现代制造技术

合集下载

现代制造技术与发展趋势

现代制造技术与发展趋势

物联网与制造业的融合
要点一
总结词
融合、创新、提升竞争力
要点二
详细描述
物联网技术正在与制造业深度融合,这种融合将进一步推 动制造业的创新和提升竞争力。物联网技术可以实现设备 的远程监控和故障预警,提高生产效率;同时,通过数据 分析和预测,企业可以更好地了解市场需求,优化生产计 划,降低成本。
数字化双胞胎技术
柔性制造系统的应用
应用柔性制造系统,适应多品种、小批量的生产 。
3
全球化生产网络
建立全球化生产网络,实现资源的优化配置。
第四阶段:智能化制造技术
物联网技术的应用
01
实现设备之间的互联互通,提高生产效率。
大数据与人工智能的应用
02
利用大数据和人工智能优化生产过程。
定制化生产
03
通过智能化制造技术,实现产品的定制化生产。
智能制造执行系统(MES)技术
总结词
智能制造核心大脑
详细描述
MES技术是一种集成了计划、执行、监控和优化等功能的智能制造执行系统,它 是智能制造的核心大脑,可以帮助企业实现生产过程的全面数字化管理,提高生 产效率、降低成本、提高产品质量和交货期。
04
现代制造技术的实践案例
案例一:汽车制造业中的机器人应用
主要生产简单的工具和用品,材料和产品相对单一。
第二阶段:自动化制造技术
流水线生产的出现
开始应用流水线生产方式,提高生产效率 。
数控机床的应用
引入数控机床,实现加工过程的自动化。
规模化生产
通过规模化生产,降低成本,提高产品质 量。
第三阶段:数字化制造技术
1 2
计算机辅助设计与制造
利用计算机进行产品设计和制造过程的模拟。

现代制造技术的发展及体系结构

现代制造技术的发展及体系结构

现代制造技术的发展及体系结构随着科技的日新月异,现代制造技术得到了极大的发展和创新。

现代制造技术的发展不仅改变了传统制造方式,而且给人们的生活带来了许多便利。

本文将介绍现代制造技术的发展趋势,并探讨其体系结构。

一、现代制造技术的发展趋势1. 自动化技术的广泛应用自动化技术是现代制造业的重要支撑,它通过提高生产效率、减少人力资源的使用等方面,为企业创造了更多的机遇和发展空间。

