2020-2021苏州景范中学│草桥中学│八年级数学下期末试题带答案

合集下载

2020-2021苏州市初二数学下期末试卷(带答案)

2020-2021苏州市初二数学下期末试卷(带答案)

A.﹣1<x<1
B.x≥﹣1 且 x≠1
C.x≥﹣1
D.(-5,2) D.x≠1
7.已知正比例函数 y kx ( k ≠0)的图象如图所示,则在下列选项中 k 值可能是
()
A.1
B.2
C.3
D.4

8.若一个直角三角形的两边长为 12、13,则第三边长为( )
A.5
B.17
C.5 或 17
D.5 或
(2)本次调查数据的中位数落在 组内; (3)若该市约有 12840 名初中学生,请你估算其中达到国家规定体育活动时间的人数大约 有多少. 24.已知正方形 ABCD 的对角线 AC,BD 相交于点 O. (1)如图 1,E,G 分别是 OB,OC 上的点,CE 与 DG 的延长线相交于点 F. 若 DF⊥ CE,求证:OE=OG; (2)如图 2,H 是 BC 上的点,过点 H 作 EH⊥BC,交线段 OB 于点 E,连结 DH 交 CE 于 点 F,交 OC 于点 G.若 OE=OG, ①求证:∠ODG=∠OCE; ②当 AB=1 时,求 HC 的长.
D.方差
2.当1 a 2 时,代数式 (a 2)2 a 1 的值为( )
A.1
B.-1
C.2a-3
D.3-2a
3.如图,矩形 ABCD 的对角线 AC 与数轴重合(点 C 在正半轴上), AB 5, BC 12 ,
若点 A 在数轴上表示的数是-1,则对角线 AC、BD 的交点在数轴上表示的数为( )
【点睛】 本题主要考查了勾股定理的逆定理,如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这
个三角形就是直角三角形.
5.A
解析:A 【解析】 【分析】 先判定△DBE≌△OCD,可得 BD=OC=4,设 AE=x,则 BE=4﹣x=CD,依据 BD+CD=5, 可得 4+4﹣x=5,进而得到 AE=3,据此可得 E(﹣5,3). 【详解】 由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°. 又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△ DBE≌△OCD,∴BD=OC=4,设 AE=x,则 BE=4﹣x=CD. ∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3). 故选 A.

八年级下册数学苏州数学期末试卷练习(Word版含答案)

八年级下册数学苏州数学期末试卷练习(Word版含答案)

