译码显示电路
计数器及其译码显示电路设计

计数器及其译码显示电路设计一、引言计数器及其译码显示电路是数字电路中常见的模块,广泛应用于计数、测量、定时等领域。
本文将介绍计数器及其译码显示电路的设计原理和实现方法。
二、计数器的基本原理计数器是一种能够在一定范围内按照规定的步长进行累加或累减操作的电路。
常见的计数器有二进制计数器和十进制计数器两种。
1.二进制计数器二进制计数器是指能够在二进制数字系统中进行累加或累减操作的电路。
其基本原理是通过触发器来实现数据存储和状态转移,以达到累加或累减的目的。
常见的二进制计数器有同步计数器和异步计数器两种。
同步计数器是指所有触发器都在同一个时钟脉冲下进行状态转移,因此具有较高的稳定性和精度。
异步计数器则是指每个触发器都有自己独立的时钟输入,因此具有较高的速度和灵活性。
2.十进制计数器十进制计数器是指能够在十进制数字系统中进行累加或累减操作的电路。
其基本原理是通过将二进制计数器的输出信号转换为十进制数字系统中的数字,以达到实现十进制计数的目的。
常见的十进制计数器有BCD计数器和二进制-BCD码转换器两种。
三、译码显示电路的基本原理译码显示电路是一种能够将数字信号转换为对应的字符或图形信号进行显示的电路。
常见的译码显示电路有BCD-7段译码器和BCD-10段译码器两种。
1.BCD-7段译码器BCD-7段译码器是指能够将4位二进制代码转换为对应的7段LED数字管显示信号的电路。
其基本原理是通过查表法将4位二进制代码映射到对应的7段LED数字管上,以实现数字信号到字符信号的转换。
2.BCD-10段译码器BCD-10段译码器是指能够将4位二进制代码转换为对应的10个LED 灯管显示信号的电路。
其基本原理与BCD-7段译码器相似,不同之处在于需要额外添加3个LED灯管用于表示“.”、“-”和“+”等符号。
四、计数器及其译码显示电路设计实例下面以一个4位同步二进制计数器及其对应的BCD-7段译码器为例,介绍其设计过程。
实验8_计数译码显示电路

实验8_计数译码显示电路
计数译码显示电路是一种用于显示计算机数字信息的电路。
它使用一组多位译码器,
将二进制数字转换为十进制,然后显示出来,为人们提供了数字信息的直观化。
计数译码显示电路主要由数据锁存器、译码器组成,它们是电路中的关键元件。
数据
锁存器的作用是将计算机的数字信号锁定,避免数字信号在译码过程中的变化。
而译码器
组则负责由二进制到十进制的转换,一般采用反激型译码器,因其结构简单,抗干扰能力强,稳定可靠,现在广泛使用于计算机领域。
计数译码显示电路主要由若干常用元件组成,如7段数码管、电阻、电容、电源等显
示模块,它可以实现不同的显示功能,如联机可显示多种状态,目前计数译码显示电路广
泛应用于各种电子产品,如手机、电子秤、家用空调、摄像机等。
计数译码显示电路的研究于1958年由英国计算机专家罗伯特·泰森发表,其最大的
创新之处在于它可以让两个不同的逻辑电路和显示电路三者分离,得以实现显示数字信息,当时也是诸多技术领域的里程碑,深受理论研究者和工程实践者的赞誉。
计数译码显示电路具有显示可靠、稳定性强等优点,是微电子系统中常用的一种显示
仪表。
它弥补了旧式显示设备,相当于把显示器技术发挥到极致,在键盘设计上,多个计
数译码显示电路能够降低摩擦损耗,使键盘使用寿命增加,使用范围更加广泛。
计数译码显示电路

3、将1HZ旳正方波信号改为1KHZ旳正方波,用示波器分别观 察十进制计数器Q0、Q1、Q2、Q3旳输出波形以及CP旳波形。
(2) M > N 旳情况
用多片 N 进制集成计数器组合起来才干构成 M 进制计数器 。各片之间(或称为各级之间)旳连接方式可分为串行进位方式 、并行进位方式、整体置零方式和整体置数方式几种。