在现代制造业中,自动化技术可以应用于装配生产线、物流仓储系统、机器人技术等方面,实现生产的高度智能化和数字化。

2. 人工智能的集成应用人工智能技术的应用,使得制造技术朝着更加智能化的方向发展。

通过人工智能算法的优化和机器学习的应用,现代制造业可以更好地实现生产过程的监控与控制,提高产品的质量和生产效率。

3. 数字化技术的兴起数字化技术的兴起,为现代制造技术的发展提供了强大的支持。

通过数字化技术,制造企业可以实时监测设备的运行状态、产品的生产过程以及供应链的管理等,以实现生产过程的优化和资源的合理利用。

4. 智能化制造的推动智能化制造是现代制造技术发展的重要方向。

通过智能化制造,制造企业可以实现对整个制造过程的智能化监控与管理,提高生产效率和产品质量。

二、现代制造技术的体系结构现代制造技术的体系结构是指其所涵盖的技术要素和组成部分。

下面是现代制造技术的典型体系结构的介绍。

1. 设备层设备层是现代制造技术体系结构的基础层,包括各类生产设备和机器人技术。

在设备层,现代制造技术可以通过自动化和数字化技术的应用,实现生产过程的智能化和高效化。

2. 信息层信息层是现代制造技术体系结构的核心层,涵盖了信息采集与处理、数据分析与挖掘等方面的技术要素。

在信息层,制造企业可以通过实时监测和分析数据,进行生产过程的优化和决策的支持。

3. 控制层控制层是现代制造技术体系结构的执行层,负责将信息层的决策结果传递给设备层进行执行。

在控制层,制造技术可以实现对生产过程的实时调控和监控,以保证生产的正常进行。

现代制造技术与智能制造技术的区别与联系

现代制造技术与智能制造技术的区别与联系

现代制造技术与智能制造技术的区别与联系现代制造技术和智能制造技术是两种相互关联的技术,它们的发展和应用在推动着制造业的转型升级和创新发展。

本文将探讨现代制造技术和智能制造技术的区别和联系,以及智能制造技术在制造业转型升级中的作用。

一、现代制造技术和智能制造技术的区别现代制造技术是一种技术体系,它主要包括计算机辅助制造、柔性制造、精密加工、机器人技术、传感器技术等一系列高端技术。

现代制造技术的特点是:高效率、高质量、低成本、高灵活性、高自动化、高智能化。

现代制造技术在生产过程中可以大幅度提高产品的质量和效率,同时也能够减少人工的投入,提高产品的生产效率和利润。

而智能制造技术则是在现代制造技术的基础上,结合了计算机科学和人工智能等前沿技术的无人化、智能化的制造技术。

智能制造技术的核心是人机一体化和系统集成,通过物联网、云计算、大数据等技术,实现各种设备、业务和流程的自动化、智能化和协同化,同时可以实现制造全流程的可控性和可视化。

区别而言,智能制造技术强化了制造业对于智能化这个方面的需求,几乎无需人为干预。

而现代制造技术则强调的是现有的制造技术之间的提高。

二、现代制造技术和智能制造技术的联系尽管现代制造技术和智能制造技术有诸多不同,但是两者又有着极为紧密的联系。

对于商品制造厂商,技术界和购买方来讲,缺少了这样一种制造技术都是不足的。

首先,现代制造技术是智能制造技术的基础和前提。

现代制造技术的出现和发展极大地推动了智能制造技术的兴起和应用。

现代制造技术为智能制造技术的发展奠定了技术基础, 只有消化、吸收、整合了现代制造技术,智能制造技术才能够不断升级发展。

其次,智能制造技术充分利用了现代制造技术的结果。

智能制造技术在现代制造技术的基础上, 不断探索、应用和创新,使现代制造技术实现自动化和智能化,促进了生产制造的高效化和个性化。

三、智能制造技术在制造业发展中的作用智能制造技术发挥了巨大的作用,推动了制造业的转型升级和创新发展。

第六章 现代制造技术

第六章 现代制造技术

特点: 特点:
设备利用率高、柔性好、缩短产品周期、减少库存 提高质量和生产率、降低中小批生产成本
四.计算机集成制造系统CIMS 计算机集成制造系统CIMS (Computer Integrated Manufacturing System) ——应用现代管理技术、制造技术、信息技术、自动化技术、系统 工程技术于一体的系统工程 CIMS核心——集成,是人、技术和经营三大方面的集成
例:水喷射加工 组成:①超高压水射流发生器;②磨料混合和液流处理装置; ③喷嘴 ④数控三维切割机床;⑤外围设备等 加工:金属、非金属(石材、玻璃)、木材与纸制品、塑料制品、 织物与革制品等 切缝宽约0.5mm,Ra12.5μm,切割精度达±0.05mm
图6.1 水喷射加工装置示意图 1—带过滤器的水箱;2—水泵; 3—贮液蓄能器;4—控制器; 5—阀;6—蓝宝石喷嘴;7—射流束; 8—工件;9—排水口;10—压射距离; 11—液压系统;12—增压器
图6.9 CIMS的基本组成 CIMS的基本组成
基本组成: 基本组成: (1)管理信息系统——预测、经营决策、生产计划、技术准备、 销售、供应、财务、成本、设备、工具、人力资源等各项管理模 块 (2)工程设计自动化系统——CAD、CAPP、CAM (3)制造自动化系统——CNC机床、加工中心、FMC或FMS (4)质量保证系统——质量决策、质量检测、质量评价、质量信 息综合管理与反馈控制等功能 (5)数据库系统——支持CIMS各系统并覆盖企业全部信息 (6)计算机通信网络系统——将CIMS各个功能分系统的信息联系 起来,支持资源共享、分布处理、分层递阶和实时控制
三.柔性制造系统(FMS)(Flexible Manufacturing System) 柔性制造系统(FMS) ——由数控设备、物料运储装置和计算机控制系统等组成的自动化 制造系统 根据任务或环境的变化迅速调整——多品种、中小批量生产 组成:数控加工系统,物料系统,计算机控制系统 (1)加工系统——数控机床、加工中心、柔性制造单元、其它设 备 (2)物料系统——自动化立体仓库、传送带、自动导引小车 工业机器人、上下料托盘、交换工作台 (3)计算机控制系统——运行控制、刀具管理、质量控制,数据 管理和网络通信 还包括刀具监控和管理系统,冷却系统、切屑系统等附属设备