八年级下册数学苏州数学期末试卷练习(Word 版含答案)一、选择题1.若代数式252xx --有意义,则x 的取值范围是( ) A .2x ≠B .25x ≤C .25x ≤且2x ≠ D .25x ≥且2x ≠ 2.下列条件中,能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:4 B .a =1,b =2,c =3 C .∠A :∠B :∠C =3:4:5D .a 2:b 2:c 2=3:4:53.下列哪组条件能判别四边形ABCD 是平行四边形( )A .AB //CD ,AD =BC B .AB =CD ,AD =BC C .∠A =∠B ,∠C =∠D D .AB =AD ,CB =CD4.小明最近5次数学测验的成绩如下:78,82,79,80,81.则这5次成绩的方差为( ) A .4B .3C .2D .15.如图, ABC 的每个顶点都在边长为1的正方形格点上,则ABC ∠的度数为( )A .30B .45C .60D .906.如图,菱形纸片ABCD ,∠A=60°,P 为AB 中点,折叠菱形纸片ABCD ,使点C 落在DP 所在的直线上,得到经过点D 的折痕DE ,则∠DEC 等于( )A .60°B .65°C .75°D .80°7.如图,在正方形ABCD 中,AP ∥CQ ,AP =CQ ,∠BQC =90°,若正方形ABCD 的面积为64,且AP +BQ =10,则PQ 的长为( )A .7B .27C .14D .2148.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣9二、填空题9.若13x x --在实数范围内有意义,则x 的取值范围是____________. 10.如图,菱形ABCD 的对角线AC 、BD 的长分别为3cm 和4cm ,则其面积是____cm 2.11.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b .若ab =4,大正方形的面积为16,则小正方形的边长为______.12.如图,已知长方形ABCD 纸片,16AB =,8BC =,若将纸片沿AC 折叠,点D 落在'D ,则重叠部分的面积为______.13.一次函数y kx b =+的图象与正比例函数2y x =的图象平行且经过点(1,2)A -,则b =_______.14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y (千米)与货车行驶时间x (小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米; ③图中点B 的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.16.如图,在矩形ABCD 中,BC=4,CD=3,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的点F 处,则DE 的长是________.三、解答题17.计算: (1)1632(22055+(3)2214524-;(4)1112333-⎛⎫+-- ⎪⎝⎭.18.由于大风,山坡上的一颗甲树从A 点处被拦腰折断,其顶点恰好落在一棵树乙的底部C 处,如图所示,已知AB =4米,BC =13米,两棵树的水平距离是12米,求甲树原来的高度.19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.(1)在图1中画一个面积为4的菱形;(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.20.如图,ABCD 的对角线AC ,BD 相交于点O ,且5AB =,4AO =,3BO =. 求证:ABCD 是菱形.21.3535+-解:设x 3535+-222(35)(35)2(35)(35)x =++-++-235354x =,x 2=10∴x =10.∵3535+-0,∴3535+-10.4747+-22.在乡村道路建设过程中,甲、乙两村之间需要修建水泥路,甲、乙两村合作完成.已知甲村需要水泥70吨,乙村需要水泥110吨,A厂可提供100吨水泥,B厂可提供80吨水泥,两厂到两村的运费如表:运费/(元/吨)目的地甲村乙村A厂240180B厂250160(1)设从A厂运往甲村水泥x吨,求运送的总费用y(元)与x(吨)之间的函数关系式,并写出自变量x的取值范围;(2)请你设计出运费最低的运送方案,并求出最低运费.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.在平面直角坐标系中,点A坐标为(0,4),点B坐标为(﹣3,0),连接AB,过点A作AC⊥AB交x轴于点C,点E是线段AO上的一动点.(1)如图1,当AE=3OE时,①求直线BE的函数表达式;②设直线BE与直线AC交于点D,连接OD,点P是直线AC上的一动点(不与A,C,D 重合),当S△BOD=S△PDB时,求点P的坐标;(2)如图2,设直线BE与直线AC的交点F,在平面内是否存在点M使以点A,E,F,M为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请简述理由.25.如图,△ABC 中,BA =BC ,CO ⊥AB 于点O ,AO =4,BO =6.(1)求BC ,AC 的长;(2)若点D 是射线OB 上的一个动点,作DE ⊥AC 于点E ,连结OE .①当点D 在线段OB 上时,若△AOE 是以AO 为腰的等腰三角形,请求出所有符合条件的OD 的长.②设DE 交直线BC 于点F ,连结OF ,CD ,若S △OBF :S △OCF =1:4,则CD 的长为 (直接写出结果).【参考答案】一、选择题 1.B 解析:B 【分析】根据二次根式被开方数大于等于零及分式有意义的条件:分母不等于零解答. 【详解】解:由题意得:250,20x x -≥-≠, 得25x ≤, 故选:B . 【点睛】此题考查二次根式被开方数大于等于零及分式有意义的条件,熟记两个条件是解题的关键.2.B解析:B 【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4bx ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意; 故选:B 【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180︒是解题关键.3.B解析:B 【解析】 【分析】根据两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形可得答案. 【详解】解:A 、AB ∥CD ,AD =BC 不能判定四边形ABCD 为平行四边形,故此选项错误; B 、AB =CD ,AD =BC 判定四边形ABCD 为平行四边形,故此选项正确; C 、∠A =∠B ,∠C =∠D 不能判定四边形ABCD 为平行四边形,故此选项错误; D 、AB =AD ,CB =CD 不能判定四边形ABCD 为平行四边形,故此选项错误; 故选B . 【点睛】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.4.C解析:C 【解析】 【分析】先求出平均数,再利用方差公式计算即可. 【详解】解:1(7882798081)805x =++++=,2222221[(7880)(8280)(7980)(8080)(8180)]25S =-+-+-+-+-=.故选:C . 【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用2s 来表示,计算公式是:222121[()()(n s x x x x x x n=-+-+⋯+-2)].方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.B解析:B 【分析】直接根据格点,运用勾股定理求出三边长,再根据勾股定理的逆定理确定△ABC 的形状,即可求解. 【详解】解:根据勾股定理可得:2222420AB , 2222420AC ,2222640BC ,∴AB=AC ,AB 2+AC 2=BC 2,∴△ABC 是等腰直角三角形,∠BAC=90°, ∴∠ABC=45°. 故选:B. 【点睛】本题考查正方形格点中勾股定理及逆定理的运用,勾股定理及逆定理是解答此题的关键知识点.6.C解析:C 【解析】 【分析】连接BD ,由菱形的性质及∠A=60°,得到三角形ABD 为等边三角形,P 为AB 的中点,利用三线合一得到DP 为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数. 【详解】 连接BD ,∵四边形ABCD 为菱形,∠A=60°,∴△ABD 为等边三角形,∠ADC=120°,∠C=60°, ∵P 为AB 的中点,∴DP 为∠ADB 的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°, 在△DEC 中,∠DEC=180°-(∠CDE+∠C )=75°. 故选C . 【点睛】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.7.D解析:D 【解析】 【分析】延长AP 交BQ 于点E ,证明△ABE ≌△BCQ 可得△PEQ 为等腰直角三角形,PE =QE =BQ ﹣AP ,由四边形面积为64可得BQ 2+AP 2=64,再由勾股定理得PQ =()22BQ AP -. 【详解】解:延长AP 交BQ 于点E ,∵四边形ABCD 为正方形, ∴AB =BC ,∠DAB =∠ABC =90°, ∵AP ∥CQ ,∠BQC =90°, ∴∠AEB =∠AEQ =90°,∵∠QBC +∠ABE =∠ABE +∠BAE =90°, ∴∠QBC =∠BAE , 在Rt △ABE 和Rt △BCQ 中,AEB BQC BAE CBQ AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴Rt △ABE ≌Rt △BCQ (AAS ), ∴BE =CQ ,AE =BQ , ∵AP =CQ ,∴PE =AE ﹣AP =BQ ﹣AP , QE =BQ ﹣BE =BQ ﹣CQ =BQ ﹣AP , ∵正方形ABCD 的面积为64, ∴AB =BC 648,∵AP =CQ ,AP +BQ =10, ∴CQ +BQ =10, ∵∠BQC =90° 在Rt △BQC 中, BQ 2+CQ 2=BC 2=64, 即BQ 2+AP 2=64,∵(AP +BQ )2=AP 2+BQ 2+2AP •BQ =64+2AP •BQ =100, ∴AP •BQ =18,在Rt △PEQ 中,由勾股定理得,PQ ===故选:D . 【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、等腰三角形的性质和勾股定理,准确计算是解题的关键.8.D解析:D 【分析】先利用正比例函数解析式,确定A 点坐标;然后利用函数图像,写出一次函数y=kx+b (k≠0)的图像,在正比例函数图像上方所对应的自变量的范围. 【详解】解:把A (m ,﹣3)代入y =13x 得13m =﹣3,解得m =﹣9,所以当x >﹣9时,kx +b >13x ,即kx ﹣13x >﹣b 的解集为x >﹣9.故选D . 【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图像的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题9.1≥x 且3x ≠ 【解析】 【分析】根据分母不等于0,且被开方数是非负数列式求解即可. 【详解】由题意得10x -≥且30x -≠ 解得1≥x 且3x ≠故答案为:1≥x 且3x ≠【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.10.A解析:6【解析】【分析】直接根据菱形的面积等于其对角线积的一半,即可求得面积.【详解】解:∵菱形ABCD 的对角线AC 、BD 的长分别为3cm 和4cm ∴ABCD 1134622S AC BD ==⨯⨯=菱形(cm ) 故答案为:6.【点睛】此题主要考查菱形的性质,熟练掌握性质是解题关键.11【解析】【分析】 由题意可知:中间小正方形的边长为a-b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为a-b , ∵每一个直角三角形的面积为:12ab=12×4=2, ∴412⨯ab+2()a b - =16, ∴2()a b -=16-8=8,∴,故答案为.【点睛】本题考查勾股定理的应用,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.12.A解析:40【分析】先说明△AFD ′≌△CFB 可得BF =D ′F ,设D ′F =x ,在Rt △AFD ′中根据勾股定理求得x ,再根据AF=AB−BF求得AF,由BC为AF边上的高,最后根据三角形的面积公式求解即可.【详解】解:由于折叠可得:AD′=BC,∠D′=∠B,又∵∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=x,则AF=16−x,在Rt△AFD′中,(16−x)2=x2+82,解得:x=6,∴AF=AB−FB=16−6=10,∴S△AFC=12•AF•BC=12×10×8=40.故填40.【点睛】本题考查了勾股定理的正确运用,在直角三角形AFD′中运用勾股定理求出BF的长是解答本题的关键.13.A解析:﹣4【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b 值即可.【详解】解:∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∵y=kx+b的图象经过点A(1,﹣2),∴2+b=﹣2,解得b=﹣4,故答案为:﹣4.【点睛】本题考查了两条直线相交或平行问题:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O是矩形ABCD的对角线AC、BD的交点,∴O是AC中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B 横坐标,利用货车行驶45分钟距离缩短求出B 纵坐标可判断③,解析:①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B 横坐标,利用货车行驶45分钟距离缩短求出B 纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.