中考复习之圆与四边形

合集下载

数学中考专题30讲:圆的内接四边形

数学中考专题30讲:圆的内接四边形

圆内接四边形【知识要点】1.概念:圆内接四边形,四边形的外接圆.2.定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角.【经典例题】例1、AD 是ABC ∆的外角∠EAC 的平分线,AD 与三角形的外接圆交于点D ,AC 、BD 相交于点P . (1)DBC ∆为等腰三角形; (2)AB:BD=PB:PC例2、四边形ABCD 内接于⊙O ,点P 在CD 的延长线上,且AP ∥BD .求证:AD AB BC PD ⋅=⋅例3. 已知圆内接四边形ABCD 中,如图所示,AB 、BC 、CD 、AD 的度数之比为1:2:3:4,求∠A 、∠B 、∠C 、∠D 的度数.例4.如图所示,ABC ∆是等边三角形,D 是上任一点.求证:DB+DC=DA .·ABCDO ·ADCBO PA例5.如图所示,在ABC ∆中,AB=AC ,过A 点的直线与ABC ∆的外接圆交于E ,与BC 的延长线交于D .求证:ED AD AC AD ⋅=-22【课堂训练】(题目简单可不能粗心)得分一、填空题1.圆内接四边形的对角 ,并且任何一个外角都 它的内对角.2.已知四边形ABCD 内接于⊙O ,则∠A:∠B:∠C:∠D=3:2: :7,且最大的内角为 . 3.如右图,已知四边形ABCD 内接于⊙O ,AE ⊥CD 于E ,若∠ABC=︒130,则∠DAE= . 4.已知圆内接四边形ABCD 的∠A 、∠B 、∠C 的外角度数比为2:3:4,则∠A= .5.如图1,四边形ABCD 内接于⊙O ,点B 、C 、E 在一直线上,∠1=︒39,∠2=︒48,则∠DCE= . 6.如图2,已知⊙O 的直径AB=10cm ,AC=︒120,则AC= .7.如图3,ABC ∆内接于⊙O ,D 是劣弧AB 上一点,E 是BC 延长上一点,AE 交⊙O 于F ,为使ADB ∆~ACE ∆.应补充一个条件是或 。

关于圆、四边形的中考压轴题解析

关于圆、四边形的中考压轴题解析
EF
D H C
5
4
G
3
2
E
P M
3
F
1
3
O B
存在这样的点P, ∴存在这样的点 , 且BP= 3
A
同学们,艰辛的初中三年都过来了,又何必害怕中考! 相信面对中考,你们一定能胸有成竹! 最后,对那些总想不劳而获的同学。我想送你们几句话: 的确,有了付出不一定有回报。 但是——但是——没有付出, 就一定不会有回报!! 不要等着天降馅饼,要有恐怕也只是
综合运用——生活中的圆
3.有一圆弧形桥拱,水面AB宽32米, 当水面上升4米后水面CD宽24米,此 时上游洪水以每小时0.25米的速度 上升,再通过几小时,洪水将会 漫过桥面?
垂 径 定 理
解:过圆心O作OE⊥AB于E,延长后交CD于F,交CD于 ⊥ H,设OE=x,连结OB,OD,由勾股定理得 OB2=x2+162 OD2=(x+4)2+122 ∴ X2+162=(x+4)2+122 ∴X=12 ∴OB=20 ∴FH=4 4÷0.25=16(小时) 答:再过16小时,洪水将会漫过桥面。
C P
E F
M
切点
A O B
(2)分析:利用(1)的结论可知:
AF·BP=
FE·PE
↓E为切点 为切点
“看到切点连半径,必垂直” 看到切点连半径,必垂直” D OE为定长 ↓ 为定长1 为定长 FE·PE的值必与 有关 的值必与OE有关 的值必与
C P
→由相似: 由相似 OE²= FE·PE
切E 切

O
A
B
4、如图,在Rt△ABC中,∠C=900,AC=2, 、如图, △ 中 , AB=4,分别以AC,BC为直径作圆,则 ,分别以 , 为直径作圆 为直径作圆, 图中阴影部分面积为 2π − 2 3

2020年中考总复习圆的经典题型汇总(含答案)

2020年中考总复习圆的经典题型汇总(含答案)

1、如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.2、如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O 交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.3、如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.4、如图,⊙O是△ABC的外接圆,∠BAC的平分线交⊙O于点D,交BC于点E,过点D作直线DF∥BC.(1)判断直线DF与⊙O的位置关系,并说明理由;(2)若AB=6,AE=,CE=,求BD的长.5、如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4,求AD的长.6、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠BAC,AD交BC于点D,ED⊥AD交AB于点E,△ADE的外接圆⊙O交AC于点F,连接EF.(1)求证:BC是⊙O的切线;(2)求⊙O的半径r及∠3的正切值.7、如图,在Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.8、如图,△ABC内接于⊙O,AB为直径,作OD⊥AB交AC于点D,延长BC,OD交于点F,过点C作⊙O的切线CE,交OF于点E.(1)求证:EC=ED;(2)如果OA=4,EF=3,求弦AC的长.9、如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.10、如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦AC=2,弦BM平分∠ABC交AC于点D,连接MA,MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.11、如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.(1)试判断FG与⊙O的位置关系,并说明理由.(2)若AC=3,CD=2.5,求FG的长.12、如图1,AB为半圆的直径,点O为圆心,AF为半圆的切线,过半圆上的点C作CD∥AB 交AF于点D,连接BC.(1)连接DO,若BC∥OD,求证:CD是半圆的切线;(2)如图2,当线段CD与半圆交于点E时,连接AE,AC,判断∠AED和∠ACD的数量关系,并证明你的结论.13、如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠BAC=60°,求线段EF的长.14、如图,△ABC内接于⊙O,AB是⊙O的直径,AC=CE,连接AE交BC于点D,延长DC 至F点,使CF=CD,连接AF.(1)判断直线AF与⊙O的位置关系,并说明理由.(2)若AC=10,tan∠CAE=,求AE的长.15、已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点(1)如图1,求证:AB2=4AD·BC(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积16、如图在△ABC中,AB=BC,以AB为直径作⊙O交AC于点D,连接OD.(1)求证:OD∥BC;(2)过点D作⊙O的切线,交BC于点E,若∠A=30°,求的值.17、如图,AB为⊙O的直径,C、D是半圆AB的三等分点,过点C作AD延长线的垂线CE,垂足为E.(1)求证:CE是⊙O的切线;(2)若⊙O的半径为2,求图中阴影部分的面积.18、如图,AC是⊙O的一条弦,AP是⊙O的切线。

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)(解析版)

