板效率及回流比
实验七:精馏塔板效率测定实验

实验七精馏塔塔板效率测定实验一、实验目的1、熟悉精馏单元操作过程的设备与流程;2、了解板式塔结构与流体力学性能;3、掌握精馏塔的操作方法与原理;4、学习精馏塔效率的测定方法。
二、实验原理蒸馏原理是利用混合物中组分间挥发度的不同来分离组分,经多次平衡分离的蒸馏过程称为精馏。
常见的精馏单元过程由精馏塔、冷凝器、再沸器、加料系统、回流系统、产品贮槽、料液贮槽及测量仪表等组成。
精馏塔本身又分为板式精馏塔和填料精馏塔,本产品为板式精馏塔。
可进行连续或间歇精馏操作,回流比可任意调节,也可以进行全回流操作。
在板式精馏塔中,混合液的蒸气逐板上升,在塔顶冷凝后回流液逐板下降。
气液两相在塔板上接触实现热质传递,从而达到分离的目的。
如果在每层塔板上,下降液体与上升蒸气处于平衡状态,则该塔板称为理论板。
然而在实际操作的精馏塔中,由于气液两相在塔板上接触的时间有限,气液两相不可能完全达到平衡,亦即实际塔板的分离效果达不到理论板的作用,因此精馏塔所需要的实际板数总是比理论板数要多。
对于二元物系,如已知其气液平衡数据,则根据精馏塔的原料液组成、进料热状况、操作回流比及塔顶馏出液组成、塔底釜液组成,即可以求出该塔的理论板数N t。
1、精馏塔的正常与稳定操作精馏塔从开车到正常稳定操作是一个从不稳定到稳定、不正常到正常的渐进过程。
因为刚开车时,塔板上均没有液体,蒸汽可直接穿过干板到达冷凝器,被冷凝成液体后再返回塔内第一块塔板,并与上升的蒸汽接触;而后,逐板溢流至塔釜。
首先返回塔釜的液体经过的塔板数最多,达到的气液平衡次数也最多,所以其轻组分的含量必然最高;而第一块塔板上的液体轻组分含量反而会比它下面的塔板上的液体轻组分含量低一些,这就是“逆行分馏”现象。
从“逆行分馏”到正常精馏,需要较长的转换时间。
对实验室的精馏装臵,这一转换时间至少需30分钟以上。
而对于实际生产装臵,转换时间有可能超过2小时。
所以精馏塔从开车到稳定、正常操作的时间也必须保证在30 分钟以上。
化工原理基本概念和原理

化工原理基本概念和原理蒸馏––––基本概念和基本原理利用各组分挥发度不同将液体混合物部分汽化而使混合物得到分离的单元操作称为蒸馏。
这种分离操作是通过液相和气相之间的质量传递过程来实现的。
对于均相物系,必须造成一个两相物系才能将均相混合物分离。
蒸馏操作采用改变状态参数的办法(如加热和冷却)使混合物系内部产生出第二个物相(气相);吸收操作中则采用从外界引入另一相物质(吸收剂)的办法形成两相系统。
一、两组分溶液的气液平衡1.拉乌尔定律理想溶液的气液平衡关系遵循拉乌尔定律:p A=p A0x A p B=p B0x B=p B0(1—x A)根据道尔顿分压定律:p A=Py A而P=p A+p B则两组分理想物系的气液相平衡关系:x A=(P—p B0)/(p A0—p B0)———泡点方程y A=p A0x A/P———露点方程对于任一理想溶液,利用一定温度下纯组分饱和蒸汽压数据可求得平衡的气液相组成;反之,已知一相组成,可求得与之平衡的另一相组成和温度(试差法)。