现代制造技术和现代制造模式简介

现代制造技术和现代制造模式简介

现代制造技术和现代制造模式简介现代制造技术是指采用现代先进的工程技术把产品设计、制造、验证、测试、服务等全过程运用自动化手段和信息化办法来实现高效率、高质量的产品生产及降低成本的一种技术。

它涵盖了机械学科、自动化学科、现代材料学科、计算机学科及电子信息学科等多个领域,是集成制造工艺与运行的综合应用。

现代制造技术包括机械制造技术、模具制造技术、检测与检验技术、非机械加工技术等,它们为制造业的发展奠定了坚实的基础。

1、机械制造技术机械制造技术是指以机械工程为基础,采用机加工和其它机械成型的方法来制造产品的工艺和技术。

如车削、磨削、铣削、锻造、冲压等,通过这些技术能使工件表面获得理想的几何形状和加工精度,能进一步实现产品的质量要求和性能指标。

2、模具制造技术模具制造技术是指采用金属材料、复合材料和各种金属和非金属复合材料等来制造各种模具的技术。

它主要包括模具设计、制造、修复和技术改进等四方面。

模具制造技术的普及,能够提高产品的生产精度、降低加工成本和提高加工效率,从而促进全面新型制造业的技术进步和发展。

3、检测与检验技术检测与检验技术是指用于制程或产品检测,以保证产品质量的技术。

它主要涵盖了物理测量、光学测量、电子测量和机电组合技术等多种技术。

检测与检验技术的重要性在于它能够保证产品的质量,同时,它也是保证现代制造技术的重要组成部分。

4、非机械加工技术非机械加工技术是指以能量把工件表面进行加工的技术。

这些技术包括电火花加工技术、激光加工技术、电子束加工技术、等离子加工技术、电熔加工技术和水刀加工技术等,它们能够满足工件表面容许或外观要求的加工需求。

5、其他技术还有一些重要的技术,如机械自动化技术、机械运动控制技术、机床技术、传动技术、全自动贴装技术等,它们也为现代制造技术的进一步发展提供了技术支持和补充。

二、现代制造模式现代制造模式是指利用先进的技术,通过系统的集成加工,实现整个制造过程的自动化,以提高生产力、满足客户需求、降低成本、提升产品的质量和效率,以及提升企业竞争力的制造运营模式。

现代制造技术的特点

现代制造技术的特点

现代制造技术的特点1. 先进性- 高新技术的融合- 现代制造技术融合了信息技术、自动化技术、新材料技术、新能源技术等众多高新技术。

例如,在智能制造中,信息技术(如物联网、大数据、云计算)与制造技术深度融合。

通过物联网技术,生产设备之间可以实现互联互通,每一个设备就像一个智能终端,能够实时传输自身的运行数据,如设备的温度、压力、振动频率等。

大数据技术则可以对这些海量的数据进行分析处理,挖掘出有价值的信息,如设备的潜在故障预警、生产效率优化方案等。

云计算为企业提供强大的计算能力和数据存储能力,使得企业能够在云端对生产过程进行管理和监控。

- 不断创新的工艺和装备- 在工艺方面,出现了许多新的加工方法。

如激光加工技术,它具有能量高度集中、加工精度高、热影响区小等优点。

可以用于切割、焊接、打孔等多种加工操作。

在航空航天领域,激光切割技术能够精确地切割形状复杂的航空零部件,保证其加工精度在微米级别。

在装备方面,数控机床的不断发展是一个典型例子。

现代数控机床具备多轴联动功能,能够实现复杂形状零件的高精度加工。

例如,五轴联动加工中心可以在一次装夹中完成复杂曲面零件的加工,减少了装夹次数,提高了加工精度和效率。

2. 系统性- 制造系统的整体优化- 现代制造技术强调从产品的设计、制造、销售到售后服务的整个制造系统的优化。

在设计阶段,采用计算机辅助设计(CAD)、计算机辅助工程分析(CAE)等技术,实现产品的数字化设计和性能优化。

例如,汽车制造企业在设计新款汽车时,利用CAD技术构建汽车的三维模型,通过CAE技术对汽车的结构强度、空气动力学性能等进行模拟分析,在设计阶段就发现并解决潜在问题。

