新人教版九年级数学上册《24.1.4圆周角(1)》学案
人教版数学九年级上册24.1.4圆周角(第1课时)优秀教学案例

1.采用启发式教学,引导学生通过观察、实践、合作交流等过程,自主发现圆周角的性质和判定定理。
2.设计丰富的教学活动,如小组讨论、问题解决、实例分析等,培养学生主动探究、合作学习的习惯。
3.创设生活情境,让学生在实际问题中运用圆周角知识,提高学生分析问题和解决问题的能力。
4.注重培养学生的几何直观和空间想象能力,通过作图、观察、推理等环节,发展学生的几何思维。
二、教学目标
(一)知识与技能
1.让学生掌握圆周角的概念,理解圆周角与圆心角的区别与联系,能准确判断并命名圆周角。
2.引导学生通过观察、推理,掌握圆周角定理,并能运用定理解决相关问题。
3.培养学生运用圆周角定理进行计算和证明的能力,提高学生的几何逻辑思维。
4.让学生学会运用圆周角知识解决生活中的实际问题,增强学生的知识应用能力。
4.小组之间进行成果展示和交流,共享学习经验,培养学生的团队协作能力和表达能力。
(四)反思与评价
1.鼓励学生在课后进行自我反思,总结自己在学习圆周角过程中的收获和不足,为下一阶段的学习制定合理的学习计划。
2.教师对学生的学习过程和结果进行评价,关注学生的知识掌握、技能运用、情感态度等方面的表现,给予积极的反馈和建议。
2.学生通过观察和思考,初步感知圆周角的概念。
(二)讲授新知
1.教师引导学生通过画圆、量角等活动,探究圆周角的定义和性质。
“请大家拿出圆规和直尺,画一个圆,并在圆上任选三个点,组成两个圆周角。观察这两个圆周角的大小,大家发现了什么规律?”
2.教师根据学生的发现,总结圆周角的定义和性质。
“圆周角是指圆上任意两点与圆心所组成的角。圆周角的度数是360度,且圆周角等于其所对的圆心角的两倍。”
圆周角教案(1)

人教版九年级上册§24.1.4 圆周角(教案)第一课时24.1.4 圆周角(第一课时教案)教材分析:1、本节课是在学习了圆的有关概念、垂径定理、圆心角定理的基础上对圆的有关性质的进一步探索。
2、利用弧等构造弦等、角等是解决圆中相关问题非常重要的方法。
学情分析:九年级的学生虽然已经具备了一些问题的说理能力,但是初三的几何证明过程中,学生的逻辑思维仍然是不成熟的,所以对于知识的生成过程任然是教学中的重点内容,针对上述情况,本节课我采用了学生动手操作——猜想——验证——组长对组员进一步讲解的学习过程。
一、目标设计:(一)知识技能:1、了解圆周角的概念,会证明圆周角的定理及推论。
2、掌握圆周角定理的两个推论,并能简单应用。
(二)过程方法:1、培养学生观察、分析、想象、归纳和逻辑推理的能力。
2、结合圆周角定理的探索与证明的过程,进一步体会分类讨论和转化的思想方法。
(三)情感态度:1、通过组长的讲,小组的交流,增进同学间互相学习、互相帮助、共同提高的氛围。
2、通过小组合作学习创造学习气氛,培养学生的学习兴趣。
二、教学重难点:重点:定理及推论的理解与运用难点:定理的证明三、教学过程:【课前引入】:出示几何画板,一个圆柱形房间有4人:A、B、C、D,D站在圆心位置,A,B,C三人在圆周上观察弧形落地窗外的风景,四人谁的视角比较大?大多少?设计意图:带着问题进入本节内容,培养学生的学习兴趣。
【课堂探究】:探究一:圆周角概念的理解。
圆周角:顶点在圆上,并且两边都与圆相交的角。
针对性思考:判断下列图形中的角,哪些是圆周角?()()()()()()()()设计意图:学生通过对图形的识别,得出圆周角的两个特点:顶点在圆上;两边都与圆相交。
通过正例与反例的判断,加深对概念的理解。
探究二:圆周角定理的掌握。
1、学生度量图1中弧BC所对的圆周角和圆心角的大小,猜想这两个角的大小关系。
教师也可利用几何画板的动态性来加以验证。
人教版九年级上24.1.4圆周角定理导学案(共2课时)