2020年中考数学一轮复习之圆的综合(切线证明、面积、动点问题)1.如图1,已知四边形ABCD内接于⊙O,AC为⊙O的直径,AD=DB,AC与BD交于点E,且AE=BC.(1)求证:AB=CB;(2)如图2,△ABC绕点C逆时针旋转35°得到△FGC,点A经过的路径为弧AF,若AC=4,求图中阴影部分的面积.(1)证明:∵AD=BD,∠DAE=∠DBC,AE=BC,∴△ADE≌△BDC(SAS),∴∠ADE=∠BDC,∴=.∴AB=BC.(2)解:S阴=S扇形CAF+S△CFG﹣S△ABC=S扇形CAF==.2.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:CG=3:2,AB=16.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=30°,将沿弦CE翻折,交CB于点F,求图中阴影部分的面积.解:(1)连接AO,如右图所示,∵CD为⊙O的直径,AB⊥CD,AB=16,∴AG==8,∵OG:CG=3:2,∴OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+82=(5k)2,解得,k=2或k=﹣2(舍去),∴5k=10,即⊙O的半径是10;(2)如图所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=30°,由对称性可知,∠DCM=60°,S阴影=S弓形CBM,连接OM,则∠MOD=120°,∴∠MOC=60°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=10×=5,∴S阴影=S扇形OMC﹣S△OMC=﹣×10×5=﹣25.3.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC==2,由①得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴=,∴=,∴FG=.4.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s 的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.(1)当t=2时,△DPQ的面积为28 cm2;(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;(3)运动过程中,当A、P、Q、D四点恰好在同一个圆上时,求t的值;(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.解:(1)∵四边形ABCD是矩形,∴AD=BC=12,CD=AB=6,∠A=∠B=∠C=90°,由题意得:AP=t,BQ=2t,∴BP=AB﹣AP=6﹣t,CQ=BC﹣BQ=12﹣2t,当t=2时,AP=2,BQ=4,BP=AB﹣AP=4,CQ=BC﹣BQ=8,∴△DPQ的面积=12×6﹣×12×2﹣×4×4﹣×6×8=28(cm2),故答案为:28;(2)不能;理由如下:根据题意得:△DPQ的面积=,整理得:t2﹣6t+10=0,∵b2﹣4ac=﹣4<0,∴方程无实数根,∴△DPQ的面积不可能为26cm2;(3)∵∠A=90°,∴A、P、D三点在以DP为直径的圆上,若点Q也在圆上,则∠PQD=90°,∵PQ2=(6﹣t)2+(2t)2,DQ2=62+(12﹣2t)2,DP2=t2+122,PQ2+DQ2=DP2,∴(6﹣t)2+(2t)2+62+(12﹣2t)2=t2+122;解得t1=6,t2=,∴t=6或时A、P、Q、D四点恰好在同一个圆上.(4)如图1,⊙Q与边AD相切时,过点Q作QE⊥AD,∵⊙Q与边AD相切,∴QE=QP,由勾股定理得:62=(6﹣t)2+(2t)2;解得t1=0(舍去),t2=,如图2,⊙Q过点D时,则QD=QP,由勾股定理得:(6﹣t)2+(2t)2=62+(12﹣2t)2;解得:(舍去)∴当<t<时,⊙Q与矩形ABCD的边共有四个交点.5.如图,已知直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点.(1)若⊙O的半径为2,说明直线AB与⊙O的位置关系;(2)若△ABO的内切圆圆心是点M,外接圆圆心是点N,则MN的长度是;(直接填空)(3)设F是x轴上一动点,⊙P的半径为2,⊙P经过点B且与x轴相切于点F,求圆心P的坐标.解:(1)∵直线l的函数表达式为y=x+3,它与x轴、y轴的交点分别为A、B两点,∴当x=0时,y=3;当y=0时,x=4;∴A(﹣4,0),B(0,3),∴OB=3,OA=4,AB===5,过点O作OC⊥AB于C,如图1所示:∵sin∠BAO==,∴=,∴OC=>2,∴直线AB与⊙O的位置关系是相离;(2)设⊙M分别与OA、OB、AB相切于C、D、E,连接MC、MD、ME、BM,如图2所示:则四边形OCMD是正方形,DE⊥AB,BE=BD,∴MC=MD=ME=OD=(OA+OB﹣AB)=×(4+3﹣5)=1,∴BE=BD=OB﹣OD=3﹣1=2,∵∠AOB=90°,∴△ABO外接圆圆心N在AB上,∴AN=BN=AB=,∴NE=BN﹣BE=﹣2=,在Rt△MEN中,MN===;故答案为:;(3)连接PB、PF,作PC⊥OB于C,如图3所示:则四边形OCPF是矩形,∴OC=PF=BP=2,BC=OB﹣OC=3﹣2=1,∴PC===,∴圆心P的坐标为:(,2).6.联想我们曾经学习过的三角形外心的概念,我们可引入准外心的定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.请回答下面的三个问题:(1)如图1,若PB=PC,则点P为△ABC的准外心,而且我们知道满足此条件的准外心有无数多个,你能否用尺规作出另外一个准外心Q呢?请尝试完成;(2)如图2,已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长;(3)如图3,点B既是△EDC又是△ADC的准外心,BD=BA=BC=2AD,BD∥AC,CD=,求AD的值.解:(1)能用尺规作出另外一个准外心Q,作AB的垂直平分线MN,在MN上取点Q,如图1所示:则QA=QB,点Q为△ABC的准外心;(2)连接BP,如图2所示:∵△ABC为直角三角形,斜边BC=5,AB=3,∴AC===4,∵准外心P在AC边上,①当PB=PC时,设PB=PC=x,则PA=4﹣x,在Rt△ABP中,由勾股定理得:32+(4﹣x)2=x2,解得:x=,∴PA=4﹣=;②当PA=PC时,PA=AC=2;③当PA=PB时,∵△ABC是直角三角形,此情况不存在;综上所述,准外心P在AC边上,PA的长为或2;(3)∵BD=BA=BC,∴∠BAC=∠BCA,点D、A、C在以B为圆心,AB长为半径的圆上,如图3所示:则∠ABD=2∠ACD,作BE⊥CD于E,BF⊥AD于F,则DE=CE=CD=,DF=AF=AD,∠ABD=2∠DBF,∠BEC=∠DFB=90°,∵BD∥AC,∴∠ABD=∠BAC=∠BCA=2∠ACD=2∠DBF=2∠BCE,∴∠DBF=∠BCE,在△BDF和△CBE中,,∴△BDF≌△CBE(ASA),∴DF=BE,设DF=BE=x,则AD=2x,BD=2AD=4x,在Rt△BDE中,由勾股定理得:x2+()2=(4x)2,解得:x=,∴AD=2x=.7.