2.用相对挥发度表示气液平衡关系溶液中各组分的挥发度v可用它在蒸汽中的分压和与之平衡的液相中的摩尔分率来表示,即v A=p A/x A v B=p B/x B溶液中易挥发组分的挥发度对难挥发组分的挥发度之比为相对挥发度。
其表达式有:α=v A/v B=(p A/x A)/(p B/x B)=y A x B/y B x A对于理想溶液:α=p A0/p B0气液平衡方程:y=αx/[1+(α—1)x]Α值的大小可用来判断蒸馏分离的难易程度。
α愈大,挥发度差异愈大,分离愈易;α=1时不能用普通精馏方法分离。
3.气液平衡相图(1)温度—组成(t-x-y)图该图由饱和蒸汽线(露点线)、饱和液体线(泡点线)组成,饱和液体线以下区域为液相区,饱和蒸汽线上方区域为过热蒸汽区,两曲线之间区域为气液共存区。
气液两相呈平衡状态时,气液两相温度相同,但气相组成大于液相组成;若气液两相组成相同,则气相露点温度大于液相泡点温度。
回流比

回流比回流比实质上就是增加气液分离的次数,增强分离效果而以,是提纯工序中增加产品纯度最有效的方法回流比越大,分离效果越好,产品质量越高,生产能力就越小,能耗越高。
回流比:精馏段内液体回流量与采出量之比,通常用R来表示。
R=L/DR:回流比L:单位时间内从精馏段内某一塔板下降的液体,单位:Kmol/h。
D:单位时间内从精馏塔顶采出的馏出液(产品),单位:Kmol/h。
回流比越大,分离效果越好,产品质量越高,生产能力就越小,能耗越高对某一种需要分离的介质,根据其物料和选用塔型特性,有一个回流比下限,即叫做最小回流比。
在规定的要求下,最小回流比时所需要的理论塔板数将无限大。
对固定分离要求过程,最适宜的回流比确定依据为:回流比减少,生产操作费用减少,但所需的塔板数增加,投资费用增加,反之,增加回流比,减少塔板数,却增加运行费用。
最适宜的回流比是以投资费用和经常运行费用之和在特定的经济条件下为最小。
通常实际生产操作中回流比取最小回流比的1.3—2倍回流:通过整个精馏过程,最终由塔顶得到高纯度,易挥发的组分,由塔顶馏出,塔釜得到基本是难挥发的组分。
精馏六区别于一次蒸馏在于回流,包括塔顶的液相回流及塔底的部分气化造成的液相回流。
回流是构成气液相接触传质传热的必要条件。
没有气液两相的接触也就无从进行质的交换。
当然组分挥发度的差异仍然是精馏过程的基础。
精馏过程中混和液加热所产生的蒸汽由塔顶馏出,进入塔顶分离器,冷凝成液体将其一部分冷凝液返回塔顶,沿塔板下流,这部分液体称为回流液。
将一部分冷凝从塔顶采出作为产品,回流比就是精馏段内液体回流与采出液量之比。
回流比大,分离效果好,产品质量高,回流比过大,生产能力下降,能耗增加,回流比对精馏操作影响很大,直接关系到塔内各层塔板上的物料浓度的改变和温度的分布,最终反映在它的分离效率上。
回流比的调节:主精馏塔的回流比为:2.0-2.5调节的依据是:根据塔的负荷和精甲醇质量,当塔的负荷较轻时,这时塔板比较富余,可以取较低的回流比,比较经济,为了保证精甲醇的质量,精馏段灵敏板的温度可控制略低,反之,则增大回流比,在照顾精甲醇的质量的同时,为保持塔釜温度、灵敏板的温度可控制略高。
回流比

另外,加料量的变化直接影响蒸汽速度的改变。后 者的增大,会产生夹带、甚至液泛。 当然,在允许负荷
