空间角与距离求法(高二)

合集下载

空间向量的应用求空间角与距离

空间向量的应用求空间角与距离

空间向量的应用----求空间角与距离一、考点梳理1.自新教材实施以来,近几年高考的立体几何大题,在考察常规解题方法的同时,更多地关注向量法〔基向量法、坐标法〕在解题中的应用。

坐标法〔法向量的应用〕,以其问题〔数量关系:空间角、空间距离〕处理的简单化,而成为高考热点问题。

可以预测到,今后的高考中,还会继续表达法向量的应用价值。

2.利用法向量求空间角和空间距离,其常用技巧与方法总结如下:1)求直线和直线所成的角假设直线AB 、CD 所成的角是α,cos α=|,cos |><CD AB ||||||CD AB CD AB •=2).利用法向量求线面角设θ为直线l 与平面α所成的角,ϕ为直线l 的方向向量v 与平面α的法向量n 之间的夹角,那么有2πϕθ=-或2πϕθ=+。

特别地0ϕ=时, 2πθ=,l α⊥;2πϕ=时,0θ=,l α⊂或l α。

计算公式为:||sin cos ||||v n v n θϕ==或||sin sin()cos (0)2||||||||v n v n v n v n v n πθϕϕ=-=-=-=<3).利用法向量求二面角设1n 、2n 分别为平面α、β的法向量,二面角l αβ--的大小为θ,向量1n 、2n 的夹角为ϕ,那么有θϕπ+=或θϕ=。

计算公式为:1212cos cos ||||n n n n θϕ=-=1212cos cos ||||n n n n θϕ==4).利用法向量求点面距离如图点P 为平面外一点,点A 为平面内的任一点,平面的法向量为n ,过点P 作平面α的垂线PO ,记∠OPA=θ,那么点P 到平面的距离θcos ||||PA PO d ==||||||||||||n PA PA n PA n PA n •=⊗•=5).法向量在距离方面除应用于点到平面的距离外,还能处理异面直线间的距离,线面间的距离,以及平行平面间的距离等。

其一,这三类距离都可以转化为点面间的距离;其二,异面直线间的距离可用如下方法操作:在异面直线上各取一点A 、B ,AB 在n 上的射影长即为所求。

专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.8  立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

【免费下载】高中数学 立体几何中的向量方法(Ⅱ)----求空间角与距离

【免费下载】高中数学   立体几何中的向量方法(Ⅱ)----求空间角与距离

z 轴建立空间直角坐标系(如图),可知 =(2,-2,1), =(2,2,-1),
→→
CM D1N
1
cos〈 , 〉=-9,所以 sin〈 , 〉= 9 .

CM
→ → 45
CM D1N
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

142 用空间向量研究距离、夹角问题(基础知识+基本题型)(含解析)--2022高二数学上

142 用空间向量研究距离、夹角问题(基础知识+基本题型)(含解析)--2022高二数学上

1.4.2用空间向量研究距离、夹角问题(基础知识+基本题型)知识点一、用向量方法求空间角(1)求异面直线所成的角已知a ,b 为两异面直线,A ,C 与B ,D 分别是a ,b 上的任意两点,a ,b 所成的角为θ,则||cos ||||AC BD AC BD θ⋅=⋅。

要点诠释:两异面直线所成的角的范围为(00,900]。

两异面直线所成的角可以通过这两直线的方向向量的夹角来求得,但二者不完全相等,当两方向向量的夹角是钝角时,应取其补角作为两异面直线所成的角。

(2)求直线和平面所成的角设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ,则有||sin |cos |||||θϕ⋅==⋅a u a u 。

(3)求二面角如图,若PA α⊥于A ,PB β⊥于B ,平面PAB 交l 于E ,则∠AEB 为二面角l αβ--的平面角,∠AEB+∠APB=180°。

若12⋅n n 分别为面α,β的法向量,121212,arccos ||||n n n n n n ⋅〈〉=⋅则二面角的平面角12,AEB ∠=〈〉n n 或12,π-〈〉n n ,即二面角θ等于它的两个面的法向量的夹角或夹角的补角。

①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。

②当法向量1n ,2n 的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于1n ,2n的夹角的补角12,π-〈〉n n 的大小。