(5)(4)A24.1.4圆周角导学案(1)学习目标:1.了解圆周角的概念.理解圆周角的定理.理解圆周角定理的推论.(重点)2.熟练掌握圆周角的定理及其推理的灵活运用.(难点) 自主学习:阅读教材85至86页 1.定义:顶点在 ,并且两边都和圆 的角叫做圆周角.(完成书后练习第1题) 2. ① 如图,AB 为⊙O 的直径,∠BOC 、∠BAC 分别是所对的圆心角、圆周角,利用以前所学知识求出图(1),(2),(3)中∠BAC 的度数分别为 .通过计算发现:∠BAC = ∠BOC , 即, 。
② 观察图(4)和(5)中的圆周角和圆心角,它们与图(1)(2)(3)有什么不同?还能得到与①相同的结论吗?你是怎么得到的?③ 圆周角定理的证明运用了什么数学思想?3.如图(6),在⊙O 中,所对的圆心角为 ,所对的圆周角是 ,你能得到什么结论?合作探究探究1 教材88页练习3 探究2 教材88页练习2 典型题例1.如图(7),点A 、B 、C 、D 在⊙O 上,点A 与点D 在点B 、C 所在直线的同侧,∠BAC=350①∠BDC=_______°,理由是_________________. ②∠BOC=_______°,理由是_______________. 2.如图(8),点A ,B ,C 在⊙O 上, 若∠BAC=60°,则∠BOC=____°;若∠AOB=90°,则∠ACB=____°. 3.如图(9),点A 、B 、C 、D 在⊙O 上,∠ADC=∠BDC=60°.判断△ABC 的形状,并说明理由.4.如图(10),⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.BC (1) (2) (3)BC (6)(7)(8)(9)(10)B(13)圆周角(1)限时训练1.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°2.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°4.如图,A 、B 、C 、D 四点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对5.如图,D 是弧AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个6.如图,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°7.如图⊙O 中弧AB 的度数为60°,AC 是⊙O 的直径,那么∠BOC 等于 ( ) A .150° B .130° C .120° D .60°8.如图,等边三角形ABC 的三个顶点都在⊙O 上,D 是弧AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.9.如图,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BD 相交于点E,那么图中有_________对全等三角形.10.已知,如图,∠BAC 的邻补角∠BAD=100°,则∠BOC=_____度. 11.如图,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_____度.12.如图,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °,则点O 到CD 的距离OE= . 13.如图(13),A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm ,若∠ABC=∠CAD,求弦AC 的长.第2题第3题 第4题 第5题 第7题 第6题 第9题 第10题 CD 第11题 第12题24.1.4圆周角导学案(2)学习目标:1.掌握直径(或半圆)所对的圆周角是直角及90°的圆周角所对的弦是直径。
人教版 数学九年级上册《24.1.4 圆周角》(第1课时)教案

