人教版八年级数学下册正方形(基础)典型例题讲解+练习及答案.doc

人教版八年级数学下册正方形(基础)典型例题讲解+练习及答案.doc
人教版八年级数学下册正方形(基础)典型例题讲解+练习及答案.doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。】

正方形(基础)

责编:康红梅

【学习目标】

1.理解正方形的概念,了解平行四边形、矩形及菱形与正方形的概念之间的从属关系;2.掌握正方形的性质及判定方法.

【要点梳理】

【特殊的平行四边形(正方形)知识要点】

要点一、正方形的定义

四条边都相等,四个角都是直角的四边形叫做正方形.

要点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.

要点二、正方形的性质

正方形具有四边形、平行四边形、矩形、菱形的一切性质.

1.边——四边相等、邻边垂直、对边平行;

2.角——四个角都是直角;

3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;

4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.

要点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.

要点三、正方形的判定

正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).

要点四、特殊平行四边形之间的关系

或者可表示为:

要点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状

(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.

(2)顺次连接矩形各边中点得到的四边形是菱形.

(3)顺次连接菱形各边中点得到的四边形是矩形.

(4)顺次连接正方形各边中点得到的四边形是正方形.

要点诠释:新四边形由原四边形各边中点顺次连接而成.

(1)若原四边形的对角线互相垂直,则新四边形是矩形.

(2)若原四边形的对角线相等,则新四边形是菱形.

(3)若原四边形的对角线垂直且相等,则新四边形是正方形.

【典型例题】

类型一、正方形的性质

1、(2016?台湾)如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()

A.50 B.55 C.70 D.75

【思路点拨】由平角的定义求出∠CED的度数,由三角形内角和定理求出∠D的度数,再由平行四边形的对角相等即可得出结果.

【答案】C.

【解析】

解:∵四边形CEFG是正方形,

∴∠CEF=90°,

∵∠CED=180°﹣∠AEF﹣∠CEF=180°﹣15°﹣90°=75°,

∴∠D=180°﹣∠CED﹣∠ECD=180°﹣75°﹣35°=70°,

∵四边形ABCD为平行四边形,

∴∠B=∠D=70°(平行四边形对角相等).

故选C.

【总结升华】本题考查了正方形的性质、平行四边形的性质、三角形内角和定理等知识;熟练掌握平行四边形和正方形的性质,由三角形内角和定理求出∠D的度数是解决问题的关键.

举一反三:

【变式1】已知:如图,E为正方形ABCD的边BC延长线上的点,F是CD边上一点,且

CE=CF,连接DE,BF.求证:DE=BF.

【答案】

证明:∵四边形ABCD是正方形,

∴BC=DC,∠BCD=90°

∵E为BC延长线上的点,

∴∠DCE=90°,

∴∠BCD=∠DCE.

在△BCF 和△DCE 中,

BC DC BCF DCE CF CE =??∠=∠??=?

∴△BCF≌△DCE(SAS ),

∴BF=DE .

【 特殊的平行四边形(正方形) 例1】

【变式2】(2015?咸宁模拟)如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠BFC 为( )

A .75°

B .60°

C .55°

D .45°

【答案】B ;

提示:∵四边形ABCD 是正方形,

∴∠BAD=90°,AB=AD ,∠BAF=45°,

∵△ADE 是等边三角形,

∴∠DAE=60°,AD=AE ,

∴∠BAE=90°+60°=150°,AB=AE , ∴∠ABE=∠AEB=(180°﹣150°)=15°,

∴∠BFC=∠BAF+∠ABE=45°+15°=60°;

故选:B .

2、如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连接AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2,∠3=∠4.

(1)证明:△ABE≌△DAF;

(2)若∠AGB=30°,求EF 的长.

【思路点拨】要证明△ABE ≌△DAF ,已知∠1=∠2,∠3=∠4,只要证一条边对应相等即可.要求EF 的长,需要求出AF 和AE 的长.

【答案与解析】

(1)证明:∵四边形ABCD是正方形,

∴AD=AB,

∵∠1=∠2,∠3=∠4,

∴△DAF≌△ABE.

