线 的距离
针长
投掷次数
相交次数
π的近似值
1
0.7
1000
462
3.0303
1
0.9
2000
1146
3.1414
2
1.7
3000
1649
3.0928
2
1.9
4000
2401
3.1653
3
2.7
5000
2932
3.0696
3
2.9
6000
3696
3.1385
4
3.8
7000
4238
3.1383
4
3.6
考核结果
教师签名:年 月 日
模拟法(也称为Monte-Carlo法).
实验的目的与作用
(1)理解频率具有客观稳定性;
(2)理解概率是频率的稳定值;
(3)知道我们常用频率作为计算概率的近似值;
(4)掌握通过设计一个随机实验,使一个事件的概率与某一未知数有关,然后通过重复实验,以频率近似概率,即可求得未知数的方法。
实验方法
运用计算机模拟蒲丰投针实验,通过重复实验,以频率近似概率,并通过公式推导,求的圆周率π的近似值。
实 验 报 告
课程名称:___概率论与数理统计___
学院名称:____数学与统计学院____
班 级:__________
姓 名:
学 号:
2013-2014______学年第 _____2____学期
数 学 与 统 计 学 院 制
实验地点ห้องสมุดไป่ตู้
课程类别
①公共课□ ②专业课□
实验日期
2014.4.28
实验编组
第 组
实验所
用时间
2小时
实验名称
蒲丰投针试验
问题陈述及原理
在一个平面上,用尺画一组相距为n的平行线;一根长度小于l(l<=n)的针,扔到画了线的平面上;如果针与线相交,则该次扔出被认为是有利的,否则则是不利的.
蒲丰惊奇地发现:有利的扔出与不利的扔出两者次数的比,是一个包含π的表示式.如果针的长度等于l,那么有利扔出的概率为2/π.扔的次数越多,由此能求出越为精确的π的值.
实验环境
MATLABR2010a
实验内容:
(1)利用计算机模拟蒲丰投针问题;
(2)根据蒲丰投针实验模拟结果估计圆周率π的近似值。
实验的意义
蒲丰投针问题是几何概率早起应用的一个例子。该实验的重要性并非是为了求得比其它方法更精确的π值,而在于这种通过
建立一个概率模型,并设计适当的随机实验,然后利用计算机模拟所设计的随机实验,来解决确定性数学问题方法,称为随机
问题的数学描述
个实验方法的操作很简单:找一根粗细均匀,长度为l的细针,并在一张白纸上画上一组间距为n的平行线(方便起见,常取 l>=n/2),然后一次又一次地将针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数。于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p =2l/πl。
8000
4602
3.1291
5
4.85
9000
5538
3.1528
6
5.7
10000
5965
3.1852
实验分析:通过实验可以看到,无论改变平行线间的距离,针的长度或是投掷的次数,得到的π的值都很相近。而且又可以感觉到,针的长度越接近平行线间的距离,在实验中得到的π的值与3.1416越接近,即也说明频率的稳定。因此也得到和学习了有一种计算π的值的计算方法。
实验原理
在平面上画有等距离的平行线,平行线间的距离为 a(a>0),向平面任意投掷一枚长为l(l<a)的针,求针与平行线相交的概率p。以 x表示针的中点到最近一条平行线距离,以Φ表示针与平行线的交角.于是投针试验就相当于向平面区域Ω={(x,φ)|0≤x≤a/2,0≤φ≤π}投点的几何概型。
针与平行线相交的充要条件是(x,Φ)满足:
编程如下:
function buffon(a,l,N)
X=unifrnd(0,a/2,1,N);
phi=unifrnd(0,pi,1,N);
half_sin=l*sin(phi)./2;
M=sum(X<=half_sin);
hat_pi=2*N*l./(a*M);
M
hat_pi
(蒲丰投针实验模拟结果及有关数据)
于是:
投针N次,记录下针与平行线相交的次数M,再用频率M/N代替概率p,从而得到π≈2lN/aM
实验准备
Matlab程序中的命令:
均匀分布 unif
随机数生成 rnd
实验过程
计算机模拟投针N次,针与平行线相交M次,由公式π≈2lN/aM
计算出π。
产生随机数
时生成均匀分布随机数:unifrnd(a,b,1,N)或unifrnd(a,b,N,1)其中,N为重复实验次数.。
相关文档
最新文档