【详解】解:①设快递车从甲地到乙地的速度为x 千米/时,则3(x ﹣60)=120,x =100.故①正确;②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离, 故②错误;③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B 的横坐标为3+34=334,点B 纵坐标为120﹣60×34=75, 故③正确;④设快递车从乙地返回时的速度为y 千米/时,则(y +60)(134344)=75, y =90,故④正确.故答案为①③④.【点睛】本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键.16.【分析】由为矩形,得到为直角,且三角形与三角形全等,利用全等三角形对应角、对应边相等得到,,,利用勾股定理求出的长,由求出的长,在中,设,表示出,利用勾股定理列出关于x 的方程,求出方程的解得到x 解析:52【分析】由ABCD 为矩形,得到BAD ∠为直角,且三角形BEF 与三角形BAE 全等,利用全等三角形对应角、对应边相等得到EF BD ⊥,AE EF =,AB BF =,利用勾股定理求出BD 的长,由BD BF -求出DF 的长,在Rt EDF ∆中,设EF x =,表示出ED ,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即可确定出DE 的长.【详解】解:∵矩形ABCD ,∴90BAD ︒∠=,由折叠可得BEF BAE ∆≅∆,∴EF BD ⊥,AE EF =,AB BF =,在Rt ABD ∆中,3AB CD ==,4BC AD ==,根据勾股定理得:5BD =,即532FD =-=,设EF AE x ==,则有4ED x =-,根据勾股定理得:2222(4)x x +=-, 解得:32x =,则35422DE =-=. 故答案为:52. 【点睛】此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.三、解答题17.(1)2;(2)3;(3)143;(4)【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指解析:(1)2;(2)3;(3)143;(4【分析】(1)将二次根式化简合并进行计算即可;(2)将二次根式有理化进行计算即可;(3)根据平方差公式化简计算即可;(4)先将二次根式、绝对值、负指数幂化简,再合并同类项即可.【详解】(1)12263263=233222⨯÷=⨯÷÷=, (2)20535515=35555+⨯==⨯, (3)()()22145241452414524-=+-1691211311143=⨯=⨯=, (4)1112332333333-⎛⎫+--=+--= ⎪⎝⎭【点睛】本题考查的是二次根式的混合运算,将各个式子化为最减是解答此题的关键.18.19米【分析】如图所示,过点C 作CD ⊥AB 交AB 延长线于D ,则根据题意可以得到CD=12米,根据勾股定理即可求出BD 的长,再利用勾股定理求出AC 的长即可得到AC+AB 的长.【详解】解:如图所解析:19米【分析】如图所示,过点C 作CD ⊥AB 交AB 延长线于D ,则根据题意可以得到CD =12米,根据勾股定理即可求出BD 的长,再利用勾股定理求出AC 的长即可得到AC +AB 的长.【详解】解:如图所示,过点C 作CD ⊥AB 交AB 延长线于D由题意得:CD =12,AB =4米,BC =13米在Rt △BCD 中222213125BD BC CD =-=-=米∴9AD AB BD =+=米在Rt △ACD 中222212915AC CD AD =+=+=米∴19AC AB +=米∴甲树原来的高度是19米.【点睛】本题主要考查了勾股定理的应用,解题的关键在于能够熟练掌握勾股定理.19.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;解析:(1)见解析;(2)见解析.【解析】【分析】(1)直接利用菱形的性质画出符合题意的菱形;(2)利用网格结合矩形的判定和性质得出答案.【详解】(1)如图1所示:其四边形是菱形,且面积为4;(2)如图2所示:其四边形是边长为无理数的矩形.【点睛】本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.20.见解析【分析】根据已知数据,先求证是,即,进而根据菱形的判定定理即可得证.【详解】,,,,,,是,,即,四边形是平行四边形,四边形是菱形.【点睛】本题考查了勾股定理的逆定理解析:见解析【分析】根据已知数据,先求证ABO 是Rt ,即AC BD ⊥,进而根据菱形的判定定理即可得证.【详解】5AB =,4AO =,3BO =,22525AB ==,22224325AO BO +=+=,222AB AO BO ∴=+,ABO ∴是Rt ,90AOB ∠=︒∴,即AC BD ⊥,四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题考查了勾股定理的逆定理,菱形的判定定理,勾股定理证得ABO 为Rt 是解题的关键.21.【解析】【分析】根据题意给出的解法即可求出答案即可.【详解】设x=+,两边平方得:x2=()2+()2+2,即x2=4++4﹣+6,x2=14∴x=±.∵+>0,∴x=.【点【解析】【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=2+2即x 2+6,x 2=14∴x.∵0,∴x【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元.【分析】(1解析:(1)y=﹣30x+37100(0≤x≤70);(2)最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元.【分析】(1)由从A厂运往甲村水泥x吨,根据题意首先求得从A厂运往乙村水泥(100-x)吨,B 厂运往甲村水泥(70-x)吨,B厂运往乙村水泥吨,然后根据表格求得总运费y(元)关于x(吨)的函数关系式;(2)根据(1)中的一次函数解析式的增减性,即可知当x=70时,总运费y最省,然后代入求解即可求得最低运费.【详解】(1)设从A厂运往甲村水泥x吨,则A厂运往乙村水泥(100﹣x)吨,B厂运往甲村水泥(70﹣x)吨,B厂运往乙村水泥110﹣(100﹣x)=(10+x)吨,∴y=240x+180(100﹣x)+250(70﹣x)+160(10+x)=﹣30x+37100,x的取值范围是0≤x≤70,∴y=﹣30x+37100(0≤x≤70);(2)∵y=﹣30x+37100(0≤x≤70),﹣30<0,∴y随x的增大而减小,∵0≤x≤70,∴当x=70时,总费用最低,最低运费为:﹣30×70+37100=35000 (元),∴最低运送方案为A厂运往甲村水泥70吨,运往乙村水泥30吨:B厂运往甲村水泥0吨,B厂运往乙村水泥80吨,最低运费为35000元.【点睛】本题主要考查了一次函数的实际应用问题,解决本题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH和OH即可;(2)证明≌,表示出AP,CQ,根据OC=14求出t值,得到AP,CQ,再根据面积公式计算;(3)由Q、D、C、解析:(1);(2)21;(3)或或或【分析】(1)过点A作轴于H,求出AH和OH即可;(2)证明≌,表示出AP,CQ,根据OC=14求出t值,得到AP,CQ,再根据面积公式计算;(3)由Q、D、C、F为顶点的四边形是菱形得到以C,D,Q为顶点的三角形是等腰三角形,求出CD,得到点Q坐标,再分情况讨论.【详解】解:(1)过点A作轴于H,∵,,,∴,∴A点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)①直线BE的解析式为;②点P坐标为(,)或(,);(2)存在,点M坐标为(,)或(,)或(,).【解析】【分析】(1)①先求得点E坐标为(0,1),利用待定系数法即可求解;②过点P作P解析:(1)①直线BE的解析式为113y x=+;②点P坐标为(4813,1613)或(2413,34 13);(2)存在,点M坐标为(76-,258)或(3,398)或(2,0).【解析】【分析】(1)①先求得点E 坐标为(0,1),利用待定系数法即可求解;②过点P 作PG ⊥x 轴交直线BD 于点G ,利用勾股定理及三角形面积公式求得点C 坐标为(163,0),利用待定系数法求得直线AC 的解析式以及点D 坐标,设点P 坐标为(m ,344m -+),则点G 坐标为(m ,113m +),利用三角形面积公式即可求解; (2)分AM 为对角线、EM 为对角线、FM 为对角线三种情况讨论,求解即可.【详解】解:(1)∵点A 坐标为(0,4),点B 坐标为(﹣3,0),∴OA =4,∵AE =3OE ,∴OE =1,∴点E 坐标为(0,1),①设直线BE 的解析式为1y kx =+,∴031k =-+,解得13k =, ∴直线BE 的解析式为113y x =+; ②过点P 作PG ⊥x 轴交直线BD 于点G ,∵点A 坐标为(0,4),点B 坐标为(﹣3,0),∴OA =4,OB =3,∴AB 22435,∵AC ⊥AB ,AO ⊥BC ,由勾股定理得:22222AC BC AB AO OC =-=+,∴()2222354OC OC +-=+, 解得:OC =163,∴点C 坐标为(163,0), 设直线AC 的解析式为14y k x =+, ∴16043k =+, 解得34k =-, ∴直线AC 的解析式为344y x =-+, 解方程314143x x -+=+,得3613x =, 136********y =⨯+=, ∴点D 坐标为(3613,2513), 设点P 坐标为(m ,344m -+),则点G 坐标为(m ,113m +), ∴PG =31134134312m m m -+--=-, ∵S △BOD =S △PDB , ∴()1122D D B BO y PG x x ⨯=-, 即251336333131213m ⎛⎫⨯=-+ ⎪⎝⎭,整理得133112m -= 解得:4813m =或2413; 当4813m =时,3164413m -+=;当2413m =时,3344413m -+=; ∴点P 坐标为(4813,1613)或(2413,3413); (2)存在,当AM 为对角线时,∵四边形AEMF 是菱形,∴AE =AF = ME =MF ,则∠AEF =∠AFE ,∵∠ABF +∠AFE =90°,∠EBO +∠BEO =90°,∠AEF =∠BEO ,∴∠ABF =∠EBO ,过点F 作FH ⊥x 轴于点H ,则AF= FH,∴点H与点M重合,∴BM=BA=5,则OM=2,∴点M坐标为(2,0);当EM为对角线时,∵四边形AEFM是菱形,∴AE=EF= FM=AM,则∠EAF=∠AFE,∵∠ABF+∠AFE=90°,∠BAE+∠EAF=90°,∴∠ABF=∠BAE,∴BE=EA,设BE=EA=x,在Rt△BEO中,EO=4-x,BO=3,∴()22243x x-+=,解得:258x=,即BE=EA=EF=FM=258,延长MF交x轴于点I,则OE∥FI,即OE是△BFI的中位线,∴FI=2EO=2(4-258)=74,OI=OB=3,∴MI=25739848+=∴点M坐标为(3,398);当FM为对角线时,∵四边形AFEM是菱形,∴MF是线段AE的垂直平分线,AF=EF= EM=AM,MF∥BC,∴∠AFM=∠EFM,∠AFM=∠ACB,∠MFE=∠FBC,∴∠FBC=∠FCB,过点F作FJ⊥x轴于点J,∴BJ=JC,∵BC=1625333+=,∴OJ=76,即点F的横坐标为76,∴37254468y=-⨯+=,∴点F的坐标为(76,258),根据对称性,点M坐标为(76-,258);综上,点M坐标为(76-,258)或(3,398)或(2,0).【点睛】本题考查了一次函数的图象和性质,等腰三角形的判定和性质,菱形的判定和性质,三角形中位线定理,勾股定理等,解题的关键是灵活运用所学知识解决问题.25.(1)4;(2)或8.【分析】根据BA=BC,分别用勾股定理求出CO和AC的长.①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.②分情况i)当D在线解析:(1)45;(2)8103或82.【分析】根据BA=BC,分别用勾股定理求出CO和AC的长.①分情况AO=OE和AO=AE,画出图形,根据三角形中位线定理和证明三角形全等解决问题.②分情况i)当D在线段OB上时,如图3,过B作BG⊥EF于G,根据同高三角形面积比等于底边之比,得到,再根据平行线性质∠BDG=∠BFG,得到BD=BF=,最后使用勾股定理求出结论ii)当D在线段OB的延长线上时,如图4,过B作BG⊥DE于G,同理计算可得结论.【详解】解:(1)∵AO=4,BO=6,∴AB=10,∵BA=BC,∴BC=10,∵CO⊥AB,∴∠AOC=∠BOC=90°,由勾股定理得:CO=22BC OB-=22106-=8,AC=22AO CO+=2248+=45;(2)①分两种情况:i)如图1,当AO=OE=4时,过O作ON⊥AC于N,∴AN=EN,∵DE⊥AC,∴ON∥DE,∴AO=OD=4;ii)当AO=AE=4时,如图2,在△CAO 和△DAE 中,A A AOC AED 90AO AE ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△CAO ≌△DAE (AAS ),∴AD =AC =4,∴OD =45﹣4;②分两种情况:i )当D 在线段OB 上时,如图3,过B 作BG ⊥EF 于G ,∵S △OBF :S △OCF =1:4, ∴14BF CF = ∴13BF CB = ∵CB =10∴BF =103∵EF ⊥AC ,∴BG ∥AC ,∴∠GBF =∠ACB ,∵AE ∥BG ,∴∠A =∠DBG ,∵AB =BC ,∴∠A =∠ACB ,∴∠DBG =∠GBF ,∵∠DGB =∠FGB ,∴∠BDG =∠BFG ,∴BD =BF =103, ∴OD =OB ﹣BD =6﹣103=83, ∴CD =2200c D +=22883⎛⎫+ ⎪⎝⎭=8103; ii )当D 在线段OB 的延长线上时,如图4,过B 作BG ⊥DE 于G ,同理得14BF CF =, ∵BC =10,∴BF =2,同理得:∠BFG =∠BDF ,∴BD =BF =2,Rt △COD 中,CD 22c00D +228(62)++2,综上,CD 8102. 8102. 【点睛】本题考查的是三角形全等的综合题,关键是根据三角形全等判定和性质、平行线性质、等腰三角形性质,三角形面积、勾股定理等,知识解答有难度.。