(2)解:∵四边形ABCD是正方形,∠AGB=30°,∴AD∥BC,

∴∠1=∠AGB=30°,

∵∠1+∠4=∠DAB=90°,

∵∠3=∠4,

∴∠1+∠3=90°,

∴∠AFD=180°-(∠1+∠3)=90°,

∴DF⊥AG,

∴DF=1

1 2

AD=

∴A F=3

∵△ABE≌△DAF,

∴AE=DF=1,

∴EF=31

-

【总结升华】通过证三角形全等得到边和角相等,是有关四边形中证边角相等的最常用的方法.而正方形的四条边相等,四个角都是直角为证明三角形全等提供了条件.

举一反三:

【变式】如图,A、B、C三点在同一条直线上,AB=2BC,分别以AB,BC为边做正方形ABEF 和正方形BCMN连接FN,EC.求证:FN=EC.

【答案】

证明:在正方形ABEF中和正方形BCMN中,

AB=BE=EF,BC=BN,∠FEN=∠EBC=90°,

∵AB=2BC,即BC=BN=1

2 AB

∴BN=1

2

BE,即N为BE的中点,

∴EN=NB=BC,

∴△FNE≌△ECB,

∴FN=EC.

类型二、正方形的判定

3、如图所示,在Rt△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,且DE

⊥BC于点E,DF⊥AC于点F,那么四边形CEDF是正方形吗?请说明理由.

【答案与解析】

解:是正方形,理由如下:

作DG⊥AB于点G.

∵ AD平分∠BAC,DF⊥AC,DG⊥AB,

∴ DF=DG.

同理可得:DG=DE.∴ DF=DE.

∵ DF⊥AC,DE⊥BC,∠C=90°,

∴四边形CEDF是矩形.

∵ DF=DE.

∴四边形CEDF是正方形.

【总结升华】(1)本题运用了“有一组邻边相等的矩形是正方形”来判定正方形.(2)证明正方形的方法还可以直接通过证四条边相等加一个直角或四个角都是直角来证明正方形.

举一反三:

【变式】如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点F.

(1)求证:四边形CDOF是矩形;

(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.

【答案】

(1)证明:∵OD平分∠AOC,OF平分∠COB(已知),

∴∠AOC=2∠COD,∠CO B=2∠COF,

∵∠AOC+∠BOC=180°,

∴2∠COD+2∠COF=180°,

∴∠COD+∠COF=90°,

∴∠DOF=90°;

∵OA=OC,OD平分∠AOC(已知),

∴OD⊥AC,AD=DC(等腰三角形的“三线合一”的性质),

∴∠CDO=90°,

∵CF⊥OF,

∴∠CFO=90°

∴四边形CDOF是矩形;

(2)当∠AOC=90°时,四边形CDOF是正方形;理由如下:

∵∠AOC=90°,AD=DC,

∴OD=DC;

又由(1)知四边形CDOF是矩形,则

四边形CDOF是正方形;

因此,当∠AOC=90°时,四边形CDOF是正方形.

类型三、正方形综合应用

4、如图,在平面直角坐标系xoy中,边长为a(a为大于0的常数)的正方形ABCD的

对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.

(1)当∠BAO=45°时,求点P的坐标;

(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;

【答案与解析】

解:(1)当∠BAO=45°时,∠PAO=90°,

在Rt△AOB中,OA=

2

2

AB=

2

2

a,在Rt△APB中,PA=

2

2

AB=

2

2

a.

∴点P的坐标为

22

,

22

a a

??

? ???

(2)如图过点P分别作x轴、y轴的垂线垂足分别为M、N,

则有∠PMA=∠PNB=∠NPM=∠BPA=90°,

∵∠BPN+∠BPM=∠APM+∠BPM=90°

∴∠APM=∠BPN,又PA=PB,

∴△PAM≌△PBN,

∴ PM=PN,

又∵ PN⊥ON,PM⊥OM

于是,点P在∠AOB的平分线上.

【总结升华】根据题意作出辅助线,构造全等的直角三角形是解题关键.