若 M 能够分解为若干个因数相乘,即 ( N i ≤N ),则能够采用 串行进位方式或并行进位方式将各个 N i 进制计数器连接起来, 构成 M 进制计数器。在串行进位方式中,以低位片旳进位输出信 号作为高位片旳时钟输入信号;在并行进位方式中,以低位片旳 进位输出信号作为高位片旳工作状态控制信号,全部芯片旳 CP 输入端同步接计数输入信号。
清 数据输入 使
零
置数
能
74LS161功能表
CR LD CP ET 操作状态
0 x x x 清除 1 0 x 预置 1 1 0 保持 1 1 1 计数
ET=CTT&ETP CO=Q3Q2Q1Q0
74LS90异步二五十 进制计数器
74LS90功能表
(2)任意进制计数器旳构成
中规模集成计数器除按其本身进制实现计数功能外,还 能够采用反馈法构成任意进制旳计数器。假定已经有旳是 N 进制计数器,需要得到 M 进制计数器。
M < N 旳情况
用一片N进制中规模集成计数器能够构成 2≤M≤N 旳任 意进制计数器。
a)置零法(复位法) 利用集成计数器旳异步置零端,经过 反馈线逼迫计数器置零。当计数器从全 0 状态 S 0 开始 计数并接受了 M 个计数脉冲后,进入 S M 状态。假如将 S M 状态译码产生一种置零信号加到计数器旳异步置零端 ,则计数器将立即返回 S 0 状态,这么就能够跳过 N - M 个状态,得到 M 进制计数器。
译码显示电路实验报告

一、实验目的1. 熟悉译码显示电路的基本原理和组成;2. 掌握译码器和显示器的功能及使用方法;3. 通过实验,验证译码显示电路的工作性能;4. 培养动手实践能力和团队协作精神。
二、实验原理译码显示电路是一种将数字信号转换为可直观显示的图形或字符的电路。
它主要由译码器和显示器两部分组成。
译码器将输入的数字信号转换为对应的控制信号,显示器则根据这些控制信号显示相应的图形或字符。
1. 译码器:译码器是一种多输入、多输出的组合逻辑电路,其作用是将输入的二进制代码转换为输出的一组控制信号。
常见的译码器有二进制译码器、十进制译码器等。
2. 显示器:显示器用于显示译码器输出的控制信号。
常见的显示器有七段显示器、液晶显示器等。
本实验采用七段显示器,它由七个独立的段组成,通过控制每个段的亮与灭,可以显示0-9的数字以及其他符号。
三、实验仪器与器材1. 实验箱;2. 译码器(例如:74LS47);3. 显示器(例如:七段显示器);4. 连接线;5. 示波器(可选);6. 电源。
四、实验步骤1. 熟悉实验箱和实验器材,了解译码器和显示器的功能及使用方法。
2. 按照实验原理图连接译码器和显示器,确保连接正确无误。
3. 在译码器输入端输入二进制代码,观察显示器是否按照预期显示相应的数字或符号。
4. 调整译码器的输入代码,验证译码器的工作性能。
5. (可选)使用示波器观察译码器和显示器的信号波形,进一步分析电路工作原理。
6. 记录实验数据,撰写实验报告。
五、实验结果与分析1. 当译码器输入端输入二进制代码时,显示器按照预期显示相应的数字或符号。
2. 调整译码器的输入代码,显示器能够正确显示相应的数字或符号。
3. 通过实验,验证了译码显示电路的基本原理和组成,掌握了译码器和显示器的功能及使用方法。
4. 在实验过程中,注意观察译码器和显示器的信号波形,有助于理解电路工作原理。
六、实验总结1. 本实验成功实现了译码显示电路的基本功能,验证了译码器和显示器的工作性能。
译码显示电路试验报告

译码显示电路试验报告译码显示电路试验报告一、试验目标本试验主要目标是设计并实现一个译码显示电路,该电路接收一组二进制编码信号,并将其转换为对应的七段数码管显示输出,以实现数字的直观显示。
二、试验原理译码显示电路的核心原理是利用编码器将数字信号转换为二进制编码,再利用译码器将二进制编码转换对应的七段数码管点亮,以显示数字。
其中,七段数码管由七个独立的LED段(A、B、C、D、E、F、G)组成。
三、硬件设计1.编码器:采用4-to-16编码器,将4位二进制数转换为16位输出,以实现对输入信号的编码。