的范围内,提高加料量,对提高产量是有益的。如果超 出了允许负荷,只有提高操作压力,才可维持生产。但 也有一定的局限性。 加料量过低,塔的平衡操作不好维持,特别是浮阀 塔、筛板塔、斜孔塔等,由于负荷减低,蒸汽速度减小, 塔板容易漏液,精馏效率降低。在低负荷操作时,可适 当的增大回流比,使塔在负荷下限之上操作,以维持塔 的操作正常稳定。
(3)不改变回流比,将釜残液中的乙苯含量增加到 10%,所需理论塔板数为多少。
2.4影响精馏操作的主要因素
对于现有的精馏装置和特定的物系,精馏操作的基 本要求是使设备具有尽可能大的生产能力(即更多的原料 处理量),达到预期的分离效果(规定组分的回收率),操 作费用最低(在允许范围内,采用较小的回流比)。影响精 馏装置稳态、高效操作的主要因素包括操作压力、进料 组成和热状况、塔顶回流、全塔的物料平衡和稳定、冷 凝器和再沸器的传热性能,设备散热情况等。以下就其 主要影响因素予以简要分析。
在1940年吉利兰关联提出后,不少研究者提 出了各种关联,希望提高估算精度,但效果不明 显,吉利兰关联至今仍到得广泛应用。 用吉利兰关联估算理论板数,包括如下三步: ①首先用芬斯克方程计算最少理论板数; ②计算给定条件下的最小回流比; ③应用吉利兰经验关联式估算所需理论板数。
[例] 在连续精馏塔中分离苯、甲苯混合液。原料液的流 量为5000kg/h,其中苯的摩尔分数为0.45,要求馏出液中 含苯98.0%,釜残液中含甲苯 95%。料液在饱和液体下加 入塔中,操作回流比R=2.5,苯与甲苯的平均相对挥发度 α = 2.41。试估算所需的理论塔板数。 解:(理论板数下,釜残液 组成变小。反之,当回流比减小时,xD减小而xW增大,使 分离效果变差。
实验6 筛板精馏塔理论板层数及塔效率的测定

根据乙醇体积分数������、质量分数������查表得������������、������������、������������(g/cm3 = kg/L),与相应体积流量之乘积 除以相应平均摩尔质量得摩尔流量:
������
=
������������ ������������ ������������
【实验装置与流程】
实验装置如下图,由
1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.
【实验步骤与注意事项】
1. 检查塔釜是否有足够原料液(须恰好浸没加热器),开启加热开关加热塔釜; 2. 观察塔板温度,塔板温度升高变化时开启冷却水阀向冷凝器供水; 3. 令精馏塔保持全回流状态至塔顶温度稳定(约 78~79℃),开始进料,通过流量计调节进料、塔顶 馏出、塔底出料和回流流量,观察塔釜储罐液位不变为止; 4. 待操作条件(塔内压强、塔顶温度)稳定不变后,对原料液、塔顶产品、塔釜液同时取样约150mL,冷 却至室温后用浮力式酒度计测量、读数; 5. 停止加热,关闭进料、塔顶塔釜出料阀,待其余热继续进行全回流一段时间后,关闭冷凝器供水。 ※1. 开始加热前塔釜液必须浸没加热器才可开启加热电源,否则会损坏加热器; 2. 取样时应缓慢开启取样阀,以免流体快速喷出导致烫伤; 3. 测试完的样品应当回收到废料桶里,不得倾倒于下水道.