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

(完整版)高考数学基础练习题

1. 若集合}12,52,2{2 a a a A +-=,且A ∈-3,则=a . 2. 设集合}3,1,1{-=A ,}4,2{2++=a a B ,}3{=B A I ,则实数=a . 3. 设全集R U =,}0|{>=x x A ,}1|{>=x x B ,则=) (B C A U I . 4. 命题“若b a ,都是偶数,则b a +是偶数”的逆否命题是 . 5. “2>x ”是“2 11≥q p ,则q p ∧为 (真/假),q p ∨为 (真/假). 7. 若命题012,:2>+∈?x R x p ,则该命题的否定p ?为 . 8. 已知集合}20|{},40|{≤≤=≤≤=y y Q x x P ,下列从P 到Q 的各种关系f 不是函数的是( ) .A x y x f 21:=→ .B x y x f 3 1:=→ .C x y x f 3 2:=→ .D x y x f =→: 9. 下列各组函数中表示同一函数是( ) .A x x f =)(与 2)()(x x g = .B x )(=x f 与 33)(x x g = .C ||)(x x x f =与 ?????<->=) 0()0()(22x x x x x g .D 11)(2--=x x x f 与 )1(1)(≠+=t t t g 10. 已知函数x x f 32)(-=,则:=)0(f ,=)3 2 (f . =)(m f .=-)12(a f . 11. 设函数???????<≥-=)0(1)0(211)(x x x x x f ,若a a f =)(,则实数=a . 12. 函数)1lg()(-=x x f 的定义域是 . 13. 函数211)(x x f +=)(R x ∈的值域是 . 14. 下列函数)(x f 中,满足“对任意),0(,21+∞∈x x ,当时21x x <,都有)()(21x f x f >”的是( )

考研高数基础练习题及答案解析

考研高数基础练习题及答案解析 一、选择题: 1、首先讨论间断点: 1°当分母2?e?0时,x? 2x 2 ,且limf??,此为无穷间断点; 2ln2x? ln2x?0? 2°当x?0时,limf?0?1?1,limf?2?1?1,此为可去间断点。 x?0? 再讨论渐近线: 1°如上面所讨论的,limf??,则x? x? 2 ln2 2 为垂直渐近线; ln2 2°limf?limf?5,则y?5为水平渐近线。 x??? x???

当正负无穷大两端的水平渐近线重合时,计一条渐近线,切勿上当。 2、f?|x4?x|sgn?|x| sgn?|x|。可见x??1为可导点,x?0和x?3为不可导点。 2011智轩高等数学基础导学讲义——第2章第4页原文: f???|??|,当xi?yj时 为可导点,否则为不可导点。注意不可导点只与绝对值内的点有关。 ?x ,x?0? 设f??ln2|x|,使得f不存在的最小正整数n是 ? ,x?0?0 x?0 1 2 3 limf?f?0,故f在x?0处连续。 f’?lim x?0

f?f ?0,故f在x?0处一阶可导。 x?0 当x?0时,f’?? ? ?x12x’ ‘????223 ?ln?lnlnxsgnx ? 12 ,则limf’?f’?0,故f’在x?0处连续。?23x?0ln|x|ln|x|f’’?lim x?0 f’?f’ ??,故f在x?0处不二阶可导。 x?0 a b x?0 对?a,b?0,limxln|x|?0。这是我们反复强调的重要结论。 3、对,该函数连续,故既存在原函数,又在[?1,1]内