2.译码器:采用7-to-8译码器,将8位二进制数转换为7段数码管的输出,以实现对七段数码管的点亮。
3.数码管:采用共阳极七段数码管,接收译码器的输出信号,以显示相应的数字。
四、软件设计本试验采用Verilog HDL语言进行编程设计。
1.编码器模块:通过输入的4位二进制数,控制编码器的输出。
2.译码器模块:通过译码器将编码器的输出转换为七段数码管的输出。
3.数码管模块:通过驱动数码管的7个LED段,实现数字的显示。
五、测试与分析1.测试方法:通过改变输入的4位二进制数,观察数码管显示的数字是否正确。
2.测试结果与分析:对所有可能输入进行测试,均得到了正确显示结果,验证了电路的正确性。
六、结论本试验成功设计并实现了一个译码显示电路,该电路可以将4位二进制数转换为对应的七段数码管显示输出,实现了数字的直观显示。
本试验中,硬件设计合理,软件设计也达到了预期的目标。
但是,由于硬件设备的限制,本试验未能对更高位数的译码显示电路进行设计和测试。
在未来的工作中,我们建议进一步扩展电路的设计,以实现对更高位数数字的译码显示。
七、建议与展望本试验虽然已经实现了一个相对简单的译码显示电路,但是在实际应用中可能还需要进行一些改进和优化。
以下是对未来工作的建议和展望:1.考虑采用更先进的数字芯片技术,以提高电路的稳定性和可靠性。
显示译码电路实验报告

显示译码电路实验报告显示译码电路实验报告引言:在现代电子技术领域,显示译码电路扮演着重要的角色。
它们可以将数字信号转换为人们可以理解的可视化信息,广泛应用于计算机、电视、手机等设备中。
本实验旨在通过搭建一个显示译码电路,探索其原理和应用。
一、实验目的本实验的目的是了解显示译码电路的工作原理,掌握其基本应用。
通过实践操作,学生们可以更好地理解数字电路的运行机制,提高实际动手能力。
二、实验材料和器件1. 74LS47芯片:这是一种BCD-7段译码器,用于将4位二进制输入转换为7段数码管的输出。
2. 7段数码管:用于显示数字和字母等字符。
3. 连接线、电源等辅助器件。
三、实验步骤1. 连接电路:将74LS47芯片与7段数码管通过连接线连接起来,确保电路连接正确无误。
2. 施加电源:将电路连接到适当的电源上,确保电压和电流符合芯片的工作要求。
3. 输入信号:通过开关或其他输入设备提供4位二进制输入信号。
4. 观察结果:观察7段数码管上显示的字符是否与输入信号对应,验证译码电路的正确性。
四、实验结果与分析经过实验操作,我们成功搭建了显示译码电路,并进行了测试。
在输入4位二进制数的情况下,数码管正确显示了对应的字符。
这表明译码电路能够准确地将二进制信号转换为可视化的字符信息。
通过进一步的观察和分析,我们发现译码电路的工作原理是将输入的二进制数映射到对应的数码管段上。
每个数码管段代表一个二进制位,通过控制该段的通断状态,可以显示不同的字符。
而74LS47芯片则起到了译码的作用,将二进制输入转换为对应的数码管段控制信号。
这种显示译码电路广泛应用于各种计算机和电子设备中。
它使得数字信息可以以更加直观和易读的方式展示给用户,提高了人机交互的效率和便利性。
例如,在计算机屏幕上显示的字符、数字时钟、电子秤等设备都使用了类似的译码电路。
五、实验总结通过本次实验,我们深入了解了显示译码电路的工作原理和应用。
通过实际操作,我们掌握了搭建和测试译码电路的方法,提高了动手实践能力。
译码电路

实验四译码显示电路
学院:信息科学与技术学院
专业:电子信息工程
一实验目的
1.掌握发光二级管,数码管工作原理,结构,使用方法;
2.掌握集成译码显示电路。
二实验器材
74LS247,BS201数码管(共阳),CD4008B,74LS00。
三实验原理
数字系统中的测量,运算结果需十进制显示,常用发光二极管,LED,LCD