如图,在平面直角坐标系中,AB=AC=10,线段BC在x轴上,BC=12,点B的坐标为(﹣3,0),线段AB交y轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿x轴向右运动,设运动的时间为t秒.(1)当△BP E是等腰三角形时,求t的值;(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位.△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD 所在直线相切时,求t的值和此时点C的坐标.解:(1)∵AB=AC,AD⊥BC,∴BD=CD=BC=6,∴AD===8,∵点B的坐标为(﹣3,0),∴OB=3,∴OD=BD﹣OB=6﹣3=3,∴A(3,8),设直线AB的解析式为:y=kx+b,则,解得:,∴直线AB的解析式为:y=x+4,∴E(0,4),∴OE=4,BE===5,当△BPE是等腰三角形有三种情况:①当BE=BP时,则3+3t=5,解得:t=;②当BE=EP时,则3t=3,解得:t=1;③当BP=PE时,∵BP=PE,AB=AC,∠ABC=∠PBE,∴∠PEB=∠ACB=∠ABC,∴△PBE∽△ABC,∴=,即=,解得:t=;综上所述,当△BPE是等腰三角形时,t的值为或1或;(2)由题意得:C(9+2t,0),∴BC=12+2t,BD=CD=6+t,OD=3+t,设F为EP的中点,连接OF,作FH⊥AD于H,FG⊥OP于G,如图所示:则四边形FGDH是矩形,FG∥EO,∴FG是△POE的中位线,∴PG=OG=OP=t,FG=OE=2,∴F(t,2),∵四边形FGDH是矩形,∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,∵以EP为直径的圆与动线段AD所在直线相切,∴FH=EP=3﹣t,在Rt△POE中,EP2=OP2+OE2,即:4(3﹣t)2=(3t)2+42,解得:t=1或t=﹣(不合题意舍去),∴C(11,0),∴以EP为直径的圆与动线段AD所在直线相切时,t的值为1,此时点C的坐标为(11,0).8.如图1,在△ABC中,∠ACB=90°,∠ABC的角平分线交AC上点E,过点E作BE 的垂线交AB于点F,△BEF的外接圆⊙O与CB交于点D.(1)求证:AC是⊙O的切线;(2)若BC=9,EH=3,求⊙O的半径长;(3)如图2,在(2)的条件下,过C作CP⊥AB于P,求CP的长.(1)证明:连接OE.如图1所示:∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径,∴OB=OE,∴∠OBE=∠OEB,∵BE平分∠ABC,∴∠CBE=∠OBE,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC⊥OE,∴AC是⊙O的切线;(2)解:∵∠ACB=90°,∴EC⊥BC,∵BE平分∠ABC,EH⊥AB,∴EH=EC,∠BHE=90°,在Rt△BHE和Rt△BCE中,,∴Rt△BHE≌Rt△BCE(HL),∴BH=BC=9,∵BE⊥EF,∴∠BEF=90°=∠BHE,BF是圆O的直径,∴BE===3,∵∠EBH=∠FBE,∴△BEH∽△BFE,∴=,即=,解得:BF=10,∴⊙O的半径长=BF=5;(3)解:连接OE,如图2所示:由(2)得:OE=OF=5,EC=EH=3,∵EH⊥AB,∴OH===4,在Rt△OHE中,cos∠EOA==,在Rt△EOA中,cos∠EOA==,∴OA=OE=,∴AE===,∴AC=AE+EC=+3=,,∵AB=OB+OA=5+=,∠ACB=90°,∴△ABC的面积=AB×CP=BC×AC,∴CP===.9.【操作体验】如图①,已知线段AB和直线1,用直尺和圆规在1上作出所有的点P,使得∠APB=30°,如图②,小明的作图方法:第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O第二步:连接OA,OB;第三步:以O为圆心,OA长为半径作⊙O,交l于P1,P2;所以图中P1,P2即为所求的点(1)在图②中,连接P1A,P1B,说明∠AP1B=30°【方法迁移】(2)如图③,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹);【深入探究】(3)已知矩形ABCD,BC=2,AB=m,P为AD边上的点,若满足∠BPC=45°的点P恰有两个,求m的取值范围;(4)已知矩形ABCD,AB=3,BC=2,P为矩形ABCD内一点,且∠BPC=120°,若点P绕点A逆时针旋转60°到点Q,求PQ的最小值.解:(1)如图②,连接AP1,BP1,∵OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴∠AP1B=∠AOB=30°;(2)如图③,①以B、C为圆心,以BC为半径作圆,交AB、DC于E、F,②作BC的中垂线,连接EC,交于O,③以O为圆心,OE为半径作圆,则上所有的点(不包括E、F两点)即为所求;(3)如图④,同理作⊙O,∵BE=BC=2,∴CE=4,∴⊙O的半径为2,即OE=OG=2,∵OG⊥EF,∴EH=,∴OH=,∴GH=2﹣,∴BE≤AB<MB,∴3≤m<2+,故答案为:3≤m<2+;(4)如图⑤,构建⊙O,使∠COB=120°,在优弧上取一点H,则∠CHB=60°∴∠CPB=120°,由旋转得:△APQ是等边三角形,∴PQ=AP,∴PQ取最小值时,就是AP取最小值,当P与E重合时,即A、P、O在同一直线上时,AP最小,则PQ的值最小,在Rt△AFO中,AF=,OF=3+1=4,∴AO==,∴AE=﹣2=AP,∴PQ=AP=﹣2.10.如图,线段AB是⊙O的直径,C、D是半圆的三等分点,过点C的直线与AD的延长线垂直,垂足为点E,与AB的延长线相交于点F,连接OE,交AC于点G.(1)求证:FC是⊙O的切线;(2)连接DC、CO,判断四边形ADCO的形状,并证明;(3)求OG与GE的比值.(1)证明:连接OC,∵C、D是半圆的三等分点,∴==,∴∠DAC=∠CAB,∵OA=OC,∴∠OAC=∠OCA,∴∠DAC=∠OCA,∴OC∥AE,∴∠OCF=∠AEC=90°,∴OC⊥EF,∴FC是⊙O的切线;(2)解:四边形ADCO是菱形,理由如下:连接DC、DO,由(1)知==,∴∠AOD=∠DOC=COB=×180°=60°,又∵OA=OD=OC,∴△OAD与△OCD是等边三角形,∴OA=OD=AD,OD=OC=DC,∴OA=AD=DC=OC,∴四边形ADCO是菱形;(3)解:由(1)知,OC∥AE,∴△OCG∽△EAG,△FCO∽△FEA,∠COF=∠EAF=60°,∴=,=,∴=,在Rt△OCF中,∠F=30°,设OC=r,则OF=2r,∴==,∴=,∴OG与GE的比值为.11.已知:CD为△ABC的外角平分线,交△ABC的外接圆O于D.(1)如图1,连接0A,OD,求证:∠AOD=2∠BCD;(2)如图2.连接BC,若CB平分∠ACD,求证:AB=BD;(3)如图3,在(2)的条件下,在AB上取一点E,BD上取一点F.连接DE、AF交于点M,连接EF,若∠DMF=60°,AC=EF=7,CD=8(DF>BF),求AE的长.