矩形菱形正方形练习题及答案

1.矩形ABCD对角线是10cm,那么矩形的周长最大是_______,此时两条对角线分成的四个小三角形的周长的和是 2.如图矩形ABCD中,AE⊥BD于E,∠BAE=30°,BE=1cm,那么DE的长为_ 3、直角三角形斜边上的高与中线分别是5cm和6cm,则它的面积为___ 4.如图,△ABC中,∠ACB=90度,点D、E分别为AC、AB的中点,点F在BC 延长线上,且∠CDF=∠A,求证:四边形DECF是平行四边形; 5.已知:如图,在△ABC中,∠BAC≠90°∠ABC=2∠C,AD⊥AC,交BC或CB的延长线D。试说明:DC=2AB. 6、在△ABC中,∠C=90°,AC=BC,AD=BD,PE⊥AC于点E,PF⊥BC于点F。求证:DE=DF 7、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N 分别是边AB、BC的中点,则PM+PN的最小值是_______. 8.若菱形的周长为24 cm,一个内角为60°,则菱形的面积为__。 9、菱形的周长为40cm,两条对角线长的比是3:4。求两对角线长分别是。 10、已知如图,菱形ABCD中,E是AB的中点,且DE⊥AB,AE=2。 求(1)∠ABC的度数;(2)对角线AC、BD的长;(3)菱形ABCD的面积。 11、已知:如图,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F.求证:四边形AEDF是菱形; 12、如图,边长为a的菱形ABCD中,∠DAB=60度,E是异于A、D两点的动点,F是CD 上的动点,满足AE+CF=a。证明:不论E、F怎样移动,△BEF总是正三角形。 13、如图,Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。

2020高考数学基础题精练试题

1.053log 4 2 +=. 2 . 2.复数Z 满足条件z +︱z ︱i +=2,则z 是 3 4 i + . 3. 若o 为平行四边形ABCD 的中心,124,6,AB e BC e BO ==u u u r u u u r u u u r r r 则等于 1223e e -+u r u u r . 4. 若集合{}21, A a =-,{}4,2= B ,则“2a =-”是“{}4=B A I ” 的 充分不必要 条件(填充要性). 5. 已知定义在区间[0,1]上的函数y=f(x)图象如右图所示对满足 1201x x <<<的任意1x 、2x ,给出下列结论: (1)2121()()f x f x x x ->- (2)2112()()x f x x f x >? (3) 1212()()()22 f x f x x x f ++< 其中正确结论序号是 (2)、(3) (把所有正确结论序号都填上). 6. 已知函数22()cos 23sin cos sin (0)f x x x x x ωωωωω=+?->,且)(x f 图象相邻两 对称轴间的距离不小于 2 π , (1)求ω的取值范围; (2)设a 、b 、c 是ABC ?的三内角A 、B 、C 所对的边,3=a ,且当ω最大时1)(=A f , 求ABC ?周长的取值范围。 答案:(1)01ω<≤;(2)(23,33] 7. 如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a,E 为棱CC 1上的的动点. (1)求证:A 1E ⊥BD ; (2)当E 恰为棱CC 1的中点时,求证:平面A 1BD ⊥平面EBD ; (3)在(2)的条件下,求BDE A V _1. 答案:(1)、(2)略 (3)314 a E A B D C 1 A 1 B 1 D 1 C

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

矩形菱形与正方形测试题及答案

第19章 矩形、菱形与正方形测试题 一、选择题(每小题3分,共30分) 1、关于四边形ABCD ①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC 和BD 相等;以上四个条件中可以判定四边形ABCD 是平行四边形的有( )。 (A ) 1个 (B )2个 (C )3个 (D )4个 2、若顺次连结四边形ABCD 各边中点所得四边形是矩形,则四边形ABCD 必定是( ) A 、菱形 B 、对角线相互垂直的四边形 C 、正方形 D 、对角线相等的四边形 3、如图1,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( ) A.S 1 > S 2 B.S 1 = S 2 C.S 1