1.发光二极管导通电压1.6V左右,20MA可以很亮,响应快;
2.数码管有共阴,共阳两种,发光方式与二极管相同;
3.液晶显示器是根据内部离子电离状态使光纤线发生变化而显示的,响应慢;
4.74LS247将四位二进制数转化为数码管对应发光段而工作的。
四实验内容
1.解:运用灯泡和数码管来显示电路:
灯亮则对应数码管中对应发光二极管亮。
测试功能图为:
(1)当输入1时,数码管显示1,且对应灯泡B,C亮;
(2)当输入9时,数码管显示9,且对应灯泡A,B,C,F,G亮。
2.解:利用74LS247,BS201,CD4008B设计出的BCD码显示,当输入数字小于10时,对应十位数码管灭零;当输入数字大于等于10(小于等于15),不灭零。
(1)当输入8时,十位灭零,个位显示8;
(3)显示30.5的电路:
3.
解:
四按钮,如显示4号病房:
4.
解:74ls138功能测试。
4译码显示电路

第四节译码显示电路译码显示电路是对显示值进行译码变为七段显示码,并驱动数码管显示。
显示器件的种类较多,因而用于显示驱动的译码器也有不同的规格和品种。
目前用得较多的数字显示译码器为七段显示译码器,用于驱动数码管。
因数码管有共阴和共阳两种类型,与之相应的显示译码器也有高电平和低电平驱动两种形式。
常见的显示译码器多为集电极开路输出结构,有些内部带有上拉电阻,可直接驱动数码管。
一、静态译玛显示电路静态译玛显示电路是对每一个显示值都单独译玛和显示的一种方法。
这种方法需要使用较多的芯片,在显示位数不多时采用。
常用的七段译码器很多,74LS47、74LS48比较常见的TTL七段译码/驱动器,可驱动七段LED数码显示器。
它们的功能和引脚排列相同,不同之处在于输出端:74LS47为OC门输出,只能驱动共阳LED,并且必须为LED外接限流电阻。
74LS48内部有2KΩ的上拉电阻,使用时无须外接限流电阻而直接驱动共阴LED。
功能表分别见表2.4.1、表2.4.2。
74LS47、74LS48的引脚功能图见图2.4.1,功能简介如下:图2.4.1 74LS47、74LS48的引脚功能DCBA为BCD码输入端,a~g为七段译码输出端,芯片还设置有其它的功能控制端口:a、灯测试输入LT:用于测试数码管各段是否发光正常。
当LT=“0”时,不论DCBA为何种状态,数码管均显示“8”,即所有的笔段都亮。
b、灭零输入RB I:按人们的习惯数字中有些零不必显示,如数字“00320.300”的前两位和后两位零通常不必显示,而中间个位数零则要显示。
完成这一功能由RBI 和灭零输出RBO连接控制。
当RB I=“0”,DCBA=0000时,数码管不显示,而DCBA为其它状态时,数码管都显示。
c、灭灯输入BI/灭零输出RBO:灭灯输入BI=“0”时,不论其它输入为何种状态,数码管不显示任何字符,处于全灭状态。
灭零输出RBO在灭零输入RB I有效而且正处于灭零状态时,输出“0”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当清零端为高电平,S0、S1为低电平时,并行送数后,四盏灯不变。
当清零端为高电平,S0为高电平,S1为低电平时,并行送数后,显示数字右移。当清零端为高电平,S0为低电平,S1为高电平时,并行送数后,显示数字左移。
我的学号是15336113.分成两个数码管来实现。
第一个数码管:
1533对应的BCD码分别是0001,0101,0011,0011.使用74ls197连接成八进制,将Q0,Q1,Q2接入74ls48的A1,A2,A3。A4输入低电平。
译码输出端接数码管(实验箱上是已经连好的)。
将Q0,Q1,Q2接入74ls138的地址输入端,G1接高电平, 接低电平。BCD码被转换成高低电平信号,只有在对应的最小项为低电平。将F1接入DIG1,F5接入DIG2,F3接入DIG3和DIG4.将时钟频率调节到10kHz.