������
=
������
+
���������̅ ���������(������������ ������
−
������������ )
,������
=
������������ ������������
筛板塔精馏过程实验

化工原理实验报告学院:专业:班级:如图8-2所示,从全凝器出来的温度为Rt、流量为L的液体回流进入塔顶第一块板,由于回流温度低于第一块塔板上的液相温度,离开第一块塔板的一部分上升蒸汽将被冷凝成液体,这样,塔的实际流量将大于塔外回流量。
图8-2塔顶回流示意图对第一块板作物料、热量衡算:112V L V L+=+(8-9)111122V L V LV I L I V I LI+=+(8-10)对式(8-9)、式(8-10)整理、化简后,近似可得:11()[1]p L Rc t tL Lr-≈+(8-11)即实际回流比:11LRD=(8-12)R11()[1]p L Rc t tLrD-+=(8-13)式中,1V、2V-离开第1、2块板的气相摩尔流量,kmol/s;1L-塔实际液流量,kmol/s;1VI、2VI、1LI、LI-指对应1V、2V、1L、L下的焓值,kJ/kmol;r-回流液组成下的汽化潜热,kJ/kmol;pc -回流液在1Lt 与Rt 平均温度下的平均比热容,kJ/(kmol ℃)。
(1) 全回流操作在精馏全回流操作时,操作线在y -x 图上为对角线,如图8-3所示,根据塔顶、塔釜 的组成在操作线和平衡线间作梯级,即可得到理论塔板数。
图8-3 全回流时理论板数的确定(2) 部分回流操作部分回流操作时,如图8-4,图解法的主要步骤为:A. 根据物系和操作压力在y -x 图上作出相平衡曲线,并画出对角线作为辅助线;B. 在x 轴上定出x =x D 、x F 、x W 三点,依次通过这三点作垂线分别交对角线于点a 、f 、b ;C. 在y 轴上定出y C =x D /(R+1)的点c ,连接a 、c 作出精馏段操作线;D. 由进料热状况求出q 线的斜率q/(q-1),过点f 作出q 线交精馏段操作线于点d ;E. 连接点d 、b 作出提馏段操作线;F. 从点a 开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d 时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b 为止;G. 所画的总阶梯数就是全塔所需的理论踏板数(包含再沸器),跨过点d 的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。
筛板精馏塔设计

目录1、符号说明 (2)2.主要物性数据 (4)2.1苯、乙苯的物理性质 (4)2.2苯、乙苯在某些温度下的表面张力 (4)2.3苯、乙苯在某些温度下的粘度 (4)2.4苯、乙苯的液相密度 (4)2.5不同塔径的板间距 (4)3.工艺计算 (5)3.1精馏塔的物料衡算 (5)3.2塔板数的确定 (5)3.3实际塔板数的求取 (6)3.4相关物性参数的计算 (7)3.4.1操作压强 (7)3.4.2平均温度 (8)3.4.3平均摩尔质量 (8)3.4.4平均密度 (9)3.4.5液体平均表面张力 (11)3.4.6气液相负荷 (11)3.5塔和塔板的主要工艺尺寸计算 (13)3.5.1塔径 (13)3.5.2溢流装置 (16)3.5.3弓形降液管宽度 (16)3.5.4降液管底隙高度 (17)3.5.5塔板布置 (17)3.5.6筛孔计算及其排列 (18)3.6筛板的流体力学计算 (18)3.6.1液面落差 (20)3.6.2液沫夹带 (20)3.6.3漏液 (20)3.6.4液泛 (21)3.7塔板负荷性能图 (21)3.7.1漏液线 (21)3.7.2雾沫夹带线 (22)3.7.3液相负荷下限线 (22)3.7.4液相负荷上限线 (23)3.7.5液泛线 (23)6.