《24.1.4 圆周角》教案第1课时圆周角的概念和圆周角定理教学目标1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。
2.通过学生的探索过程,培养学生的动手操作、自主探索和合作交流的能力。
3.通过操作交流等活动,培养学生互相帮助、团结协作、互相讨论的团队精神,培养学生学习数学的兴趣。
教学重点圆周角定理及其推论的探究与应用。
教学难点圆周角定理的证明中由一般到特殊的数学思想方法以及圆周角定理及推论的应用。
课时安排1课时教学方法启发引导、合作探究、拓展新知课前准备课件、课本等教学过程一、导入新知活动:请同学们口答下面两个问题.1.什么叫圆心角?2.圆心角、弦、弧之间有什么内在联系呢?点评:1.我们把顶点在圆心的角叫圆心角.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对的其余各组量都分别相等.刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这节课,我们就一起来学习《圆周率的概念和圆周角定理》。
(板书课题)二、探究新知(一)师生互动,启发猜想1.摆一摆:一条弧对的圆心角有几个,圆周角有几个?学生利用手中的学具和皮筋,通过由实验、观察等方法可得出:一条弧对的圆心角只有一个,圆周角有无数个;2.找一找:圆心与圆周角有几种位置关系?充分的活动交流后,教师挑选有代表性的几个小组派代表在展台上展示图片,说明圆心与圆周角的位置关系:①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部请同学们思考除这三种位置关系外是否还有遗漏?分别做出这三个图中的圆心角∠BOC,①圆心O在∠BAC的内部②圆心O在∠BAC的一边上③圆心O在∠BAC的外部3.量一量:同一条弧所对的圆周角∠BAC与圆心角∠BOC的度数,你有什么发现?(二)观察猜想,寻找规律1.教师出示同一条弧所对圆周角为90°,圆心角为180°和同一条弧所对圆周角为45°,圆心角为90°的特殊情况的图形.提出问题:在这两个图形中,对着同一条弧的圆周角和圆心角,它们之间有什么数量关系.由于情况特殊,学生观察、测量后,容易得出:对着同一条弧的圆周角是圆心角的一半.2.教师提出:在一般情况下,对着同一条弧的圆周角还是圆心角的一半吗?通过上面的特例,学生猜想,得出命题:一条弧所对的圆周角等于它所对的圆心角的一半.(三)动手画图,证明定理1.猜想是否正确,还有待证明.教师引导学生结合命题,画出图形,写出已知、求证.2.先分小组交流画出的图形,议一议:所画图形是否相同?所画图形是否合理?3.利用实物投影在全班交流,得到三种情况.若三种位置关系未出现全,教师利用电脑演示同一条弧所对圆周角的顶点在圆周上运动的过程,得出同一条弧所对的圆心角和圆周角之间可能出现的不同位置关系,得到圆心角的顶点在圆周角的一边上、内部、外部三种情况.4.引导学生选一种最特殊、最容易证明的“圆心角的顶点在圆周角的一边上”进行证明,写出证明过程,教师点评.5.引导学生通过添加辅助线,把“圆心角的顶点在圆周角的内部、外部”转化成“圆心角的顶点在圆周角的一边上”的情形,进行证明,若学生不能构造过圆周角和圆心角顶点的直径,教师给予提示.然后小组交流讨论,上台展示证明过程,教师点评证明过程.6.将“命题”改为“定理”,即“圆周角定理”.三、随堂练习1.教材第88页练习第1题.2.如图,∠BAC和∠BOC分别是⊙O中的弧BC所对的圆周角和圆心角,若∠BAC=60°,那么∠BOC=________.3.如图,AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=30°,那么∠BOC=________.答案:1.略;2.120°;3.120°.四、归纳新知1.圆周角概念及定理.2.类比从一般到特殊的数学方法及分类讨论、转化与化归的数学思想.五、教后反思。
人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿

四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。
人教版九年级数学上册优秀教学案例:24.1.4圆周角圆内接四边形

5.教学策略的灵活性:在教学过程中,我根据学生的学习情况和反馈,灵活调整教学策略。我注重关注每个学生的学习情况,给予个性化的指导,确保他们能够在理解的基础上掌握所学知识。同时,我也注重激发学生的学习兴趣和好奇心,创设有趣的教学活动,使学生在轻松愉快的氛围中学习和探索。这种灵活性的教学策略能够更好地满足学生的学习需求,提高他们的数学素养。
4.注重学生的反思与评价,培养学生的自我监控和自我调整能力。
五、教学延伸
1.设计与圆周角和圆内接四边形相关的拓展问题,提高学生的思维能力和问题解决能力。
2.引导学生运用圆周角和圆内接四边形的性质解决实际问题,培养学生的应用能力。
3.组织学生进行研究性学习,鼓励他们深入探究圆周角和圆内接四边形的性质,提高学生的研究能力。
2.引导学生运用圆周角定理和圆内接四边形的性质进行几何证明,提高学生的推理能力。
3.培养学生的合作学习能力,学会与他人交流、分享和合作解决问题。
(三)情感态度与价值观
1.激发学生对数学的兴趣和好奇心,培养他们积极主动学习数学的态度。
2.培养学生的自信心,让他们相信自己能够通过努力学习和思考解决问题。
四、教学内容与过程
(一)导入新课
1.利用实物模型或几何图形,展示一个与圆周角和圆内接四边形相关的实际问题,激发学生的兴趣和好奇心。
2.引导学生观察和思考问题,提出问题引导词,如“你能看到哪些角度?它们之间有什么关系?”等,引发学生对圆周角和圆内接四边形的关注。
24.1.4圆周角定理及其推论(教案)-2023-2024学年九年级上册数学(人教版)