2020-2021苏州景范中学│草桥中学│高一数学下期末试题带答案

2020-2021苏州景范中学│草桥中学│高一数学下期末试题带答案

2020-2021苏州景范中学│草桥中学│高一数学下期末试题带答案一、选择题1.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx==-,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元2.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U I A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4} 3.在ABC ∆中,AB =2AC =,E 是边BC 的中点.O 为ABC ∆所在平面内一点且满足222OA OB OC ==u u u v u u u v v ,则·AE AO u u u v u uu v 的值为( )A .12 B .1 C.2 D.324.在ABC V 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A c B b =,sin 4B =,4ABC S =△,则b =( ) A .B . C D 5.如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示成x 的函数()f x ,则()y f x =在[0,]π上的图象大致为( )A .B .C .D .6.已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a |x |有六个不同的根,则a 的范围为( ) A .6,10 B .6,22 C .(2,22 D .(2,4) 7.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦ B .[]1,4- C .1,22⎡⎤-⎢⎥⎣⎦ D .[]5,5- 8.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122x x x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( )A .51,24⎛⎫-- ⎪⎝⎭ B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭ 9.已知01a b <<<,则下列不等式不成立...的是 A .11()()22a b > B .ln ln a b > C .11a b > D .11ln ln a b> 10.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( )A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)11.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1 B .(]0,1 C .[]1,1- D .(]1,1-12.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 二、填空题 13.已知数列{}n a 前n 项和为n S ,若22n n n S a =-,则n S =__________.14.在区间[]0,1上随机选取两个数x 和y ,则满足20-<x y 的概率为________. 15.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知233cos cos a b c B C =,则222a cb ac+-的取值范围为______. 16.函数sin 232y x x =的图象可由函数sin 232y x x =+的图象至少向右平移_______个长度单位得到。