参考文献 (27)1、符号说明1.1英文字母∆P——气体通过每层筛板的压降,kPa——塔的截面积,m2ATC——负荷因子,无因次t——筛孔的中心距,m——表面张力为20mN/m的C20u——空塔气速,m/s——筛孔直径,mdo——塔板开孔区面积,m2Aan——筛孔数目——降液管截面积,m2AfP——操作压力,kPa——筛孔区面积,m2Aou——漏液点气速,m/sominD——塔径,m'——液体通过降液体系的速度,m/suoe——液沫夹带量,kg液/kg气vV——气体体积流量,m/snR——回流比——气体体积流量,m/sVs——最小回流比Rmin——边缘无效区宽度,mWcM——平均摩尔质量,kg/kmolW——弓形降液管高度,md——平均温度,℃Tm——破沫区宽度,mWsg——重力加速度,m/s2Z——板式塔有效高度,mF——筛孔气相动触因子o——出口堰与沉降管距离,mhl——与平板压强相当的液柱高度,mhcτ——液体在降液管内停留时——与液体流过降液管压强降hd相当的液柱高度,mh——板上清液高度,m f——堰上液层高度,mhowH——出口堰高度,mwH'——进口堰高度,mwhσ——与克服表面张力压强降相当的液柱高度,mL——液相H——板式塔高度,mV——气相H——降液管内清夜层高度,m dL——液体体积流量,m3/hsHF——进料处塔板间距,m HP——人孔处塔板间距,mT——理论板层数δ——筛板厚度,mμ——粘度,mPa·sρ——密度,kg/m3α——质量分率,无因次φ——开孔率,无因次——降液管的底隙高度,mhoσ——表面张力,mN/mmax——最大min——最小2.主要物性数据2.1苯、乙苯的物理性质2.2苯、乙苯在某些温度下的表面张力2.3苯、乙苯在某些温度下的粘度2.4苯、乙苯的液相密度2.5不同塔径的板间距3.工艺计算3.1精馏塔的物料衡算W D F +=W D F Wx Dx Fx +=苯的摩尔质量: 78/A M kg kmol = 乙苯的摩尔质量: 106/B M kg kmol = 原料液及塔顶,塔底产品的平均摩尔质量:()150%7850%10692/F M kg kmol =-⨯+⨯=因为5%F D W x x x ==50%、=98%、分别为原料、塔顶、产品中的苯的摩尔分数所以:5000500054.35/92F F kmol h M === ()54.35(0.50.05)26.30/0.980.05F W D W F X X D kmol h X X ⨯-⨯-===--54.3526.3028.05/W F D kmol h =-=-=3.2塔板数的确定查化工手册得苯和乙苯的t-x-y 关系T/℃ x y - 1 1 84 0.86 0.974 88 0.74 0.939 92 0.635 0.906 96 0.541 0.864 100 0.485 0.816 104 0.4 0.8 108 0.318 0.7 110.6 0.278 0.654 115 0.217 0.571 120 0.156 0.463 125 0.103 0.344 130 0.055 0.205 135 0.01 0.042 136.2 0 0由上图可得q 线与平衡线的交点坐标q q x y (,)为(0.5,0.82)则最小回流比为:min 0.980.820.50.820.5D q q qx y R y x --===--取回流比:min 1.8 1.80.50.9R R ==⨯= 则精馏塔的气液负荷: 精馏段:(1)(0.81)26.3047.34kmol/h V R D =+=+⨯=0.826.3021.04kmol/h L RD ==⨯= 提馏段:'47.34kmol/h V V =='21.0454.3575.39kmol/h L L F =+=+= 求取操作线方程精馏段操作线方程:10.440.5411D n n n x Ry x x R R +=+=+++提馏段操作线方程:1' 1.490.002''m m W m L Wy x x x V V +=-=-由x-y 图,画梯级可得理论板数为7(不包含塔釜),进料板为第4块板。
化工原理 第9章 液体精馏 典型例题题解(1)