在制造过程中,采用计算机辅助制造(CAM)、制造执行系统(MES)等技术,实现生产过程的自动化和智能化管理。

MES系统可以对生产线上的设备、人员、物料等进行实时调度和监控,确保生产过程的高效有序运行。

在销售和售后服务阶段,利用客户关系管理(CRM)系统收集客户反馈信息,用于产品的改进和新产品的研发,从而实现整个制造系统的闭环优化。

现代制造技术与装备

现代制造技术与装备
主要包括技术:
1、现代集成制造技术。现代集成制造技术包括技术的技术的集成、管理的集成、技术与管理的集成,本质是知识的集成。现代制造技术就是制造技术、信息技术、管理科学与有关科学技术的组成。
2、网络化制造技术。网络化制造技术是指用计算机网络,灵活而快速地组织社会资源,将分散在各地的生产设备资源、智力资源和技术资源等,按资源优势互补的原则,迅速的整合成一种跨地域的、靠网络关系的、统一指挥的制造、运营实体—网络联盟,以实现网络化制造。
(2) 大力推进分布式数字控制和管理(DNC)的制造系统,应用DNC技术有效地提高数控机床的利用率和自动化程度。
(3) 研制以提高系统的可靠性和实用化为前提,加强物流和信息集成的柔性自动化生产线,以适应我国汽车、电机、家电等行业的大批、高效和多品种生产的需要。
(4) 研究适应灵捷制造,并能充分利用现有资源响应市场需要的分布式网络集成制造系统和快速重组制造系统,以提高我国机械制造业的市场竞争能力和快速响应能力。
(1) 创制新一代数控机床,根据应用场合,既有适合自动化的简约型高速数控机床,又有用于模具加工的超高速精密加工中心,复杂零件加工的多功能复合机床以及新颖的并联机构短节拍的由数控机床组成的自动生产线,达到具有年产量超过30万件、多品种分批生产的经济性。
(3) 进一步提高制造系统的生产规划和控制软件的面向对象的特性,以增强其柔性和信息集成性,适应构建CIMS等更高层次柔性自动化生产系统的需要。
3、智能制造技术。智能制造技术是面向21世纪制造技术的发展趋势之一,它是将人工智能融入制造过程的各个环节,借助计算机模拟人类专家的智能活动,取代或延伸制造系统中的部分脑力劳动,在制造过程中系统能自动监测其运行状态,在受到外界干扰或内部激励时能自动调整其参数,以达到最佳状态和具备自组织能力。智能化是柔性自动化和集成自动化的新发展和重要组成部分。

现代制造技术

现代制造技术

现代制造技术引言现代制造技术是指采用现代科学技术手段,以改进传统制造过程和引入新的制造方法,提高生产效率、产品质量和降低成本的一种综合应用技术。

现代制造技术的发展在很大程度上推动了经济的发展和工业革命的进程。

本文将介绍几种常见的现代制造技术,并探讨其对经济和社会的影响。

精密加工技术精密加工技术是现代制造技术的重要组成部分,它利用先进的设备和工艺,对工件进行高精度的加工和加工复杂形状的零部件。

例如,数控机床技术是精密加工技术的重要手段之一,它通过计算机控制实现对机床的精密控制,提高了加工的精度和效率。

此外,激光切割、电火花加工等也是精密加工技术的应用领域。

精密加工技术在制造行业中具有广泛的应用。

它可以应用于航空航天、汽车制造、电子设备等领域,提高产品质量、缩短生产周期,并降低生产成本。

此外,精密加工技术还对提高企业的竞争力和国家经济的发展起到了积极的促进作用。

自动化生产技术自动化生产技术是指通过使用自动化设备和系统,实现对生产过程的自动化控制和管理。

这种技术可以减少人力劳动,提高工作效率和产品质量,并降低生产成本。

自动化生产技术在工业生产中得到了广泛应用。

例如,自动化装配线可以实现对产品的自动生产和包装,大大提高了生产效率和质量控制的一致性。

在汽车制造业中,自动化生产技术被广泛应用于汽车组装和零部件制造等环节。

此外,自动化仓储系统、自动化物流系统等也是自动化生产技术的应用领域。

自动化生产技术的应用对提高企业效益和国家经济的发展具有重要意义。

它可以提高生产力,降低生产成本,同时也可以创造更多的就业机会。

此外,自动化生产技术还可以减少对环境的污染,提高资源利用效率,符合可持续发展的要求。

3D打印技术3D打印技术是一种快速原型制造技术,它利用计算机辅助设计(CAD)来创建产品的模型,并通过逐层堆叠材料的方式来实现对产品的制造。

这种技术可以实现对复杂形状和结构的零部件的制造,且可以快速响应市场需求的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