2020-2021学年苏科版八年级下学期期末数学试卷 有答案

2020-2021学年苏科版八年级下学期期末数学试卷 有答案

八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图案是中心对称图形的是()A.B.C.D.2.在函数y=中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≤23.下列不能判定四边形ABCD是平行四边形的条件是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AB∥CD,AD=BC D.AB=CD,AD=BC4.已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.正方形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对角线互相垂直6.某校有25名同学参加比赛,预赛成绩各不相同,要取前12名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这25名同学成绩的()A.中位数B.众数C.平均数D.方差7.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D8.某农场2017年玉米产量为100吨,2019年玉米产量为169吨,求该农场玉米产量的年平均增长率.设该农场玉米产量的年平均增长率为x,则依题意可列方程为()A.100(1+x)2=169B.169(1﹣x)2=100C.169(1+x)2=100D.100(1﹣x)2=1699.如图,设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x小时后两车间的距离为y千米,y关于x的函数关系如图所示,则乙车的速度为()A.50千米/小时B.45千米/小时C.40千米/小时D.35千米/小时10.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.方程x2=2x的解为.12.在▱ABCD中,∠A=42°,则∠C=°.13.一组数据:2,3,4,5,6的方差是.14.(4分)已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是.15.(4分)已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=.16.(4分)如图,已知直线l1:y=kx+b与直线l2:y=mx+n相交于点P(﹣4,﹣3),则关于x的不等式mx+n<kx+b的解集为.17.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F,若CF=2,FD=4,则BC的长为.18.(4分)已知过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,则k的取值范围为.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)解方程:(1)x2+2x=3;(2)x(x﹣4)=8﹣2x.20.(10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,某校利用网络平台进行疫情防控知识测试,测试题共10道题目,每小题10分.小明同学对801和802两个班各40名同学的测试成绩进行了整理和分析,数据如下:①801班成绩频数分布直方图如图:②802班成绩平均分的计算过程如下,=80.5(分);③数据分析如下:班级平均数中位数众数方差80182.5m90158.7580280.575n174.75根据以上信息,解决下列问题:(1)m=,n=;(2)你认为班的成绩更加稳定,理由是;(3)在本次测试中,801班甲同学和802班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.21.(10分)已知直线l1:y=2x+4分别与x轴,y轴交于点A,B,直线l2经过直线l1上的点C(m,2),且与y轴的负半轴交于点D,若△BCD的面积为3.(1)直接写出点A,B,C的坐标;(2)求直线l2的解析式.22.(11分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.23.(11分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.24.(11分)某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?25.(14分)如图,点E是矩形ABCD的边CB延长线上一点,点F是AE的中点.(1)如图①,若点G,H分别是ED,BC的中点;①判断FG和HC之间的关系,并说明理由;②求证:∠DEH=∠FHE;(2)如图②,若CE=AC,连接BF,DF.求证:BF⊥DF.26.(14分)如图1①②③,平面内三点O,M,N,如果将线段OM绕点O旋转90°得ON,称点N是点M关于点O的“等直点”,如果OM绕点O顺时针旋转90°得ON,称点N是点M关于点O的“正等直点”,如图1②.(1)如图2,在平面直角坐标系中,已知点P(2,1).①在P1(﹣1,2),P2(2,﹣1),P3(1,﹣2)三点中,是点P关于原点O的“等直点”;②若直线l1:y=kx+4交y轴于点M,若点N是直线l1上一点,且点N是点M关于点P的“等直点”,求直线l1的解析式;(2)如图3,已知点A的坐标为(2,0),点B在直线l2:y=3x上,若点B关于点A的“正等直点”C在坐标轴上,D是平面内一点,若四边形ABCD是平行四边形,直接写出点D 的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.下列图案是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意;故选:B.2.在函数y=中,自变量x的取值范围是()A.x>2B.x≠2C.x<2D.x≤2【分析】根据被开方数是非负数,可得自变量x的取值范围.【解答】解:由题意,得2﹣x≥0,解得x≤2,故选:D.3.下列不能判定四边形ABCD是平行四边形的条件是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理分别对各个选项进行判断即可.【解答】解:如图所示:A、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意,故选:C.4.已知一次函数y=kx﹣1,若y随x的增大而增大,则它的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限【分析】根据“一次函数y=kx﹣1且y随x的增大而增大”得到k>0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣1且y随x的增大而增大,∴k>0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.5.正方形具有而矩形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对角线互相垂直【分析】根据正方形、矩形的性质即可判断.【解答】解:因为正方形的对角相等,对角线相等、垂直、且互相平分,矩形的对角相等,对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线互相垂直.故选:D.6.某校有25名同学参加比赛,预赛成绩各不相同,要取前12名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需再知道这25名同学成绩的()A.中位数B.众数C.平均数D.方差【分析】由于有25名同学参加比赛,要取前12名参加决赛,故应考虑中位数的大小.【解答】解:∵某校有25名同学参加比赛,取前12名参加决赛,∴成绩超过中位数(即第13名成绩)即可参加决赛,∴她想知道自己能否进入决赛,只需再知道这25名同学成绩的中位数,故选:A.7.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.8.某农场2017年玉米产量为100吨,2019年玉米产量为169吨,求该农场玉米产量的年平均增长率.设该农场玉米产量的年平均增长率为x,则依题意可列方程为()A.100(1+x)2=169B.169(1﹣x)2=100C.169(1+x)2=100D.100(1﹣x)2=169【分析】根据该农场2017年及2019年玉米的产量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:100(1+x)2=169.故选:A.9.如图,设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车原地返回.设x小时后两车间的距离为y千米,y关于x的函数关系如图所示,则乙车的速度为()A.50千米/小时B.45千米/小时C.40千米/小时D.35千米/小时【分析】设甲车的速度为mkm/h,乙车的速度为nkm/h,根据题意列出方程即可求出答案.【解答】解:设甲车的速度为mkm/h,乙车的速度为nkm/h,由图象可知:,∴解得:n=45,故选:B.10.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是()A.B.3+3C.6+D.【分析】过点D作DE⊥AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD 最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE⊥AB于点E,连接BD,∵菱形ABCD中,∠ABC=120°,∴∠DAB=60°,AD=AB=DC=BC,∴△ADB是等边三角形,∴∠MAE=30°,∴AM=2ME,∵MD=MB,∴MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,∵菱形ABCD的边长为6,∴DE===3,∴2DE=6.∴MA+MB+MD的最小值是6.故选:D.二、填空题(本大题共8小题,第11~13小题每小题3分,第14~18小题每小题3分,共29分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.方程x2=2x的解为x1=0,x2=2.【分析】首先移项,再提取公因式,即可将一元二次方程因式分解,即可得出方程的解.【解答】解:∵x2=2x∴x2﹣2x=0,x(x﹣2)=0,解得:x1=0,x2=2,故答案为:x1=0,x2=2.12.在▱ABCD中,∠A=42°,则∠C=42°.【分析】由平行四边形的性质对角相等,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C=42°,故答案为:42°.13.一组数据:2,3,4,5,6的方差是2.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差计算公式可以解答本题.【解答】解:,=2,故答案为:2.14.(4分)已知一次函数y=2x﹣1的图象经过点(3,m),则m的值是5.【分析】利用一次函数图象上点的坐标特征可求出m的值,此题得解.【解答】解:∵一次函数y=2x﹣1的图象经过点(3,m),∴m=2×3﹣1=5.故答案为:5.15.(4分)已知m、n是方程x2﹣2x﹣5=0的两个根,那么m2+mn+2n=4.【分析】根据根与系数的关系得出m+n=2,mn=﹣5,根据m2﹣2m﹣5=0求出m2=5+2m,代入即可.【解答】解:∵m、n是方程x2﹣2x﹣5=0的两个根,∴m+n=2,mn=﹣5,m2﹣2m﹣5=0,∴m2=2m+5,∴m2+mn+2n=2m+5+mn+2n=﹣5+2×2+5=4.故答案为:4.16.(4分)如图,已知直线l1:y=kx+b与直线l2:y=mx+n相交于点P(﹣4,﹣3),则关于x的不等式mx+n<kx+b的解集为x>﹣4.【分析】观察函数图象得到当x>﹣4时,直线l2:y=mx+n在直线l1:y=kx+b的下方,于是得到不等式mx+n<kx+b的解集.【解答】解:根据图象可知,不等式mx+n<kx+b的解集为x>﹣4.故答案为x>﹣4.17.(4分)如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于点F,若CF=2,FD=4,则BC的长为4.