第9章 精馏 典型例题例1:逐板法求理论板的基本思想有一常压连续操作的精馏塔用来分离苯-甲苯混合液,塔顶设有一平衡分凝器,自塔顶逸出的蒸汽经分凝器后,液相摩尔数为汽相摩尔数的二倍,所得液相全部在泡点下回流于塔,所得汽相经全凝器冷凝后作为产品。
已知产品中含苯0.95(摩尔分率),苯对甲苯的相对挥发度可取为2.5 。
试计算从塔顶向下数第二块理论板的上升蒸汽组成。
解: 884.095.05.15.295.05.115.20000=⨯-=→=+=x x x x y DR=L/D=2905.03/95.0884.0323/95.032:11=+⨯=+=+y x y n n 精馏段方程845.03/95.0793.032793.0905.05.15.2905.05.15.22111=+⨯==⨯-=-=y y y x例2:板数较少塔的操作型计算拟用一 3 块理论板的(含塔釜)的精馏塔分离含苯50%(摩尔分率,下同)的苯-氯苯混合物。
处理量F=100 Kmol/h ,要求 D=45 Kmol/h 且 x D >84%。
若精馏条件为:回流比R=1 ,泡点进料,加料位置在第二块理论板,α=4.10 ,问能否完成上述分离任务? 解:W=55kmol/h精馏段操作线方程:y n+1=0.5x n +0.42提馏段的操作线方程:Fq D R Wx x F q D R qFRD y w )1()1()1()1(--+---++=将相关数据代入得提馏段操作线方程:134.061.1-=x y 逐板计算:y 1=x D =0.84y 2=0.5×0.56+0.42=0.7057.0134.036.061.13=-⨯=y.22.05584.04550=⨯-=-=WDx Fx x Df w ()56.084.01.31.484.01111=⨯-=--=y y x αα36.07.01.31.470.02=⨯-=x22.024.057.01.31.457.03≥=⨯-=x所以不能完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全塔板效率 (Overall efficiency)
•全塔板效率 ET (总板效率)为完成一定分离任务所需的理 论塔板数 NT 和实际塔板数 NP 之比
•ET 代表了全塔各层塔板的平均效率,其值恒小于1.0。一般
由实验确定或用经验公式计算。
•经验式:ET=0.49(αμL)-0.245
•NT表示理论板数; •NP表示实际塔板数; •对一定结构形式的板式塔,由分离任务和工艺条件确定出理 论板数后,若已知一定操作条件下的全塔效率,便可求得实 际板数。
。 •若取平均相对挥发度
•对双组分溶液 可略去下标A、
B
•芬斯克方程
最小回流比 (Minimum reflux ratio)
• 对于一定的进料和分离要求:
➢ R,精馏段操作线截距增大,操作线向平
衡线移动;
➢ 进料不变则 q 线不变。操作线交点 d 将向 平衡线靠近。 R,提馏段操作线也向平衡
线移动。
•1.0
•1.0
•1
•2
•a
•1 •2
•1.0 •a
•1
•2
•a
•3 •4
•3 •4
•3 •g •5
•y •y •y
•d •5
•6
•d
•f
•7
•6
•d
•7
•6
•8
•8
•7
•c
•0
•x
•c
•c
•1.0
•0
•x
•1.0
•0
•x
•1.0
•适宜的加料位置
回流比的选择 (Determination of reflux ratio)
•回流比是精馏过程计算不可缺的重要参数,塔所需的理论 板数,塔顶冷凝器和塔釜再沸器的热负荷均与回流比有关。 •精馏过程的投资费用和操作费用都取决于回流比的值。
•全回流与最少理论板数 •Total reflux and minimum number of plate
•全回流时:R D=0 W=0 F=0
•xn<xd (两操作线交点的横坐标,仅当饱和液体进料时为xF) • 此时第N板为加料板,提馏段第一块板。NT精=n-1 令 xn=x1’ 改用提段操作关系。
• •NT提=m(包括塔釜)
理论板数的求法
•图解法
•步骤:绘相平衡图
•
绘操作线
•