知识点二、用向量方法求空间距离1.求点面距的一般步骤:①求出该平面的一个法向量;②找出从该点出发的平面的任一条斜线段对应的向量;③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即可求出点到平面的距离。

即:点A 到平面α的距离||AB n d n ⋅= ,其中B α∈,n是平面α的法向量。

2.线面距、面面距均可转化为点面距离,用求点面距的方法进行求解。

空间角和空间距离

空间角和空间距离

空间角和空间距离一、空间角:(1)异面直线所成的角:过空间任一点分别引两异面直线的平行线,则此两相交直线所成的锐角(或直角)叫做两异面直线所成的角.异面直线所成角的范围 .(2)直线与平面所成的角:①当α//l 或α⊂l 时,l 与α所成的角为 0;②当α⊥l 时, l 与α所成的角为 90;③当l 与α斜交时,l 与α所成的角是指l 与l 在面α上的射影'l 所成的锐角.线面角的范围: .(3)二面角的平面角须具有以下三个特点:①顶点在棱上;②角的两边分别在两个半平面内; ③角的两边与棱都垂直.二面角的范围: .方法总结:1、求异面直线所成角的方法:主要通过平移转化法来作出异面直线所成的角,然后利用三角形的边角关系(正、余弦定理)求角的大小,要注意角的范围.2、求线面角的一般过程是:(1)在斜线上找到一个合适的点P ,过P 作面α的垂线(注意垂足/P 的确定),垂足/P 和斜足A 的连线即为斜线PA 在平面α上的射影,则/PAP ∠即为所求;(2)将/PAP ∠放到/PAP ∆或其它包含此角的三角形中去求. 说明:关于线线角和线面角,下面的结论经常用到:①“爪角定理”:如图9-4-1,已知,AB AO 分别是面α在面α内过斜足O 任意引一直线OC ,设12,AOB BOC θθ∠=∠=,AOC θ∠=,则:21cos cos cos θθθ⋅=;② 经过一个角的顶点作这个角所在平面的斜线,如果斜线和这个角两边的夹角相等,那么斜线在平面上的射影是这个角的平分线所在的直线.说明:在解题过程中,我们会发现求角问题难在作角,其中又难在过平面外一点,作平面的垂线后,垂足位置的确定.复习过程中应注意对常用的找垂足的方法进行归纳总结. 上面的②及下面的几个结论是找垂足的有力工具:(ⅰ)若P 为ABC ∆所在平面 外一点, O 是点P 在 内的射影,则:①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ∆的外心;②若P 到ABC ∆的三边的距离相等, 则O 为ABC ∆△ABC 的内心;③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ∆的垂心.(ⅱ)面面垂直的性质定理:如果两个平面垂直,则在一个平面内垂直于交线的直线垂直于另一个平面;(ⅲ)三垂线定理及其逆定理.3、求二面角的平面角的一般方法:如何作出(或找出)二面角的平面角是解题的关键,常用以下方法:①定义法:直接在二面角的棱上取一点(特殊点),分别在两个半平面中作棱的垂线,得出平面角,用定义法时应认真观察图形的特性;②三垂线法(比较常用):已知二面角其中一个面内一点P 到另一个面的垂线(垂足为/P ),则只需过P (或/P )作棱的垂线(垂足为O ),由三垂线定理或其逆定理知/POP ∠即为所求(关键是从题中找到适当的点P );③垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角(由此知,二面角的平面角所在的平面与棱垂直);④面积投影法:此法最大的优点在于不用作出平面角θ,常用于“无棱二面角”(即在图中没有画出棱);如果α上某一平面图形的面积为斜S ,它在β上的射影的面积为射S ,则射斜S S =θcos 。