解:(1)如图1,连接BD,∵CD为△ABC的外角平分线,∴∠HCD=∠BCD,∵∠HCD=∠ABD,∴∠ABD=∠BCD,∵∠AOD=2∠ABD,∴∠AOD=2∠BCD;(2)∵CB平分∠ACD,∴∠ACB=∠DCB,∴=,∴AB=BD;(3)如图3,作FG⊥AB于G,EP⊥AF于P,CN⊥AC交AC的延长线于N.在Rt△CDN中,∵∠DCN=60°,CD=8,∴∠CDN=30°,∴CN=CD=4,DN=4,∴AD===13,∵AB=BD,∠B=60°,∴∠ABC是等边三角形,∴AD=DB=BD=13,∠DAB=60°,∵∠DMF=∠ADM+∠MAD=60°,∠MAE+∠MAD=60°,∴∠ADE=∠BAF,∵∠DAE=∠B,∴△ADE≌△BAF(ASA),∴AE=BF,设AE=BF=x,则BE=13﹣x,BG=x,EG=13﹣x,FG=x,在Rt△EFG中,72=(13﹣x)2+(x)2,解得x=5或8(舍弃),∴AE=BF=5.12.如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长A0与⊙O交于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)证明:OA2=OD•OP;(3)若BC=6,tan∠F=,求cos∠ACB的值.(1)证明:连接OB,如图1所示:∵PB为⊙O的切线,∴OB⊥PB,∴∠OBP=90°,∵BA⊥PF,∴AD=BD,即OP垂直平分AB,∴PA=PB,∴∠PAB=∠PBA,∵OA=OB,∴∠OAB=∠OBA,∴∠PAB+∠OAB=∠PBA+∠OBA=90°,即∠OAP=90°,∴OA⊥PA,∴直线PA为⊙O的切线;(2)∵∠ADO=∠OAP=90°,∠AOD=∠POA,∴△OAD∽△OPA,∴=,∴OA2=OD•OP;(3)解:连接AE,如图2所示:∵AC为直径,∴∠ABC=90°,∵OD垂直平分AB,∴OD∥BC,∴OD是△ABC的中位线,∴OD=BC=3,设DE=x,则OE=OA=OF=3+x,∵OD垂直平分AB,∴=,∴∠F=∠DAE,∴tan∠DAE=tan∠F=,∴AD=2DE=2x,在Rt△ADF中,tan∠F==,∴=,解得:x=2,∴AD=4,BC=6,OA=OE=5,在Rt△ABC中,AC=2OA=10,∴cos∠ACB===.13.如图1,在矩形ABCD中,AB=18cm,BC=24cm.在Rt△GEF中,∠GFE=90°.EF =12cm,GF=16cm.E,F两点在BC边上,GE,GF两边分别与矩形ABCD对角线BD交于M,N两点.现矩形ABCD固定不动,△GEF从点F与点B重合的位置出发,沿BC以2cm/s的速度向点C运动,点P从点F出发,在折线FG﹣GE上以4cm/s的速度向点E运动.⊙G是以G为圆心.GP的长为半径的圆.△GEF与点P同时出发,当点E到达点C 时,△GEF和点P同时停止运动.设运动的时间是t(单位:s).(1)当t=2s时,PN= 5 cm,GM=cm;(2)当△PGE为等腰三角形时,求t的值;(3)当⊙G与BD相切时,求t的值.解:(1)当t=2时,BF=2×2=4(cm),FP=2×4=8(cm),∵四边形ABCD是矩形,∴∠C=90°,AB=CD=18cm,tan∠DBC===,∵∠GFE=90°,∴∠BFN=90°=∠C,∴GF∥CD,∴△BFN∽△BCD,∴=,即=,解得:FN=3cm,∴PN=FP﹣FN=5cm;GN=GF﹣FN=16﹣3=13(cm),∵Rt△GEF中,∠GFE=90°.EF=12cm,GF=16cm,∴GE==20cm,tan∠G===,∴∠DBC=∠G,∵∠BFN=180°﹣90°=90°,∴∠DBC+∠BNF=90°,∵∠GNM=∠BNF,∴∠G+∠GNM=90°,∴∠GMN=90°,∴△GNM∽△GEF,∴=,即=,∴GM=cm,故答案为:5,;(2)由题意得:当△PGE为等腰三角形时,PG=PE,如图2所示:设PF=x,则PE=PG=(16﹣x)cm,在Rt△PEF中,由勾股定理得:122+x2=(16﹣x)2,解得:x=,∴PF=,∴t=÷4=(s);(3)由勾股定理得:BD==30cm,由(1)得:∠GMN=90°,∴GM⊥BD,∵GP是⊙G的半径,∴当⊙G与BD相切时,GM=GP,∵∠BME=∠C=90°,∠DBC=∠EBM,∴△BME∽△BCD,∴=,即=,解得:ME=(2t+12),∴GM=GE﹣ME=20﹣(2t+12)=,分两种情况:①当0<t≤4时,∵GP=16﹣4t,∴=16﹣4t,解得:t=;②当4<t≤6时,P与M重合,GP=4t﹣16,∴=4t﹣16,解得:t=;综上所述,当⊙G与BD相切时,t的值为s或s.14.如图1,已知AB是⊙O的直径,AM和BN是⊙O的两条切线,∠是⊙O的半圆弧上一动点(不与A,B重合),过点E的直线分别交射线AM、BN于D、C两点,且CB=CE.(1)求证:CD为⊙O的切线;(2)求证:AB2=4AD•BC;(3)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.(1)证明:如图1,连接OE,OC,在△BCO与△ECO中,,∴△BCO≌△ECO(SSS),∴∠OEC=∠OBC,∵BN是⊙O的切线,∴AB是⊙O的直径,∴AB⊥BN,∴∠ABC=90°,∴∠OEC=90°,∴CD为⊙O的切线;(2)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.15.如图,A(﹣5,0),B(﹣3,0)点C在y的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°,点P从点A出发,沿x轴向右以每秒1个单位长度的速度运动,运动时间为t秒.(1)当时t=1,求PC的长;(2)当∠BCP=15°时,求t的值;(3)以线段PC为直径的⊙Q随点P的运动而变化,当⊙Q与四边形ABCD的边(或边所在的直线)相切时,求t的值.解:(1)A(﹣5,0),B(﹣3,0),∴OA=5,OB=3,当t=1时,AP=1,∴OP=OA﹣AP=4,∵∠CBO=45°,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠OCB=45°,OC=OB=3,∴PC===5;(2)分两种情况:如图1所示:①当P在点B的左侧时,∵∠CBO=45°,∠BCP=15°∴∠OCP=∠OCB+∠BCP=45°+15°=60°,∴∠OPC=30°,∴OP=OC=3,∴AP=OA﹣OP=5﹣3,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣3,②当P在点B的右侧时,∵∠OCB=45°,∠BCP=15°∴∠OCP=∠OCB﹣∠BCP=45°﹣15°=30°,∴OP=OC=,∴AP=OA﹣OP=5﹣,∵点P沿x轴向右以每秒1个单位的速度运动,∴t=5﹣;综上所述,当∠BCP=15°时,t的值为(5﹣3)秒或(5﹣)秒;(3)如图2中,由题意知,若该圆与四边形ABCD的边相切,有以下三种情况:①当该圆与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP1=OC=3,此时AP1Q=5+3=8,∴t=8;②当该圆与CD相切于点C时,有P2C⊥CD,即点P2与点O重合,此时AP2=5,∴t=5;③当该圆与AD相切时,设P3(5﹣t,0),则Q(,),半径r2=()2+()2,作QH⊥AD于点H,则QH=,∵QH2=r2,∴()2=()2+()2,解得t=,综上所述,t的值为8秒或5秒或秒.。