高考数学大题练习

高考数学大题 1.(12分)已知向量a =(sin θ,cos θ-2sin θ),b =(1,2) (1)若a ⊥b ,求tan θ的值; (2)若a ∥b ,且θ为第Ⅲ象限角,求sin θ和cos θ的值。 2.(12分)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC ⊥BC ,且AC=BC=BD=2AE ,M 是AB 的中点. (I)求证:CM ⊥EM: (Ⅱ)求DE 与平面EMC 所成角的正切值. 3.(13分)某地区为下岗人员免费提供财会和计算机培训,以提高 下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加 两项培训或不参加培训.已知参加过财会培训的有60%,参加过计算机培训的 有75%.假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (Ⅰ)任选1名下岗人员,求该人参加过培训的概率; (Ⅱ)任选3名下岗人员,求这3人中至少有2人参加过培训的概率. 4.(12分) 在△ABC 中,∠A .∠B .∠C 所对的边分别为a .b .c 。 若B A cos cos =a b 且sinC=cosA (1)求角A .B .C 的大小; (2)设函数f(x)=sin (2x+A )+cos (2x- 2C ),求函数f(x)的单调递增区间,并指出它相邻两对称轴间的距离。 5.(13分)已知函数f(x)=x+x a 的定义域为(0,+∞)且f(2)=2+22,设点P 是函数图象上的任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M ,N. (1)求a 的值; (2)问:|PM|·|PN|是否为定值?若是,则求出该定值, 若不是,则说明理由: (3)设O 为坐标原点,求四边形OMPN 面积的最小值。 6.(13分)设函数f(x)=p(x-x 1)-2lnx,g(x)=x e 2(p 是实数,e 为自然对数的底数) (1)若f(x)在其定义域内为单调函数,求p 的取值范围; (2)若直线l 与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于点(1,0),求p 的值; (3)若在[1,e]上至少存在一点x 0,使得f(x 0)>g(x 0)成立,求p 的取值范围.

高等数学基础例题讲解

第1章 函数的极限与连续 例1.求 lim x x x →. 解:当0>x 时,0 00lim lim lim 11x x x x x x x + ++ →→→===, 当0

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

最新正方形经典例题与答案资料

典型例题一 例01.如图,在正方形ABCD 的对角线AC 上取点E ,使CE CD =,过E 点作AC EF ⊥交AD 于F. 求证:DF EF AE ==. 证明 连结CF . 在正方形ABCD 中,?=∠=∠90DAB D ,AC 平分DAB ∠. ∵?=∠=∠45CAB DAC , 又∵ AC EF ⊥, ∴?=∠=∠45AFE DAC . ∴ EF AE = 在CEF Rt ?与CDF Rt ?中, CF CF CD CE ==, ∴)(HL CDF Rt CEF Rt ??? ∴DF EF = ∴DF EF AE ==. 说明:本题考查正方形的性质,易错点是忽视AEF ?是等腰直角三角形. 解题关键是证AEF ?是等腰直角三角形和连CF 证CEF CDF ???. 典型例题二 例02.如图,已知:在ABC ?中,?=∠90ACB ,CD 是ACB ∠的平分线,AC DE //交BC 于E ,BC DF //交AC 于F . 求证:四边形CEDF 是正方形. 分析:要判定一个四边形是正方形有这样几种方法:①按照定义证明,②先证明它是菱形,再证它有一个角等于?90. ③先证明它是矩形,再证它有一组邻边相等,那么本题中,因有一个角?=∠90ACB ,且有两对平行线段,我们不妨采用第三种证明方法. 那么由角平分线的性质定理容易证出DF DE =. 证明:∵BC DF AC DE //,//(已知) ∴ 四边形CEDF 是平行四边形. ∵ ?=∠90ACB (已知), ∴ 四边形CEDF 是矩形(有一个角是?90的平行四边形是矩形).

∵ ?=∠90,//,//ACB BC DF AC DE (已知), ∴ ?=∠=∠90DFC DEC 又∵ CD 是ACB ∠的平分线(已知), ∴ DF DE =(角平分线上的点到这个角的两边的距离相等). ∴ 四边形CEDF 是正方形(有一组邻边相等的矩形是正方形). 说明 正方形是特殊的平行四边形,也是邻边相等的特殊矩形,也是有一个角是直角的特殊菱形.所以在判断一个图形是否为正方形时,由它的特殊性出发,通过先证它是平行四边形、矩形和菱形来完成. 典型例题三 例03.已知:如图,在正方形ABCD 中,E 为AD 上一点,BF 平分CBE ∠交CD 于F . 求证:AE CF BE +=. 证法1 延长DC 至N ,使AE CN =,连结BN ,则CBN ABE ???. ∴ BN BE CBN ABE =∠=∠,. ∵四边形ABCD 为正方形, ∴ AB CD // ∴ ABF NFB ∠=∠. ∵ CBF NBC NBF EBF ABE ABF ∠+∠=∠∠+∠=∠,,FBC EBF ∠=∠, ∴NFB NBF ∠=∠ ∴ CF CN NF BN +== ∴ CF AE BE += 证法2 如图,延长DA 到G ,使CF AG =,连结BG ,则BCF BAG ???. ∴ CF AG CFB G CBF ABG =∠=∠∠=∠,,. ∵ 四边形ABCD 是正方形, ∴BC AD // ∴CFB ABF ∠=∠ ∵CBF EBF ∠=∠, ∴EBF ABG ∠=∠ ∴ABE EBF ABE ABG ∠+∠=∠+∠, 即ABF EBG ∠=∠ ∴EBG G ∠=∠