向量法求空间的距离和角

向量法求空间的距离和角

所以异面直线BD与D1A间的距离为
3 。 3
(2) A1 B1 = (0,1, 0), 设n = ( x, y, z )是平面A1DB的一 个法向量,因为DA1 = (1, 0,1), DB = (1,1, 0), ì ì x +z = 0 nDA1 = 0 镲 由眄 即 取x = - 1, 镲 î x+y =0 î nDB = 0 | nA1 B1 | 1 2 于是n = (-1,1,1, ),且 = = 。 2 |n| 2 2 所以点B1到平面A1 BD的距离为 。 2
例1:如图1所示: 三棱柱ABC - A1 B1C1中,CA=CB, AB = AA1, ? BAA1 60o, ( 1)求证:AB^ A1C (2)若平面ABC ^ 平面AA1 B1 B, AB =CB,求直线A1C与平面BB1C1C 所成角的正弦值。
C C1
B A A1
B1
图1
C
C1
O
B A1
Z
解:由(1)知OC ^ AB,OA1 ^ AB, 又平面ABC ^ 平面AA1 B1 B,交线 为AB,所以OC ^ 平面AA1 B1 B, 故OA、OA1、OC两两相互垂直。 建立如图所示的空间直角坐标系 A
O
C
C1
B A1
B1 图1-2
X o - xyz 设AB = 2,由题设知A(1, 0, 0)、B(- 1, 0, 0)、C (0, 0, 3)、A1 (0, 3, 0), 则BC = (1, 0, 3)、 BB1 = AA1 = (- 1, 3, 0)、 A1C = (0, - 3, 3). 设n = ( x, y, z )是平面BBCC的法向量,则 ì x + 3z = 0 ì nBC = 0 镲 即 可取n = ( 3,1, -1), 眄 镲 î nBB1 = 0 î - x + 3y = 0 nA1C 10 故 cos < n, A1C >= =. 5 | n | ×| A1C |

8.8_立体几何中的向量方法(Ⅱ)——求空间角与距离

8.8_立体几何中的向量方法(Ⅱ)——求空间角与距离

3.点面距的求法 如图,设 AB 为平面 的一条斜线段,n 为平面 的 法向量,则 B 到平面 的距离 d=
AB n n
基础自测 1.如果平面的一条斜线与它在这个平面上的射 影的方向向量分别是 a=(1,0,1), b=(0,1,1), 那么,这条斜线与平面所成的角是( D ) A.90° B.30° C.45° D.60° 1 1 解析 ∵cos〈a,b〉= = , 2· 2 2
变式训练 1 如图所示,在棱长为 2 的正方体 ABCD—A1B1C1D1 中,E、F 分别为 A1D1 和 CC1 的中点.1求证:EF∥平面 ACD1; 2求异面直线 EF 与 AB 所成角的余弦值; 3在棱 BB1 上是否存在一点 P,使得二面角 P—AC—B 的大小为 30° ?若存在,求出 BP 的长,若不存在,请说明理由.
思维启迪: 建立空间直角坐标系, 求出各点及向量的坐标,
求出 AB 与 EG 夹角的余弦值的绝对值即可. 1
解 如图所示,建立空间直角坐标系,坐标原点为 C, 设 CA=2a,则 A2a,0,0,B0,2a,0,D0,0, 1 , A12a , 0 , 2,Ea , a , 1 , G(
2 在 Rt△D1DE1 中,D1E1= DE2+DD1 1
= AE2+AD2+DD2= 12+32+22= 14. 1 1 在 Rt△D1DF 中,FD1= FD2+DD2 1
2 = CF2+CD2+DD1= 22+42+22= 24.
在△E1FD1 中,由余弦定理得: D1E2+FD2-E1F2 21 1 1 cos∠E1D1F= = . 14 2×D1E1×FD1 21 ∴直线 EC1 与 FD1 所成的角的余弦值为 . 14
探究提高

高中数学优质课件【立体几何中的向量方法——求空间角与距离】

高中数学优质课件【立体几何中的向量方法——求空间角与距离】

面直线 AB 和 CD 所成角的余弦值为________.
1 4
解析:设等边三角形的边长为 2.取 BC 的
中点 O,连接 OA,OD.因为等边三角形 ABC 和
BCD 所在平面互相垂直,所以 OA,OC,OD 两
两垂直,以 O 为坐标原点,OD,OC,OA 所在
直线分别为 x 轴、y 轴、z 轴建立如图所示的空间
直角坐标系.
则 A(0,0, 3),B(0,-1,0),C(0,1,0),D( 3,0,0), 所以A→B=(0,-1,- 3),C→D=( 3,-1,0), 所以 cos〈A→B,C→D〉=|AA→→BB|·|CC→→DD|=2×1 2=14, 所以异面直线 AB 和 CD 所成角的余弦值为14.
1 2 3 45
4.在空间直角坐标系 Oxyz 中,平面 OAB 的一个法向量为 n=(2,
-2,1),已知点 P(-1,3,2),则点 P 到平面 OAB 的距离 d 等于( )
A.4
B.2
C.3
D.1
B 解析:P 点到平面 OAB 的距离为 d=|O→|Pn·|n|=|-2-96+2|=2.
12345
B1(1,1, 3),所以A→D1=(-1,0, 3),D→B1=(1,1, 3).设异面直线
AD1 与 DB1 所成的角为 θ,
所以 cos θ=|AA→→DD11|·|DD→→BB11|=2×2
5=5 5.Fra bibliotek所以异面直线
AD1