从a(xD,xD)到c(xW,xW)在相平衡与
操作线间画直角梯级,梯级个数即理论板
层数(包括塔釜再沸器)。
•1.0
•y1
•1
•2
•a
•y2
•3
•y3
•q 线 •4
•5
•ye
•8
•9 •10
•y
•0 •xW
•zF •xq •x
•x2 •x1 •xD •1.0
最宜的加料位置(Feed-plate location)
•图解法求理论板数时,操作线的更换以某梯 级跨过两操作线交点来判断。 •将跨过交点的梯级定为加料板,板上汽、液 组成与进料组成最为相近,对一定分离任务 ,作图所得的梯级最少。 •最适宜的加料位置是板上汽、液组成与进料 组成最接近处。
理论板数的求法
•对符合恒摩尔流假设的双组分精馏过程,N 的计算只需应
用由易挥发组分衡算得出的操作线方程和相平衡关系。
•逐板计算法
•y1
•y1 •1
•y2 •x1 •2
•x2
•D, xD
•F, xF
•m
•yN-2
•N-2
•xN-2
•N-1 •yN
•Q
•xN-1
•N
•W, xW
•一、逐板法 • 交替使用平衡关系与操作关系,从塔顶至塔釜逐板进行计算 。塔顶采用全凝器。
•芬斯克 (Fenske) 方程
•第 n 板汽液相平衡关系:
•全回流操作线:
•塔顶为全凝器时,y1 = xD
•离开第 1 块板的汽液平衡为:
芬斯克 (Fenske) 方程_捷算法求理论塔板数
•如此类推,可得第 N 块板
(塔釜)上升蒸汽组成为
•即塔釜的液体组成
•式中的塔板数 N 即为全回流时所需的最少理论板数 Nmin
•引入理论板和板效率两个概念后,为达到规定的分 离要求,确定精馏塔所需的实际板数就转变为确定 所需理论板数和板效率两个问题。
•对一定的分离任务,所需理论板数目只取决于物 系的相平衡以及塔内汽、液两相的摩尔流量,与物 系的其它性质,两相接触的传质传热情况及塔板的 结构形式等复杂因素无关。
•理论塔板数 NT 是代表了分离任务的难易程度。
•精馏段操作线:
•提馏段操作线:
•对角 线
全回流时操作线和平衡线的距离为最远,达 到相同的分离程度所需的理论板数最少,
以 Nmin 表示。 全回流时的理论板数 Nmin 可用逐板计算法
或图解法求得。
对理想溶液,可由芬斯克(Fenske)方程直 接计算得。
最少理论板数 (Minimum number of plate)
相与汽相的实际组成;
•
yn*, xn*—— 与离开第 n 板的
液(汽)相组成 xn (yn)成平衡的
汽(液)相组成;
❖分别代表经过一块板后组成的实际 变化,分母则为将该板视为理论板 时的组成变化。单板效率通常由实 验测定。
❖注意:单板效率是一块板的平均效 率,板上各点的传质差异可进一步 由点效率(Local efficiency)来表 达。
板效率(Plate efficiency)
•塔板效率(板效率)表征的是实际塔板的分离效果 接近理论板的程度。单板效率与全塔板效率是常用 的两种表示方法。
•单板效率 Em 又称默弗里(Murphree)板效率, 可用气相单板效率 EmV 或液相单板效率 EmL 表示,
其定义分别为
•
xn, yn —— 离开第 n 板的液
板效率及回流比
2020年5月31日星期日
理论板和板效率(Ideal plate and plate efficiency)
•理论板的概念(Concept of ideal plate)
• (1)离开塔板的汽、液两相达平衡,即离开理论 板的两相温度相等,组成互成平衡。该板称为 理论板
• (2)汽、液两相在板上充分接触混合,塔板上不 存在温度差和浓度差;
•表达理论板上传递过程特征的温度和汽、液组成
可直接由相平衡关系描述,如 t-x(y) 相图、泡点方
程或露点方程。
❖实际塔板上气液两相难以达到平衡,且传递 过程与物系的性质、操作条件以及塔板结构 和安装状况等因素有关,很难用简单地确定 离开实际塔板的汽、液两相温度和组成关系 。
❖设计中,为了避免寻求这种难以确定的关系 ,一般是首先根据分离任务计算出所需的理 论板数,然后再根据所选塔板类型以塔板效 率进行修正,从而确定出所需的实际塔板数 。