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN 是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG =6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC==4.故答案为:4.18.(4分)已知过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,则k的取值范围为<k<1.【分析】由点P(m,km﹣1)可知:过点P(m,km﹣1)的直线恒过点(0,﹣1),由于过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,结合图象即可求出k的范围.【解答】解:∵点P(m,km﹣1),∴m=0时,km﹣1=﹣1,∴过点P(m,km﹣1)的直线恒过(0,﹣1),设过点P(m,km﹣1)的直线l为y=kx﹣1,当直线l经过点(3,0)时,则3k﹣1=0,∴k=,∵过点P(m,km﹣1)的直线与函数y=|x﹣3|的图象有两个交点,∴直线不能与y=x﹣3平行,∴k<1,∴<k<1,故答案为:<k<1.三、解答题(本大题共8小题,共91分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)解方程:(1)x2+2x=3;(2)x(x﹣4)=8﹣2x.【分析】(1)利用配方法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2+2x+1=4,∴(x+1)2=4,∴x+1=2,x+1=﹣2,则x1=1,x2=﹣3.(2)∵x(x﹣4)+2(x﹣4)=0,∴(x+2)(x﹣4)=0,∴x+2=0,x﹣4=0,即x1=﹣2,x2=4.20.(10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,某校利用网络平台进行疫情防控知识测试,测试题共10道题目,每小题10分.小明同学对801和802两个班各40名同学的测试成绩进行了整理和分析,数据如下:①801班成绩频数分布直方图如图:②802班成绩平均分的计算过程如下,=80.5(分);③数据分析如下:班级平均数中位数众数方差80182.5m90158.7580280.575n174.75根据以上信息,解决下列问题:(1)m=85,n=70;(2)你认为801班的成绩更加稳定,理由是801班成绩的方差小于802班的方差,说明波动小,更稳定;(3)在本次测试中,801班甲同学和802班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.【分析】(1)将801班的学生成绩排序后,计算中间位置的两个数的平均数即可得到中位数,从802班的平均数的计算过程可得成绩为70分出现次数最多,因此众数是70;(2)从方差的大小进行判断;(3)从甲、乙两位学生的成绩和所在班级的成绩的中位数进行比较得出答案.【解答】解:(1)将40名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为=85,因此中位数是85,即m=85;根据802班的平均数的计算可知,成绩为70分出现的次数最多,是17次,因此众数是70,即n=70;故答案为:85,70;(2)801班,因为801班成绩的方差小于802班的方差,说明波动小,更稳定;故答案为:801班,801班成绩的方差小于802班的方差,说明波动小,更稳定;(3)乙同学,因为801班的中位数大于80分,说明有一半以上的同学比甲成绩好,而802班的中位数小于80分,说明乙同学比一半以上的同学成绩好,所以乙同学在班级的排名更靠前.21.(10分)已知直线l1:y=2x+4分别与x轴,y轴交于点A,B,直线l2经过直线l1上的点C(m,2),且与y轴的负半轴交于点D,若△BCD的面积为3.(1)直接写出点A,B,C的坐标;(2)求直线l2的解析式.【分析】(1)根据图象上点的坐标特征求得即可;(2)根据三角形BCD的面积求得D的坐标,然后根据待定系数法即可求得.【解答】解:(1)直线l1:y=2x+4中,令y=0,则2x+4=0,解得x=﹣2,∴A(﹣2,0),令x=0,则y=4,∴B(0,4),∵直线l1:y=2x+4经过C(m,2),∴2=2m+4,解得m=﹣1,∴C(﹣1,2);(2)∵S=BD•|x C|=3 且C(﹣1,2),△BCD∴BD×1=3∴BD=6,∵点D在y轴的负半轴上,且B为(0,4)∴D(0,﹣2),设直线l2的解析式为y=kx+b(k≠0),∵直线l2过C(﹣1,2),D(0,﹣2)∴,解得,∴直线l2的解析式为y=﹣4x﹣2.22.(11分)在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE∥DB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若∠DAB=60°,且AB=4,求OE的长.【分析】(1)根据平行四边形的判定和菱形的判定证明即可;(2)根据菱形的性质和勾股定理解答即可.【解答】证明:(1)∵AB∥DC,∴∠CAB=∠ACD.∵AC平分∠BAD,∴∠CAB=∠CAD.∴∠CAD=∠ACD,∴DA=DC.∵AB=AD,∴AB=DC.∴四边形ABCD是平行四边形.∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∠DAB=60°,∴∠OAB=30°,∠AOB=90°.∵AB=4,∴OB=2,AO=OC=2.∵CE∥DB,∴四边形DBEC是平行四边形.∴CE=DB=4,∠ACE=90°.∴.23.(11分)已知关于x的一元二次方程x2+(k﹣1)x+k﹣2=0.(1)求证:方程总有两个实数根;(2)若这个方程的两根为x1,x2,且满足x12﹣3x1x2+x22=1,求k的值.【分析】(1)根据根的判别式和非负数的性质即可求解;(2)根据一元二次方程的根与系数的关系可以得到x1+x2=1﹣k,x1x2=k﹣2,再将它们代入x12﹣3x1x2+x22=1,即可求出k的值.【解答】解:(1)△=(k﹣1)2﹣4(k﹣2)=(k﹣3)2,∵(k﹣3)2≥0,∴△≥0,∴此方程总有两个实数根.(2)由根与系数关系得x1+x2=1﹣k,x1x2=k﹣2,∵x12﹣3x1x2+x22=1,∴(x1+x2)2﹣5x1x2=1,∴(1﹣k)2﹣5(k﹣2)=1,解得k1=2,k2=5.由(1)得无论k取何值方程总有两个实数根,∴k的值为2或5.24.(11分)某商场以每件220元的价格购进一批商品,当每件商品售价为280元时,每天可售出30件,为了迎接“618购物节”,扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?【分析】(1)根据总利润=单件利润×销售数量解答;(2)根据总利润=单件利润×销售数量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:(1)(280﹣220)×30=1800 (元).∴降价前商场每天销售该商品的利润是1800元.(2)设每件商品应降价x元,由题意,得(280﹣x﹣220)(30+3x)=1800×2,解得x1=20,x2=30.∵要更有利于减少库存,∴x=30.答:每件商品应降价30元.25.(14分)如图,点E是矩形ABCD的边CB延长线上一点,点F是AE的中点.(1)如图①,若点G,H分别是ED,BC的中点;①判断FG和HC之间的关系,并说明理由;②求证:∠DEH=∠FHE;(2)如图②,若CE=AC,连接BF,DF.求证:BF⊥DF.【分析】(1)①证明FG是△AED的中位线,得出FG=AD,FG∥AD,由H是BC的中点,得出CH=BC,由矩形的性质得AD=BC,AD∥BC,即可得出FG=HC,FG∥HC;②由直角三角形斜边上的中线性质得CG=DE=GE,则∠GEH=∠GCE,由①结论得四边形FHCG是平行四边形,得出FH∥GC,则∠FHE=∠GCE,即可得出结论;(2)连接FC,由直角三角形斜边上中线性质得出BF=AE=AF,由SAS证得△BFC≌△AFD,得出∠BFC=∠AFD,由等腰三角形的性质得CF⊥AE,即∠CFD+∠AFD=90°,推出∠CFD+∠BFC=90°,即可得出结论.【解答】(1)①解:判断:FG=HC,FG∥HC;理由如下:∵点F,G分别是AE,DE的中点,∴FG是△AED的中位线,∴FG=AD,FG∥AD,∵H是BC的中点,∴CH=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴FG=HC,FG∥HC;②证明:∵四边形ABCD是矩形,∴∠BCD=90°∵G是DE的中点,∴CG=DE=GE,∴∠GEH=∠GCE,∵FG=HC,FG∥HC,∴四边形FHCG是平行四边形,∴FH∥GC,∴∠FHE=∠GCE,∴∠GEH=∠FHE,即∠DEH=∠FHE;(2)证明:连接FC,如图②所示:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AD=BC,∴∠ABE=90°∵F是AE的中点,∴BF=AE=AF,∴∠FBA=∠F AB,∴∠FBC=∠F AD,在△BFC和△AFD中,,∴△BFC≌△AFD(SAS)∴∠BFC=∠AFD∵CE=AC,F是AE的中点,∴CF⊥AE,∴∠CFD+∠AFD=90°,∴∠CFD+∠BFC=90°,∴BF⊥DF.26.(14分)如图1①②③,平面内三点O,M,N,如果将线段OM绕点O旋转90°得ON,称点N是点M关于点O的“等直点”,如果OM绕点O顺时针旋转90°得ON,称点N是点M关于点O的“正等直点”,如图1②.(1)如图2,在平面直角坐标系中,已知点P(2,1).①在P1(﹣1,2),P2(2,﹣1),P3(1,﹣2)三点中,P1,P3是点P关于原点O的“等直点”;②若直线l1:y=kx+4交y轴于点M,若点N是直线l1上一点,且点N是点M关于点P的“等直点”,求直线l1的解析式;(2)如图3,已知点A的坐标为(2,0),点B在直线l2:y=3x上,若点B关于点A的“正等直点”C在坐标轴上,D是平面内一点,若四边形ABCD是平行四边形,直接写出点D 的坐标.【分析】(1)①将OP顺时针旋转90°或逆时针旋转90°,求出旋转后点P的对应点坐标,即可求解;②分两种情况讨论,利用全等三角形的判定和性质可求点N坐标,代入解析式,可求解;(2)分点C在x轴上和点C在y轴上,由平行四边形的性质可求解.【解答】解:(1)如图2,连接OP,作PF⊥y轴,将OP绕点O顺时针旋转90°得到OE,过点E作EH⊥y轴,∴PF=2,OF=1,∠PFO=∠EHO=90°,∵将OP绕点O顺时针旋转90°得到OE,∴OP=OE,∠POE=90°,∴∠POF+∠EOH=90°,∵∠POF+∠FPO=90°,∴∠FPO=∠EOH,又∵∠PFO=∠EHO=90°,OE=OP,∴△PFO≌△OHE(AAS),∴HE=OF=1,PF=OH=2,∴点E(1,﹣2),将OP绕点O顺时针旋转90°得到OG,同理可求点G(﹣1,2),∴P1,P3是点P关于原点O的“等直点”,故答案为:P1,P3;②∵y=kx+4交y轴于点M,∴点M(0,4),∵点N是点M关于点P的“等直点”,∴MP=NP,MP⊥NP,如图,当线段MP绕点P顺时针旋转90°得PN,过P作PQ⊥y轴于点Q,NK⊥PQ交QP的延长线于点K,则∠MQP=∠NKP=90°,∠QMP+∠QPM=∠QPM+∠NPK=90°,∴∠QMP=∠KPN,∴△MPQ≌△PNK(AAS),∴MQ=PK=4﹣1=3,PQ=NK=2,∴点N(5,3),∵点N是直线l1上一点,∴3=5k+4,解得k=﹣,∴直线l1的解析式为:y=﹣x+4,当线段MP绕点P逆时针旋转90°得PN,同理可得点N(﹣1,﹣1),∴﹣1=﹣k+4,解得k=5,∴直线l1的解析式为:y=5x+4,∴综上所述:直线l1的解析式为y=﹣x+4或y=5x+4;(2)如图3,当点C在x轴上时,∵点A的坐标为(2,0),∴OA=2,∵点C是点B关于点A的“正等直点”,∴∠BAC=90°,AB=AC,∴点B的横坐标为2,∴点B的坐标(2,6),∴AB=6=AC,∴OC=8,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=6,∴点D(8,﹣6);若点C在y轴上时,过点B作BE⊥x轴于E,∵点C是点B关于点A的“正等直点”,∴∠BAC=90°,AB=AC,∴∠BAE+∠CAO=90°,又∵∠CAO+∠ACO=90°,∴∠BAE=∠ACO,又∵AC=AB,∠AOC=∠AEB=90°,∴△ACO≌△ABE(AAS),∴BE=AO=2,AE=OC,∴点B的纵坐标为﹣2,∴点B坐标为(﹣,﹣2),∴EO=,∴CO=2+=,∴点C(0,),设点D(x,y),∵四边形ABCD是平行四边形,∴AC与BD互相平分,∴,∴∴点D(,),综上所述:点D坐标为(8,﹣6)或(,).。