DB1
所成角的余弦值为
5 5.
2.有公共边的等边三角形 ABC 和 BCD 所在平面互相垂直,则异
l1与l2所成的角θ
a与b的夹角β
范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间角与点面距离求法
求空间角和点到平面的距离是教学的重点,也是学生学习的难点,更是高考的必考点.新课标强调要求利用向量的运算来解决这两个问题,而新教材的处理是通过探究引导学生推理得出相关公式.在复习时,作为教师有必要帮助学生对相关的知识进行梳理、归纳和小结.
1.空间角的求法
在立体几何中,求空间角是学习的重点,也是学习的难点,更是高考的必考点.我们在复习时,必须对相关的知识进行梳理、归纳和小结,才会灵活运用公式熟练地求出空间角. 一、相关概念和公式
(1) b a
,是空间两个非零向量,过空间任意一点O ,作,,b a ==则AOB ∠叫做
向量a 与向量b 的夹角,记作><b a ,,并规定
180,0>≤≤<b a .
(2) 空间两个非零向量b a ,的夹角公式:|
|||,cos b a b
a b a ⋅⋅>=< .
(3) 设),,(111z y x a = , ),,(222z y x b = 则212121||z y x a ++= ,2
22222||z y x b ++= ,
212121z z y y x x b a ++=⋅
.
二、两条异面直线所成的角
(1) 定义:已知两条异面直线a 和b ,经过空间任一点O 作直线,//,//b b a a ''我们把a '与b '
所成的锐角(或直角)叫做异面直线a 和b 所成的角(或夹角).
(2) 范围: 异面直线a 和b 所成的角为θ:
900≤<θ, 则cos 0≥θ .
(3) 求法:
▲① 平移法: 把两条异面直线a 和b 平移经过某一点(往往选取图中的特殊点),构造三角形(有时会用到补形法,如三棱柱补成平行六面体等),解三角形(通常用到余弦定理).特别提醒:若由边角关系求得为钝角..
时,注意取其补角为异面直线所成的角. ▲② 向量法: 若a 和b
分别是异面直线a 和b 的方向向量,则
|
||||
||||||||,cos |cos b a b a b a b a b a
⋅⋅=⋅⋅=><=θ . 说明: ① 其中=θ<b a ,>或-
180<b a ,> ; ② 在计算b a
⋅时可用向量分解或坐标进行运算.
三、直线与平面所成的角 (1) 定义: 一个平面的斜线和它在这个平面内的射影的夹角,叫 做斜线和平面所成的角(或斜线和平面的夹角)
如果直线和平面垂直,那么就说直线和平面所成的角是直角;如果直线和平面平行或在平
面内,那么就说直线和平面所成的角是
0的角.
(2) 范围: 直线m 是平面α的斜线,它们所成的角为θ:
900<<θ.
(3) 求法:
▲① 直接法: 根据定义作出(有时利用面面垂直的性质定理来作)直线m 与平面α所成的角;
常常通过解直角三角形来求角.
难点: 通常不容易作出直线m 与平面α
▲②
法向量法: 直线m 的方向向量为m ,平面α的法向量为n
,|
||||
||||||||,cos |sin n m n m n m n m n m
⋅⋅=⋅⋅=><=θ
说明: ① 建立适当的空间直角坐标系,利用坐标进行向量的有关运算;
② 求出平面α的法向量n
; ③ 注意公式中是θsin 而不是θcos . 四、二面角
(1) 定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的
棱,这两个半平面叫做二面角的面.
在二面角βα--l 的棱l 上任取一点O ,以点O 为 垂足,在半平面α和β内分别作垂直于...
棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角
二面角的大小可用它的平面角来度量.二面角的平面角是多少度,就说这个二面角是多少度.
(2) 范围: 二面角βα--l 的大小为θ:
1800≤≤θ.