N20 T1D1
N120 X40
N30 G0Z100
N130 Y-20
N35 S1200 M03
N140 G2X25Y-5CR=15
N40 X60Y60
N150 G1 Y5
N45 G1Z10F1000
N160 G2 X40Y20CR=15
N50 Z-4F60
N170 G1X40Y35
N60G42 G1X40Y35F100 N180 G40G1X60Y60
现代制技术
提高篇
(一)
数控铣(SIEMENS802D)
直接按轮廓形状作为刀具中心轨 迹加工的仿真效果图(Ø20铣刀)
轮廓尺寸图
凸模(保证内部尺寸) 的实际刀具中心轨迹 刀具直径20 mm
手工编程前须绘制出采用具体的刀具加工时刀 具的中心轨迹图(如图所示的兰色线条)
ABCD1 N10 G54 G94 G90 N20 G0 Z100 N30 S800 M03 N40 X70Y45 N50 G1 Z10 F1000 N60 Z-4 F60 N70 G1 X-50 F100 N80 Y10 N90 X-40 N100 G2X-35Y5CR=5 N110 G1 Y-5 N120 G2X-40Y-10CR=5
必须有相应的T. D号,且在刀具补偿存储器内设定刀具半径值 G41(G42、G40)须与G1(或G0)配合使用。如:
G1X-10Y-10 G41(G40、G42) G1(G0)X0Y0F100
ABCD2
N100 G2X-40Y-20CR=15
N10 G94 G54 G90 G17 N110 G1Y-35
N130 G1 X-50 N140 Y-45 N150 X50 N160 Y-10 N170 X40 N180 G2X35Y-5CR=5 N190 G1Y5 N200 G2X40Y10CR=5 N210 G1 X50 N220 Y50 N230 Z10F200 N240 G0 Z00 N250 M02
刀具参数单独输入到一个数据区(补偿存储 器),当系统运行该程序时,控制器会自动的根 据该参数生成新的刀具轨迹,从而加工出满足要 求的工件。
半径补偿指令及使用格式
G41 刀具半径左补偿 G42 刀具半径右补偿 G40 取消刀具半径补偿
使用条件:
直接参考工件轮廓形状作为 刀具中心轨迹编程
选择刀补的平面:G17 *、G18、G19
使 用 刀 补 后 的 效 果 图
三.刀具长度补偿
刀具长度补偿指刀具在Z方向的实际位移比程 序给定值增加或减少一个偏置值。
Z
W M
Offset(偏置)
G54 X
长度补偿值说明
刀具长度补偿值为正
Z
W M
Offset(+偏 置 )
G54 X
Z
W M
Offset(-偏 置 )
G54 X
刀具长度补偿值为负
采用上述编程方法的几个缺点:
1. 须绘制刀具的实际运行轨迹图。(复杂图形 坐标计算工作量较大)
2. 采用不同直径的刀具加工须重新编写加工程序. 3. 较难实现加工过程中的工艺控制。
二. 刀具半径补偿的概念:
在对工件的加工进行编程时,无须考虑刀具 的半径,利用适当的指令直接根据图纸轮廓尺寸 进行编程。
N70 X-40 N80 Y20
N190 Z10F200 N200 G0Z100
使用半径补偿按轮廓编程 得到的刀具轨迹图
N90 G2X-25Y5CR=15 N210 M02
(兰色线条)
N100 G1Y-5
说明:
使用半径补偿时,保证刀具运行不发生碰撞。 在实际加工之前必须在刀具补偿存储器内输入使用 刀具的半径值。
四.上机操作
其余
比例 1:1 专业
曲线轮廓件
数量
工程名称
重量
材料
现代制造技术 数控铣实习
金工实习中心
绘图
文件名 图幅A4
加工程序
总结:
1.减少编程工作量,无须重新绘制刀具 轨迹和计算坐标。
2.可根据要求更换加工刀具而无须重新 编程。 3.易于实现加工的工艺控制。
编程练习:
谢谢观看
相关文档
最新文档