江苏省苏州市2020-2021学年八年级下学期期末数学试题(word版 含答案)

江苏省苏州市2020-2021学年八年级下学期期末数学试题(word版 含答案)

2020~2021学年第二学期期末考试试卷初二数学一、选择题:(本大题共10小题,每小题2分,其20分在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号用2B 铅笔填涂在答题卡相应.....的位置上) 1.苏州市区今年共有25000名考生参加中考,为了了解这25000名考生的体育成绩,从中抽取了1000名考生的体育成绩进行统计分析,以下说法正确的是( ) A .该调查方式是普查 B .25000名考生是总体C .1000名考生的体育成绩是总体的一个样本D .样本容量是1000名考生2.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .3.一个不远明的盒子中装有1白球和200个黑球,它们除了颜色外都相同,将球搅匀,从中任意摸出一个球,摸到黑球是( ) A .必然事件B .随机事件C .不可能事件D .以上事件都有可能4x 的取值范围是( ) A . 3x >- B .3x <-C . 3x ≠-D . 3x ≥-5.若23x y y -=,则xy的值为( ) A .53 B .35C .52D .256.下列根式中,最简二次根式的是( )A BC D7.若关于x 的分式方程411x mxx x -=--有正整数解,则整数m 为( ) A .3-B .0C .1-D .21-或08.反比例函数(0)ky k x=<的图象如图所示,当时31x -≤≤-,y 的取值范围是( )A .31y -≤≤-B .06y ≤≤C .26y ≤≤D .16y -≤≤9.如图,在正方形网格中:ABC △、EDF △的顶点都在正方形网格的格点上,~ABC EDF △△,则ABC ACB ∠+∠的度数为( )A .30°B .45°C .60°D .75°10.如图,在矩形ABCD 中,将ADC △绕点D 逆时针旋转90°得到FDE △,B 、F 、E 三点恰好在同一直线上,AC 与BE 相交于点G ,连接DG .以下结论正确的是( )① AC BE ⊥: ②BCG GAD △△;③点F 是线段CD 的黄金分割点;④CG EG =A .①②B .①③C .①②③D .①③④二、填空题:(本大题共8小题,每小题2分,共16分,把答案直接填在答题卡相应位置上.) 11.当x =_______时,分式4x x-的值为零。

2020-2021学年江苏省苏州市八年级下册期末数学试卷及答案-精品试卷

2020-2021学年江苏省苏州市八年级下册期末数学试卷及答案-精品试卷

最新江苏省苏州市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.02.下列根式中,与是同类二次根式的是()A. B. C.D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,若CF=2,FD=4,则BC的长为()A.6 B.2 C.4 D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .15.代数式a+2﹣+3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= .三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.20.解分式方程:(1)=(2)=﹣1.21.先化简,再求值:(1﹣)÷,其中a=﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为().25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A (﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ 与△ADB相似,求出m的值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于()A.﹣l B.1 C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是()A. B. C.D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、=2,故A选项不是;B、=2,故B选项是;C、=,故C选项不是;D、=3,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1<x≤2,则|x﹣3|+的值为()A.2x﹣5 B.﹣2 C.5﹣2x D.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1<x≤2,∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=.故选C.6.在函数(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),函数值y1,y2,y3的大小为()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵(,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=,BC=2,∴AC:BC:AB=:2:=1::,A、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是()A.B.C.D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y=(k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2<k<4,故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是()A.△AED≌△BFA B.DE﹣BF=EF C.△BGF∽△DAE D.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD 于F点,若CF=2,FD=4,则BC的长为()A.6 B.2 C.4 D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF 的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC===4.故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y=中,自变量x的取值范围是x≥1 .【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 4 .【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是=0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2 .【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF=AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2﹣+3的值等于 4 .【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2﹣+3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3 .【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为(,0),易证Rt△OQP∽Rt△MRP,根据三角形相似的性质得到==,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入(k>0)求出k的值.【解答】解:对于y=x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x=,∴P点坐标为(,0),即OP=;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴==,∴PM=OP=,RM=OQ=1,∴OM=OP+PM=,∴R点的坐标为(,1),∴k=×1=.故答案为.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 8 .【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出==2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ=EC,∴EQ=2CQ,∵EG∥BC,∴==2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)﹣()2﹣+|﹣2|(2)(﹣)÷.【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3+2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式=﹣3﹣3+2﹣=﹣1﹣3;(2)原式=﹣=.20.解分式方程:(1)=(2)=﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x=,经检验,x=是原方程的解.21.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365×=292;(3)随机选取这一年内某一天,空气质量是“优”的概率为:=.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5 ),B′(5,5 ),C′(7,3 );(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a ﹣1,2b﹣1 ).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1=(x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0<x≤2时,y1≥y2;(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时=7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a=m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时,(不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A (﹣3,0),C(1,0),BC=AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ 与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC=AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y=x+;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴,即=,解得,CD=,∴,∴点D的坐标为(,0);(3)在Rt△ABC中,由勾股定理得AB==5,如图2,当PQ∥BD时,△APQ∽△ABD,则=,解得,m=,如图3,当PQ⊥AD时,△APQ∽△ADB,则=,解得,m=,所以若△APQ与△ADB相似时,m=或.2017年4月4日。