备考2021年中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,单选题专训及答案

备考2021年中考数学二轮复习:图形的性质_圆_圆内接四边形的性质,单选题专训及答案

A . 50° B . 80° C . 100° D . 130° 29、
(2020新都.中考模拟) 如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为( )
A . 140° B . 70° C . 80° D . 60° 30、 (2020来宾.中考模拟) 如图,PA,PB是⊙O的切线,A,B为切点,点C,D在⊙O上。若∠P=102°,则∠A+∠C=( )
24.答案: 25.答案: 26.答案: 27.答案: 28.答案: 29.答案: 30.答案:
A. B. C. D.
14、 (2019禅城.中考模拟) 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是劣弧 BD,则∠D的度数是( )
上一点,连结CD,
A . 50° B . 45° C . 140° D . 130° 15、 (2018湛江.中考模拟) 如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半 径长为( )
A . 40° B . 60° C . 50° D . 80° 4、 (2019宁波.中考模拟) 如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是( )
A . 40° B . 50° C . 80° D . 90° 5、 (2019南浔.中考模拟) 如图,已知点A,B,C在⊙O上,若∠ABC=130°,则∠AOC的度数是( )
A . 220° B . 219° C . 218” D . 217°
备 考 2021中 考 数 学 二 轮 复 习 : 图 形 的 性 质 _圆 _圆 内 接 四 边 形 的 性 质 , 单 选 题 答 案
1.答 案 : D 2.答 案 : A 3.答 案 : C 4.答 案 : C 5.答 案 : D 6.答 案 : B 7.答 案 : C 8.答 案 : C 9.答 案 : B 10.答 案 : C 11.答 案 : B 12.答 案 : D 13.答 案 : D 14.答 案 : D 15.答 案 : D 16.答 案 : D 17.答 案 : C 18.答 案 : B 19.答 案 : C 20.答 案 : B 21.答 案 : D 22.答 案 : D 23.答 案 : C

中考数学总复习 圆内接四边形专项练习题

中考数学总复习 圆内接四边形专项练习题

中考数学总复习圆内接四边形专项练习题例题1:如图,已知四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°.求∠OCB及弧DC的度数.练:如图,四边形ABCD是⊙O的内接四边形,AB∥DC,∠BAD的平分线交⊙O于点P,交DC的延长线于点E,若∠BAD=86°,则∠PCE= °,⌒ADC的度数为例题2,如图,四边形ABCD是⊙O的内接四边形,弧AB=弧AD,∠BCD=120°,连接AC,DE⊥AC于点E,连接BE,若∠BED=150°,AC=37 ,求DE的长.练:如图,四边形ABCD是⊙O的内接四边形,AB=BD,BM⊥AC于点M,已知AC=11,CD=7,求CM的长.例3.如图,在△ABC中,AB=AC,在△ABC的外侧作直线AP,点B与点D关于AP轴对称,连接BD,CD,CD与AP交于点E. 求证:∠1=∠2.练:如图,在△ABC内有一点D,使得DA=DB=DC,若∠DAB=20°,则∠ACB= °.例题2,如图,E是正方形ABCD的边AB上的一点,过点E作DE的垂线交∠ABC的外角平分线于点F.求证:EF=DE.练:如图,锐角△ABC中,BD,CE是高线,DG⊥CE于点G,EF⊥BD于点F.求证:FG∥BC6.如图,已知△ABC,∠C=90°,将△ABC绕点A顺时针旋转x度(α为锐角),得到△ADE,连接BE,CD,延长CD交BE于点F.(1)用含有x的代数式表示∠ACD的度数为;(2)求证:点B,C,A,F四点共圆.(3)求证:点F为BE的中点.7.如图,在△ABC中,∠BAC=45°,AD是BC边上的高,且BD=6,CD=2.求AD的长度,课后习题:1.如图,⊙O内接四边形ABCD中,点E在BC延长线上,∠A+∠BOD=150°,则∠DCE= °2.如图,四边形ABCD是⊙O的内接四边形,∠A与∠C的度数之比为2:3,且弧AD的度数为100°,则弧AB的度数°3,如图,∠DAE是⊙O的内接四边形ABCD的一个外角,且DB=DC.AC是直径,若∠ACB=52°,则∠DAE= °4.如图,在平行四边形ABCD中,AD=2,∠A=120°,CF⊥AB于F,连接DF交CB延长线于E,连接AE,则△AEF的面积为5.如图,已知P为长方形内一点,S△P AB=5, S△PBC=12, 则S△PBD=6.如图,在菱形ABCD中,∠A=110°,点E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()7.已知如图,四边形ABCD中,AB∥CD,AB=AC=AD=5,BC=6,求BD的长.8.如图,已知△ABC中,AH是高线,AT是角平分线,且TD⊥AB于点D,TE⊥AC于点E.求证:∠AHD=∠AHE.。