一、教学内容
本节课选自人教版数学九年级上册第24章“圆”的24.1.4节,主要教学内容包括圆周角定理及其推论。具体内容包括:
1.圆周角定理:圆周角等于其所对圆心角的一半。
2.圆周角定理推论:
(1)同弧或等弧所对的圆周角相等;
首先,我发现学生们在理解圆周角定理的基本概念时,普遍感到比较困难。尽管我通过动态演示和模型操作来帮助他们形象地理解,但似乎效果并不如预期。在今后的教学中,我需要寻找更直观、更贴近学生生活实际的教学方法,让他们能够更容易地接受和理解这个定理。
其次,在案例分析环节,我注意到学生们对实际问题的解决能力还有待提高。他们往往知道定理,但在应用时却不知道从何下手。针对这个问题,我计划在后续的教学中增加一些典型例题的讲解,并引导学生从多个角度去思考问题,培养他们的解题技巧和思维灵活性。
-强调圆周角为90°的圆弧为四分之一圆,通过画图展示。
-圆内接四边形对角互补,通过具体例子让学生理解内接四边形的性质。
-实践应用:通过典型例题,让学生应用定理和推论解决具体问题。
2.教学难点
-难点内容:圆周角定理及其推论的理解和运用。
-难点解析:
-理解难点:
-圆周角与圆心角的关系:学生可能难以理解圆周角为何等于圆心角的一半,需要通过动态演示或模型操作来直观展示。
1.讨论主题:学生将围绕“圆周角定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
九年级数学上册高效课堂(人教版)24.1.4圆周角(第1课时)教学设计

1.教学内容:设计具有针对性的练习题,让学生在解决实际问题的过程中,加深对圆周角知识的理解。
教学过程:
-教师出示练习题,要求学生独立完成。
-学生在解题过程中,教师巡回指导,关注学生的解题方法和思路。
-教师针对学生的解答进行点评,强调解题规范和注意事项。
-学生针对自己的错误进行改正,巩固所学知识。
(三)学生小组讨论
1.教学内容:针对圆周角的相关问题,组织学生进行小组讨论,加深对知识点的理解。
教学过程:
-教师提出具有挑战性的问题,如圆周角与圆心角的关系、圆周角定理在不同情境下的应用等。
-学生分组进行讨论,共同分析问题,寻求解决方案。
-各小组汇报讨论成果,分享解题思路和心得。
-教师对各组的表现进行点评,总结讨论成果,强调重点问题。
(五)总结归纳
1.教学内容:对本节课的知识点进行总结,帮助学生梳理所学内容,提高他们的数学素养。
教学过程:
-教师引导学生回顾本节课所学的圆周角的定义、性质、定理及推论。
-学生分享学习心得,总结自己在学习圆周角过程中的收获和困惑。
-教师对学生的总结进行补充和指导,强调圆周角知识在实际生活中的应用。
-布置课后作业,要求学生运用所学知识解决实际问题,为下一节课的学习做好铺垫。
3.教学评价:
-采用多元化评价方式,包括课堂问答、课后作业、小组讨论、拓展题完成情况等,全面了解学生的学习状况;
-关注学生的个体差异,给予每个学生个性化的评价,鼓励他们不断进步;
-注重过程性评价,关注学生在课堂上的参与度、合作意识和思考过程,培养他们的自主学习能力。
4.教学策略:
-针对不同层次的学生,制定分层教学目标,使每个学生都能在原有基础上得到提高;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版九年级数学上册《24.1.4圆周角(1)》学案
学习[
来源学科网ZXXK][来源:][来源学科网][来源:]方法制作:班级姓名九年级数学
方法
总结
学习内容
明确目标
做到心中
有数
自学课本
完成概念
分情况证
明圆周角
定理,注意
分类思想
的应用,转
化思想的
渗透
24.1.4圆周角(1)
学习目标:
1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
(重点)
2渗透由“特殊到一般”,由“一般到特
殊”的数学思想方法(难点)
学习过程
(一)圆周角的概念
1、复习:(1)什么是圆心角?
(2)圆心角定理是什么
2、什么是圆周角:
如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周
角.(如右图)
定义:。
(二)圆周角的定理
1、提出圆周角的度数问题
问题:圆周角的度数与什么有关系?
引导学生在建立关系时注意弧所对的圆周角的三种情况:
圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部。
(1)当圆心在圆周角的一边上时,
图(1)
(2)当圆心在圆周角内部时
图(2)图(3)(3)当圆心在圆周角外部时
学习制作:田峰班级姓名九年级数学方法
方法学习内容总结总结定理
记忆定理
检测自我
找到不足
及时弥补
由此可得圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角,
都等于这条弧所对的圆心角的。
巩固练习:课本第87页第4题,88页第12题。
自我评价
1、下列各图中,哪一个角是圆周角?()
A B C
D
2、求下图中的x。
3在⊙O中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,
则x=_
4、在⊙O中,∠CBD=30°,∠BDC=20°,求∠A
5、已知, ⊙O的弦AB长等于圆的半径,求该弦所对的圆心角和圆周角的度
数。
B
A
O . 70°x
A
O . X
120°
教法
二次备课。