高考文科数学基础题试大全

高考文科数学基础题试大全

————————————————————————————————作者:————————————————————————————————日期:

高考数学部分知识点汇编 一.集合与简易逻辑 1.注意区分集合中元素的形式. 如:{|lg }x y x =—函数的定义域; {|lg }y y x =—函数的值域;{(,)|lg }x y y x =—函数图象上的点集. 2.集合的运算及性质: ①任何一个集合A 是它本身的子集,记为A A ?. ②空集是任何集合的子集,记为A ??. ③空集是任何非空集合的真子集; 注意点:当A B ?,在讨论的时候不要遗忘了A =?的情况 ④含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为21n -;非空真子集个数为22n -. 3.命题: 1)会判断充分性必要性 已知x a α≥:,1|1x β-<:|.若α是β的必要非充分条件,则实数a 的取值范围是0≤a 在△ABC 中,“C b B c cos cos =”是“△ABC 是等腰三角形”的( A ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 2)推出关系转化为子集问题 已知a R ∈,命题:p 实系数一元二次方程2 20x ax ++=的两根都是虚数;命题:q 存在复数z 同时满足 2z =且1z a +=.[来源学科网] 试判断:命题p 和命题q 之间是否存在推出关系?请说明你的理由 二.函数 1.函数的三要素:________,__________,________, 注意:求函数的定义域或值域,最后结果一定要用 表示。 2.求定义域:使函数解析式有意义(如:分母0≠;偶次根式被开方数非负;对数真数0>,底数0>且1≠;零指数幂的底数0≠);实际问题有意义; 3.已知两个函数,若求它们的和函数或积函数,除了用运算求解析式外,最后的定义域必须是原两个函数定义域的 集。 函数22()log (43)log (2)f x x x =---的定义域是___ .3 (,2)4 3.求值域常用方法: (1)常用函数的值域。(看图像,读值域)

高中数学高考总复习定积分与微积分基本定理习题及详解

一、教学目标:1. 理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题. 2. 理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题. 二、知识要点分析 1. 定积分的概念:函数)(x f 在区间[a ,b ]上的定积分表示为:?b a dx x f )( 2. 定积分的几何意义: (1)当函数f (x )在区间[a ,b]上恒为正时,定积分?b a dx x f )(的几何意义是:y=f (x )与x=a ,x= b 及x 轴围成的曲边梯形面积,在一般情形下.?b a dx x f )(的几何意义是介于x 轴、函数f (x )的图象、以及直线x=a ,x= b 之间的各部分的面积代数和,在x 轴上方的面积取正号,x 轴下方的面积取负号. 在图(1)中:0s dx )x (f b a >=?,在图(2)中:0s dx )x (f b a <=?,在图(3)中:dx )x (f b a ?表示 函数y=f (x )图象及直线x=a ,x=b 、x 轴围成的面积的代数和. 注:函数y=f (x )图象与x 轴及直线x=a ,x=b 围成的面积不一定等于?b a dx x f )(,仅当在区间[a ,b]上f (x )恒正时,其面积才等于?b a dx x f )(. 3. 定积分的性质,(设函数f (x ),g (x )在区间[a ,b ]上可积) (1)???±=±b a b a b a dx )x (g dx )x (f dx )]x (g )x (f [ (2)??=b a b a dx x f k dx x kf )()(,(k 为常数) (3)???+=b c b a c a dx x f dx x f dx x f )()()( (4)若在区间[a , b ]上,?≥≥b a dx x f x f 0)(,0)(则 推论:(1)若在区间[a ,b ]上,??≤≤b a b a dx x g dx x f x g x f )()(),()(则 (2)??≤b a b a dx x f dx x f |)(||)(| (3)若f (x )是偶函数,则??=-a a a dx x f dx x f 0)(2)(,若f (x )是奇函数,则0)(=?-a a dx x f 4. 微积分基本定理: 一般地,若)()()(],[)(),()('a F b F dx x f b a x f x f x F b a -==?上可积,则在且 注:(1)若)()('x f x F =则F (x )叫函数f (x )在区间[a ,b ]上的一个原函数,根据