中考数学复习之圆周角与圆内接四边形的性质,考点过关与基础练习题

33.圆周角与圆内接四边形➢知识过关1.圆心角:(1)顶点在________的角叫做圆心角.(2)弧、弦、圆心角的关系:在同圆或等圆中,两个圆心角、两条______、两条弦中有一组量相等,它们所对应的其余各组量也相等.2.圆周角(1)圆周角:顶点在圆上,并且两边都是弦的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧所对的圆周角相等,都等于这条弧所对的_____角的一半.(3)推论:半圆(或直径)所对的圆周角是_____;90°的圆周角所对的弦是_________推论:在同圆或等圆中,如果两个圆周角相等,则它们所对的_______一定相等.3.圆内接四边形(1)一个多边形所有的顶点都在圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆;(2)圆内接四边形的对角__________,外角等于___________.➢考点分类考点1圆周角定理及其推论的应用例1如图,四边形ABCD是平行四边形,且AB=AC,过A,B,C三点的⊙O与DC的延长线交于点E,连接AE交BC于F.(1)求证:AD是⊙O的切线;(2)求证:△DAC∽△DEA.1.如图,在⊙O 中,弧AB 所对的圆周角∠ACB =50°,若P 为弧AB 上一点,∠AOP =53°,则∠POB 的度数为( )A .25°B .47°C .53°D .37°2.如图,在半径为3的⊙O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,且∠D =30°,则BC 的长度是( )A .3B .3√32C .3√3D .2√33.如图,在半径为5的⊙O 中,AB 是直径,AC 是弦,D 是AC ̂的中点,AC 与BD 交于点E .若BE DE =12,则AC 的长为( )A .4√2B .4√3C .4√5D .4√64.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过D 作DE ⊥AB 于点E ,交AC 于点F ,连结AC .DF =5,BC AB =35.当点P 为下面半圆弧的中点时,连接CP 交BD 于H ,则AH 的长为( )A .4√10B .8√2C .5√5D .125.如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E ,设∠AED =α,∠AOD =β,则以下关系式成立的是( )A.2α+β=180°B.2α﹣β=90°C.3α+β=180°D.3α﹣β=90°6.如图,AB为⊙O的直径,且AB=26,点C为⊙O上半圆的一点,CE⊥AB于点E,∠OCE的角平分线交⊙O于点D,弦AC=10,那么△ACD的面积是()A.80B.85C.90D.957.如图,点A、B、C在⊙O上,∠AOC=120°,则∠ABC的度数是()A.100°B.80°C.110°D.120°8.如图,AB为⊙O的直径,C,D为⊙O上两点,∠CDB=30°,BC=5,则AB的长度为.9.如图,AB是⊙O的弦,C是优弧AB上一点,连接AC、BC,若⊙O的半径为4,∠ACB =60°,则△ABC面积的最大值为.10.如图,在△ABC中,已知∠ACB=130°,∠BAC=20°,BC=3,以点C为圆心,CB 为半径的圆交AB于点D,则BD的长为.11.如图,AB是⊙O的直径,点C、D是⊙O上的点.且OD∥BC,AC分别与BD、OD相交于点E,F.若⊙O的半径为5,∠DOA=80°,点P是线段AB上任意一点,则PC+PD 的最小值是.12.如图,在⊙O中,AB为定弦,C,D为圆上动点,记弦AB所对的圆心角度数是α,弦CD所对的圆心角度数是β.若α+β=180°,则:①∠A+∠C=90°;②若β=2α,则CD=√3AB;③若B为弧AD的中点,则OA⊥CD;④AB2+CD2=4OC2.上述选项中正确的是.(填写所有正确选项的序号)13.如图,以AB为直径的半圆O经过点C,点D在直径AB上.若BC=BD,CD=OA,则∠A的度数是.14.已知⊙O的两条弦为AB、AC,连接半径OA、OB、OC,若AC=√2AB=√2OA,则∠BOC的度数为.15.如图,AB 为⊙O 的直径,D 是弦AC 延长线上一点,AC =CD ,DB 的延长线交⊙O 于点E ,连接CE .(1)求证∠A =∠D ;(2)若AÊ的度数为108°,求∠E 的度数.16.如图,AB 是半圆O 的直径,AC 是弦,在AB 上截取AD =AC ,OE ⊥CD 于E ,连接BC .(1)求证:∠DOE =∠BCD .(2)若∠A =30°,AB =6,求CE 的长.17.如图,圆O 中延长弦AB ,CD 交于点E ,连接AC ,AD ,BC ,BD .(1)若∠ADB =60°,∠BAD =10°,求∠ACD 的度数;(2)若∠ADB =α°,∠BAD =β°,∠EBC =γ°,判断α,β,γ满足什么数量关系时,AD =CD ?请说明理由.➢ 课后作业1.已知,如图,点A ,B ,C 三点都在⊙O 上,∠B =12∠A ,∠A =45°,若△ABC 的面积为2,则⊙O 的半径为( )A .±2B .2C .1+√334D .√33−142.如图,AB是⊙O的直径,点C,点D是半圆上两点,连结AC,BD相交于点P,连结AD,OC.已知OC⊥BD于点E,AB=2.下列结论:①∠CAD+∠OBC=90°;②若点P为AC的中点,则CE=2OE.③若AC=BD,则CE=OE;④BC2+BD2=4;其中正确的是()A.①②③B.②③④C.①③④D.①②④̂,取BD̂上一点F使得DF=DC,3.如图,以正方形ABCD的点A为圆心,AB为半径作BD̂上一点(不与点D,F重合),则∠DEF的值为()点E是BDA.120°B.135°C.145°D.150°4.如图,在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD.若点D与圆心O不重合,∠BAC=24°,则∠DCA的度数为()A.40°B.41°C.42°D.43°5.如图,AB为⊙O的直径,点C、D在圆上,CE⊥AB于点E,若∠D=48°,则∠1=()A.42°B.45°C.48°D.52°6.如图,B 、C 是圆A 上的两点,AB 的垂直平分线与圆A 交于E 、F 两点,与线段AC 交于点D ,若∠DBC =30°,AB =2,则弧BC =( )A .19πB .29πC .13πD .49π 7.如图,在四边形ACBD 中,AB =BD =BC ,AD ∥BC ,若CD =4,AC =2,则AB 的长为 .8.如图,AB 是⊙O 的直径,点C 是AB̂的中点,点D 是直径AB 所在直线下方一点,连接CD ,且满足∠ADB =60°,BD =2,AD =3√3,则△ABD 的面积为 ;CD 的长为 .9.如图,已知半圆O 的直径AB =9,C 是半圆上一点,沿AC 折叠半圆得到AĈ,交直径AB 于点D ,若D 在半径OA 上,且为直径的三等分点,则AC 的长是 .10.如图,点A在y轴正半轴上,点B是第一象限内的一点,以AB为直径的圆交x轴于D,C两点.(1)OA与OD满足什么条件时,AC=BC,写出满足的条件,并证明AC=BC;(2)在(1)的条件下,若OA=1,BD=3√2,求CD长.11.如图1,四边形ABCD内接于⊙O,BD为直径,AD̂上点E,满足AÊ=CD̂,连结BE并延长交CD的延长线于点F,BE与AD交于点G,连结CE,EF=DG.(1)求证:CE=BG;(2)如图2,连结CG,AD=2.若sin∠ADB=√217,求△FGD的周长.➢冲击A+4.已知:在四边形ABCD中,∠A+∠C=180°,DB平分∠ADC;(1)求证:AB=BC;(2)如图2,若∠ADB=60°,试判断∠ABC的形状,并说明理由;(3)如图3,在(2)的条件下,在AB上取一点E,BC上取一点F,连接CE、AF交于点M,连接EF,若∠CMF=60°,AD=EF=7,CD=8(CF>BF),求AE的长.。