当二面角的两个面重合时,规定二面角的大小是
0;当二面角的两个面合成一个平面时,规定二面角的大小是
180.
(3) 求法:
(Ⅰ) 直接法:
① 定义法 :利用二面角的平面角定义,作出平面角;解三角形求角.
难点: 二面角的平面角的顶点位置的选择.
② 垂面法: 一个平面γ垂直于二面角βα--l 的棱l ,且与两个半平面的交线分别是射线
OA 、OB ,O 为垂足,则∠AOB 是二面角βα--l 的平面角.
难点: 棱l 的垂面γ位置的选择. ▲③ 三垂线定理法:
基本模式: 如图,在二面角βα--l 中,βα⊥∈AB A ,,垂足为B .
β
B
α
A
O
l m
作法: 过B (或A )作l BO ⊥(或l AO ⊥),垂足为O ,
连结AO (或BO ),则l AO ⊥(或l BO ⊥),AOB ∠是二面角βα--l 的平面角. (Ⅱ)向量法:
(1) 两种基本模式:
▲ 如图(1),l BD BD l AC AC l B l A ⊥⊂⊥⊂∈∈,,,,,βα,>=<,θ,|
|||,cos cos BD AC ⋅>=
<=θ.
如图(2),l OB OB l OA OA l O ⊥⊂⊥⊂∈,,,,βα,
则>=<,θ ,|
|||,cos cos OB OA ⋅>=<=θ.
▲(2) 法向量法:平面α和平面β的法向量分别是m
和n
,则
|
||||
||||||||,cos ||cos |n m n m n m n m n m
⋅⋅=⋅⋅=><=θ .
说明: ① 通常建立空间直角坐标系,利用坐标进行向量运算;
② 求出平面α的法向量m 和平面β的法向量n
; ③θ与><n m
,相等或互补; ④ 最后要说明θ是锐角还是钝角.
五、小结:
(1) 在求空间角时,注意应用向量a 和b 的夹角公式|
|||,cos b a b
a b a ⋅⋅>=<;
在计算b a
⋅时,要合理选择是用向量分解运算,还是坐标运算.
(2) 根据具体图形,利用右手法则,会合理建立空间直角坐标系. (3) 务必熟练求一个平面的法向量的过程和方法.. (4) 注意上述公式的条件、形式和适用范围.
(5) 特别要理解用平面的法向量求线面角的公式,才会灵活应用.
(6) 求空间的角,用向量法可以降低思维难度,避开添加各种辅助线的高度技巧和随机性,使之
定量化,增强可操作性,使得计算程序化、简单化. 如果不是特殊角就用反三角表示. (7) 利用平面的法向量求空间角的基本过程: ① 建立适当的空间坐标系;② 确定点的坐标或向量坐标;③ 进行坐标运算或向量运算;④ 将运算结果转译成几何结论.
2.空间距离的求法
1.点到平面的距离
(1) 定义:从空间中一点P 到平面α作垂线PD 交平面α于D ,则线段PD 的长度d 称为点
P 到平面α的距离.
(2) 求法:①直接法:常常利用面面垂直性质定理把求点到平面的距离转化为求点到直线的
距离.
②体积法:利用三棱锥体积转换底面来求点到平面的距离.
③法向量法:
点A 是平面α外一点,点B 是平面α内任一点,n
是平面α的法向量,则向量AB 在向量n
上的投影的长
|,cos |||><n AB AB
等于点A 到平面α的距离d ,则
d =|,cos |||><n AB AB =|||,cos |||||n n n ><⋅=|
||
|n n
⋅ .
2. 求异面直线的距离
法一、找平面β使b β⊂且a β,则异面直线a 、b 的
距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.
法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别为
异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离||
|||cos |||
AB n d AB n θ==(此方法移植于点面距离的求法).
3. 线面距离面面距离均可以转化为点面距离,用求点面距离的方法进行求解。

相关文档
最新文档