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

高三数学基础训练题集1-10套

高三数学基础训练一 一.选择题: 1.复数,则在复平面内的对应点位于 A.第一象限B.第二象限C.第三象限D.第四象限 2.在等比数列{an}中,已知,则 A.16 B.16或-16 C.32 D.32或-32 3.已知向量a =(x,1),b =(3,6),ab ,则实数的值为( ) A. B. C.D. 4.经过圆的圆心且斜率为1的直线方程为( ) A. B. C.D. 5.已知函数是定义在R上的奇函数,当时,,则( )A.B.C. D. 6.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比 赛得分的中位数之和是 A.62 B.63 C.64 D.65 7.下列函数中最小正周期不为π的是 A.B.g(x)=tan() C. D. 8.命题“”的否命题是 A. B.若,则 C. D. 9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视 图为正三角形,尺寸如图,则该几何体的侧面积为 A.6 B.24 C.12 D.32

10.已知抛物线的方程为,过点和点的直线与抛物线没有公共点,则实数的取值范围是 A.B. C.D. 二.填空题: 11.函数的定义域为. 12.如图所示的算法流程图中,输出S的值为. 13.已知实数满足则的最大值为_______. 14.已知,若时,恒成立,则实数的取值范围______ 三.解答题: 已知R. (1)求函数的最小正周期; (2)求函数的最大值,并指出此时的值.

高三数学基础训练二 一.选择题: 1.在等差数列中, ,则其前9项的和S9等于 ( ) A.18 B.27 C.36 D.9 2.函数的最小正周期为 ( ) A. B. C. D. 3.已知命题p: ,命题q :,且p是q的充分条件,则实数的取值范围是:( ) A.(-1,6) B.[-1,6] C. D. 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。。。,153~160号)。若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是 ( ) A.4 B.5 C.6 D.7 5.已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是,则这个三棱柱的体积是( ) A. B. C.24 D.48 6.在右图的程序框图中,改程序框图输出的结果是28,则序号①应填入的条件是 ( ) A. K>2 B. K>3 C.K>4 D.K>5 7.已知直线l与圆C:相切于第二象限,并且直线l在两坐标轴上的截距之和等于,则直线l与两坐标轴所围城的三角形的面积为( ) A.B.C.1或3D. 8.设是两个平面,.m是两条直线,下列命题中,可以判断的是( )A.B. C.D..

高等数学典型例题

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。 例4:设 解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 例5:

f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D.周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定 解:因为f(x+y)=f(x)+f(y),故f(0)= f(0+0)=f(0)+f(0)=2f(0),可知f(0)=0。在f(x+y)=f(x)+f(y)中令y = -x,得0 = f(0) = f(x-x) = f[ x+(-x) ] = f(x)+f(-x)所以有f(-x) = - f(x),即f(x)为奇函数,故应选 A 。 例 8:函数的反函数是()。 A. B. C. D. 解: 于是,是所给函数的反函数,即应选C。 例 9:下列函数能复合成一个函数的是()。 A.B. C.D. 解:在(A)、(B)中,均有u=g(x)≤0,不在f (u)的定义域,不能复合。在(D)中,u=g(x)=3也不满足f(u)的定义域,也不能复合。只有(C)中的定义域,可以复合成一个函数,故应选C。 例 10:函数可以看成哪些简单函数复合而成:

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

相关文档
最新文档