中考数学圆的复习

中考数学圆的复习人生处处是考场,本日各为中考忙。

斗智斗勇齐亮相,得失成败走一场。

考场潇洒不虚枉,多年以后话沧桑!下面是作者给大家带来的中考数学圆的考点总结,欢迎大家浏览参考,我们一起来看看吧!中考数学圆的考点总结一、考点分析考点一、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d r点p在⊙o内; p=d=r点P在⊙O上;d r点P在⊙O外。

考点二、过三点的圆1、过三点的圆不在同一直线上的三个点肯定一个圆。

2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。

考点三、直线与圆的位置关系直线和圆有三种位置关系,具体以下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯独公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交d p=直线l与⊙O相切d=r;直线l与⊙O相离d考点四、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。

推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就可以推出最后一个。

考点五、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心连线平分两条切线的夹角。

考点六、三角形的内切圆和外接圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。

中考数学复习之与圆有关的位置关系,考点过关与基础练习题

34.与圆有关的位置关系➢知识过关1.点和圆的位置关系2.直线与圆的位置关系3.切线的判定与性质切线的定义:直线与圆有_____公共点时,这条直线是圆的切线.切线的性质:圆的切线垂直于过切点的______切线的判定:经过半径的外端并且______这条半径的直线是圆的切线.到圆心距离等于______的直线是圆的切线.➢考点分类考点1直线与圆的位置关系的判定例1如图所示,在Rt△ABC中,△C=90°,AC=3cm,BC=3cm,若OA=x cm,△O的半径为1cm,请问当x在什么范围内取值时,AC与△O相交、相切、相离?D考点2切线的判定例2 如图所示,AB是△O的直径,C是O上一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且△BAC=△CAD.(1)求证:直线MN是△O的切线;(2)若CD=3,△CAD=30°,求△O的半径.考点3 切线的性质 例3 如图所示,在△O 中,点C 是直径AB 延长线上一点,过点C 作△O 的切线,切点为D ,连接BD.(1)求证:△A=△BDC(2)若CM 平分△ACD ,且分别交AD 、BD 于点M 、N ,当DM=1时,求MN 的长.➢ 真题演练1.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC =60°,P A =2,PC =4,则△ABC 的面积为( )A .43√3B .32√3C .2√3D .3√32.如图,四边形ABCD 是⊙O 的内接四边形,∠B =90°,∠BCD =120°,AB =4,BC =2,则AD 的长为( )A .2√3B .4−√3C .√3+1D .2+√33.如图,P A 、PB 、CE 分别与⊙O 相切于点A 、B 、D 点,若圆O 的半径为6,OP =10,则△PCE 的周长为( )A .10B .12C .16D .204.如图所示,点P 是⊙O 的半径OC 延长线上的一点,过点P 作⊙O 的切线,切点为A ,AB 是⊙O 的弦,连接AC ,BC ,若∠P AB =70°,则∠ACB 的大小为( )A .70°B .110°C .120°D .140°5.如图,在△ABC 中,∠A =60°,BC =12,若⊙O 与△ABC 的三边分别相切于点D ,E ,F ,且△ABC 的周长为32,则DF 的长为( )A .2B .3C .4D .66.如图,已知DC 是⊙O 的直径,点B 为CD 延长线上一点,AB 是⊙O 的切线,点A 为切点,且∠BAD =35°,则∠ADC =( )A .75°B .65°C .55°D .50°7.如图,PC 、PB 是⊙O 的切线,AB 是⊙O 的直径,延长PC ,与BA 的延长线交于点E ,过C 点作弦CD ,且CD ∥AB ,连接DO 并延长与圆交于点F ,连接CF ,若AE =2,CE =4,则CD 的长度为( )A .3B .4C .185D .2458.如图,四边形ABCD 内接于⊙O ,AE ⊥CB ,交CB 的延长线于点E .若BA 平分∠DBE ,AD =7,CE =√13,则AE 的长度为 .9.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则AB 的长为 .10.如图,P A、PB分别与⊙O相切于A、B两点,C为⊙O上一点连接AC、BC,若∠C=55°,则∠P的度数是°.11.如图,AB为圆O直径,∠DAB=∠ABC=90°,CD与圆O相切于点E,EF⊥AB于点F,EF交BD于点G,若AD=2,BC=6.(1)求CD的长度.(2)求EG的长度.(3)求FB的长度.12.如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.13.如图,P A、PB分别与⊙O相切于点A、B,PO的延长线交⊙O于点C,连接BC,OA.(1)求证:∠POA=2∠PCB;(2)若OA=3,P A=4,求tan∠PCB的值.➢ 课后练习1.如图,P A ,PB 是⊙O 的两条切线,A ,B 是切点,过半径OB 的中点C 作CD ⊥OB 交P A 于点D ,若PD =3,AD =5,则⊙O 的半径长为( )A .2√7B .4√2C .3√3D .2√52.如图,等边三角形ABC 的边长为4,⊙C 的半径为√3,P 为AB 边上一动点,过点P 作⊙C 的切线PQ ,切点为Q ,则PQ 的最小值为( )A .12B .√3C .2√3D .33.如图,点O 是矩形ABCD 对角线BD 上的一点,⊙O 经过点C ,且与AB 边相切于点E ,若AB =4,BC =5,则⊙O 的半径长为( )A .165B .258C .5√419D .44.如图,在△ABC 中,∠ACB =90°,AC =BC =√2,点D 是AB 边上一个动点,以点D 为圆心r 为半径作⊙D ,直线BC 与⊙D 切于点E ,若点E 关于CD 的对称点F 恰好落在AB 边上,则r 的值是( )A .√2−1B .1C .√2D .√2+15.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,如果∠D=30°,AB=4,那么线段CD的长是.6.如图,△ABD内接于⊙O,AD为直径,CD为⊙O的切线,连接BC,若CD=AD,AB =2,BC=2√13,则BD=.7.已知菱形ABCD的边长为4,∠BAD=60°,M是线段AD的中点,点P是对角线AC 上的动点,连接PM,以P为圆心,PM长为半径作⊙P,当⊙P与菱形ABCD的边相切时,AP的长为.8.如图,已知△ABC,以AB为直径的⊙O交AC于点E,交BC于点D,且BD=CD,DF ⊥AC于点F.给出以下四个结论:̂=DÊ;④∠A=2∠FDC.①DF是⊙O的切线;②CF=EF;③AE其中正确结论的序号是.9.如图,在Rt△ABC中,AC=BC=6,点O为边BC上一动点,连接OA.以O为圆心,OB为半径作圆,交OA于D,过D作⊙O的切线,交AC于点E.当⊙O与边AC相切时,CE的长为.10.如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点Q为CA延长线上一点,延长QD交BC于点P,连接OD,∠ADQ=12∠DOQ.若AQ=AC,AD=4时,写出BP的长为.11.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.12.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F.(1)若∠ABC=50°,∠ACB=75°,求∠BOC的度数;(2)若AB=13,BC=11,AC=10,求AF的长.➢冲击A+。