2.按图(五)实现四节拍顺序脉冲发生器
使用74ls194和74ls73实现四节拍发生器
节拍发生器开始工作,会先进行清零。Cr负脉冲过后Q0、Q1、Q2、Q3全为零。JK触发器Q =1,S1=S0=1,实现并行送数。第一个脉冲的上升沿到达后,置入0111,CP下降沿到达后Q =0,S1=0,S0=1,实现右移。在CP作用下输出依次为1011、1101、1110.第四个CP下降沿到达后又使Q=1,实现第二个循环。
实验三译码显示电路
姓名:刘梦梦学号:15336113
一.设计过程
1.按74LS194的功能表,测试74LS194.
__
Cr
S1
S0
工作状态
0
X
X
置零
1
0
0
保持
1
0
1
右移
1
1
0
左移
1
1
1
并行送数
将74LS194的S0、S1、D0、D1、D2、D3接模拟开关,Cr 接清零按键,Q0、Q1、Q2、Q3接实验箱右上角(0-1显示器)。
第二个数码管:
6113对应的BCD码是0110,0001,0001,0011.将产生第一个数码管的74ls48的译码输出端接入第二个数码管,原理相同,把上面138的F6接DIG5,F1接DIG6和DIG7,F3接DIG8.
下面是用proteus进行的仿真:
下面是使用proteus进行的仿真:
4.自行设计电路在数码管显示八位学号
采用显示内容决定显示位置的方法
使用数码管的八个位选端,DIG1,DIG2,DIG3,DIG4;DIG5,DIG6,DIG7,DIG8,输入为低电平时把对应位置的数送出。某一位要显示某个数,只需使其当输入该数的BCD码时,对应的位选端的输入信号为低电平,输入其他数则输出高电平。将时钟脉冲频率调至足够高,由于视觉残留,数码管看起来是同时点亮的。
用proteus进行仿真如下:
3.按图四实现四位扫描译码显示电路
8421BCD码用逻辑模拟开关输入,或者用74ls197输入。将74ls197连成十六进制,其中,数码管上不能显示10,11,12,13,14,15.所以将这些数的不完整显示去除,需要将PL接高,将Q1和Q3接入与非门后的结果接入MR,则每次到1010(10)的时候197的输出就会清零。
使用74ls48,BCD码输入端A0,A1,A2,A3分别接Q0,Q1,Q2,Q3.译码输出端a,b,c,d,e,f,g接到数码管对应的引脚上(实验箱上实验时,数码管对应已经连接好74ls48,无需再连线)然后将上面的2中已经实现的四节拍发生器的四个输出端QA,QB,QC,QD分别接入数码管的位选端DIG1,DIG2,DIG3,DIG4.即可实现数字如走马灯般节拍显示。