中考数学专题训练——圆与四边形综合

中考数学专题训练——圆与四边形综合1.如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1) 求证:DE是⊙O的切线.(2) 若BF=2,BD=2√5,求⊙O的半径.2.如图,在△ABC中,∠BAC=90∘,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连接EF并延长交AC于点G,连接BE,BD,四边形BDGE是平行四边形.(1) 求证:AB=BF.(2) 当F为BC的中点,且AC=3时,求⊙O的直径长.3.如图,AB是⊙O的直径,AB=4√2,M为弧AB的中点,正方形OCGD绕点O旋转与△AMB的两边分别交于E,F(点E,F与点A,B,M均不重合),与⊙O 分别交于P,Q两点.(1) 求证:△AMB为等腰直角三角形;(2) 求证:OE=OF;(3) 连接EF,试探究:在正方形OCGD绕点O旋转的过程中,△EMF的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.4.如图,AB是⊙O的直径,点P是圆上不与点A,B重合的动点,连接AP并延长到点D,使AP=DP,点C是BD的中点,连接OP,OC,PC.(1) 求证:∠A=∠D;(2) 填空:①若AB=10cm,当AP=cm时,四边形AOCP是菱形;②当四边形OBCP是正方形时,∠DPC=∘.5.如图,在矩形ABCD中,CE⊥BD,AB=4,BC=3,P为BD上一个动点,以P为圆心,PB长为半径作⊙P,⊙P交CE,BD,BC于F,G,H(任意两点不重合).(1) 半径BP的长度范围为.(2) 连接BF并延长交CD于K,若tan∠KFC=3,求BP.(3) 连接GH,将劣弧HG沿着HG翻折交BD于点M,试探究PM是否为定值,BP若是求出该值,若不是,请说明理由.6.如图,在△ABC中,AB=BC,D是AB上一点,⊙O经过点A,C,D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1) 四边形DBCF是平行四边形;(2) AF=EF.7.如图,⊙O的直径AB=6,C为圆周上一点,AC=3,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1) 求∠AEC的度数(2) 求证:四边形OBEC是菱形.8.如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A,C,D,交BC于点E,过点D作DF∥BC,交⊙O于点F.求证:(1) 四边形DBCF是平行四边形;(2) AF=EF.9.已知四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,∠DAB=45∘.(1) 如图1,判断CD与⊙O的位置关系,并说明理由;(2) 如图2,E是⊙O上一点,且点E在AB的下方,若⊙O的半径为3cm,AE=5cm,求点E到AB的距离.10.如图,在矩形ABCD中,AB=4,BC=8,点P在边BC上(点P与端点B,C不重合),以P为圆心,PB为半径作圆,圆P与射线BD的另一个交点为点E,直线CE与射线AD交于点G.点M为线段BE的中点,连接PM.设BP=x,BM= y.(1) 求y关于x的函数解析式,并写出该函数的定义域.(2) 连接AP,当AP∥CE时,求x的值.(3) 如果射线EC与圆P的另一个公共点为点F,当△CPF为直角三角形时,求△CPF的面积.11.如图,点O在平行四边形ABCD的AD边上,⊙O经过A,B,C三点,点E在⊙O外,且OE⊥BC,垂足为F.(1) 若EC是⊙O的切线,∠A=65∘,求∠ECB的度数;(2) 若OF=4,OD=1,求AB的长.12.如图,矩形ABCD中,E是BC的中点,连接DE,P是DE上一点,∠BPC=90∘,延长CP交AD于点F.⊙O经过P,D,F,交CD于点G.(1) 求证DF=DP;(2) 若AB=12,BC=10,求DG的长;(3) 连接BF,若BF是⊙O的切线,直接写出AB的值.BC13.如图1,在矩形ABCD中,AD=3,DC=4,动点P在线段DC上以每秒1个单位的速度从点D向点C运动,过点P作PQ∥AC交AD于Q,将△PDQ沿PQ 翻折得到△PQE.设点P的运动时间为t(s).(1) 当点E落在边AB上时,t的值为.(2) 设△PQE与△ADC重叠部分的面积为S,求S与t的函数关系式.(3) 如图2,以PE为直径作⊙O.当⊙O与AC边相切时,求CP的长.14.如图,在平行四边形ABCD中,AB⊥AC,AB=3,AD=5,点P在对角线AC上运动,以P为圆心,PA为半径作⊙P.(1) 当⊙P与边CD相切时,AP=;(2) 当⊙P与边BC相切时,求AP的长;(3) 请根据AP的取值范围探索⊙P与平行四边形ABCD四边公共点的个数.15.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60∘,AB=6√3.O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF 为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1) 求证:BO=2OM.(2) 设EF>HE,当矩形的面积为24√3时,求⊙O的半径.(3) 当HE或HG与⊙O相切时,求出所有满足条件的BO的长.16.如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1) 求BC,CD;(2) 点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AHʹI,是否存在时刻t,使点Hʹ恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习之圆与四边形 This manuscript was revised on November 28, 2020
1. 如图在⊙O 中,∠AOB=120°,点C 为的中点,延长OC 到点D ,使CD=OC ,AB 交OC 于点E.
(1)求证:DA 是⊙O 的切线;
(2)若OA=6,求弦AB 的长.
2.如图, O 是等腰三角形ABC 的外接圆,AB=AC,延长BC
至点D,使CD=AC,连接AD 交O 与点E,连接BE 、CE,BE 交
AC 于点F.
(1)求证:△ABE ≌△CDE ;
(2)填空:
①当∠ABC 的度数为 时,四边形AOCE 是菱形;
②若3,22,AE AB ==则DE 的长为 .
3.如图,△ABC 中,∠ACB=90°,D 为AB 上一点,以CD 为直径的⊙O
交BC 于点E ,连接AE 交CD 于点P ,交于点F ,连接DF ,∠CAE=∠ADF .
(1)判断AB 与⊙O 的位置关系,并说明理由.
(2)若PF:PC=1:2,AF=5,求CP 的长.
4.如图所示,AB 是O 的直径,D 、E 为O 上位于AB 异侧
的两点,连接BD 并延长到点C ,使得CD=BD ,连接AC 交O
于点F ,连接AE ,DE ,DF.
(1)证明:∠E=∠C.
(2)若∠E =55°,求∠BDF 的度数.
(3)设DE 交AB 于点G ,若DF=4,cosB=
23
,E 是弧AB 的中点,求EG .ED 的值. 5.如图,AB 为圆O 的直径,点M 为圆上不与A,B 重合的动点,点N 平分弧AM,ND ⊥AB 于点D,过点M 的切线交DN 的延长线于点C.
(1)若MC//AB, ①求证:AD=CN ;
②填空:四边形OMCD 是 (什么特殊四边形);
(2)填空:当∠ANM= °时,四边形ANMO 是菱形.。

相关文档
最新文档