2020学年江苏省苏州市八年级(下)期末数学试卷含答案解析

2020学年江苏省苏州市八年级(下)期末数学试卷含答案解析

2020学年江苏省苏州市八年级(下)期末数学试卷含答案一、选择题(每小题 3 分,共 24 分)1 .( 3 分)下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .2 .(3 分)在下列调查中,适宜采用普查的是()A .了解我省中学生的视力情况B .调查《读者》的收视率C .检测一批电灯泡的使用寿命D .对运载火箭的零部件进行检查3 .( 3 分)下列运算正确的是()A .B .C .D .4 .( 3 分)菱形具有而矩形不一定具有的性质是()A .对角线相等B .对角线相互垂直C .对角线相互平分D .对角互补5 .(:4分)下列事件中,是必然事件的是()A .掷一次骰子,向上一面的点数是 6B .经过有交通信号灯的路口,遇到红灯C .任意画一个三角形,其内角和是 180 °D .射击运动员射击一次,命中靶心6 .( 3 分)与分式﹣的值相等的是()A .B .﹣C .D .7 .( 5 分)甲、乙两个学校统计人数,分别绘制了扇形统计图(如图:),下列说法正确的是()A .甲校的男女生人数一样多B .甲、乙两个学校的人数一样多C .甲校的男生人数比乙校的男生人数多D .乙校的女生人数比甲校的女生人数多8 .( 3 分)对于反比例函数 y =,下列说法错误的是()A .它的图象分布在第一、三象限B .它的两支图象关于原点对称C .当 x 1 < x 2 < 0 时,则 y 2 < y 1 < 0D . y 随 x 的增大而减小二、填空题(每小题 4 分,共 36分)9 .( 4 分)化简:=.10 .( 4 分)约分:=.11 .( 3 分)要使有意义,则 x 的取值范围是.12 .( 3 分)如图:△ ABC 中,∠ BAC = 30 °,将△ ABC 绕点 A 按顺时针方向旋转 85 °得到△ ADE ,则∠ DAE 的度数为 °.13 .( 4 分)如图,在▱ ABCD 中, AD = 6 ,点 E 、 F 分别是 BD 、 CD 的中点,则 EF =.14 .( 4 分)某灯泡厂的一次质量检查,从 3000 个灯泡中抽查了 300 个,其中有 3 个不合格,则出现不合格灯泡的频率为.15 .( 4 分)如图,若菱形 ABCD 的顶点 A , B 的坐标分别为( 3 , 0 ),(﹣2 , 0 ),点 D 在 y 轴上,则点 C 的坐标是.16 .( 4 分)若一次函数 y = x +5 的图象与反比例函数 y =的图象交于点( a ,b ),则﹣=.三、解答题(共 84 分)17 .( 12 分)计算:( 1 )﹣+ ;( 2 )(+2 )(﹣ 2 ) + × .18 .( 15 分)( 1 )化简:( 1+ )÷ ;( 2 )解方程:= 1 ﹣.19 .( 9 分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图完成下列问题:( 1 )调查的总人数为是人;( 2 )补全条形统计图;( 3 )该单位共有 1000 人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?20 .( 5 分)已知:方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,△ ABC 的顶点均在格点上,点 C 的坐标为( 4 ,﹣ 1 ).( 1 )请以原点 O 为对称点,画出与△ ABC 对称的△ A 1 B 1 C 1 ,并直接写出点A 1 、B 1 、C 1 的坐标;( 2 )△ ABC 的面积是.21 .( 15 分)如图,在菱形 ABCD 中,对角线 AC 、 BD 相交于点 O ,过点 D 作对角线 BD 的垂线交 BA 的延长线于点 E .( 1 )证明:四边形 ACDE 是平行四边形;( 2 )若 AC = 8 , BD = 6 ,求△ ADE 的周长.22 .( 5 分)为了改善生态环境,防止水土流失,某村计划在荒坡上种树 1200 棵,由于青年志愿者支援,实际每天种树的棵树是原计划的 1.5 倍,结果提前 4 天完成任务,原计划每天种树多少棵?23 .( 15分)一蓄水池每小时的排水量 V ( m 3 / h )与排完水池中的水所用的时间 t ( h )之间成反比例函数关系,其图象如图所示.( 1 )求 V 与 t 之间的函数表达式;( 2 )若要 2 h 排完水池中的水,那么每小时的排水量应该是多少?( 3 )如果每小时排水量不超过 4000 m 3 ,那么水池中的水至少要多少小时才能排完?24 .( 15 分)如图,点 E 、 F 分别为正方形 ABCD 的边 BC 、 CD 上的动点,连接 AE 、 AF ,且满足∠ EAF = 45 °.( 1 )求证: BE + DF = EF ;( 2 )若正方形边长为 1 ,则△ ECF 的面积最大为.2020学年江苏省苏州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题 3 分,共 24 分)1 .( 3 分)下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .【考点】 P3 :轴对称图形; R5 :中心对称图形.菁优网版权所有【专题】 558 :平移、旋转与对称.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解: A 、既是轴对称图形,又是中心对称图形,故此选项正确;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、不是轴对称图形,也不是中心对称图形,故此选项错误;故选: A .【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180 度后两部分重合.2 .( 5 分)在下列调查中,适宜采用普查的是()A .了解我省中学生的视力情况B .调查《朗读者》的收视率C .检测一批电灯泡的使用寿命D .对运载火箭的零部件进行检查【考点】 V2 :全面调查与抽样调查.菁优网版权所有【专题】 541 :数据的收集与整理.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断.【解答】解: A 、了解我省中学生的视力情况适宜采用抽样调查;B 、调查《朗读者》的收视率适宜采用抽样调查;C 、检测一批电灯泡的使用寿命适宜采用抽样调查;D 、对运载火箭的零部件进行检查适宜采用普查;故选: D .【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3 .( 3 分)下列运算正确的是()A .B .C .D .【考点】 79 :二次根式的混合运算.菁优网版权所有【专题】 514 :二次根式.【分析】根据二次根式的加减法对 A 、 B 进行判断;根据二次根式的乘法法则对C 进行判断;根据二次根式的除法法则对D 进行判断.【解答】解: A 、与不能合并,所以 A 选项错误;B 、原式= 3 ,所以 B 选项错误;C 、原式==,所以 C 选项错误;D 、原式= 4 ,所以 D 选项正确.故选: D .【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4 .( 5分)菱形具有而矩形不一定具有的性质是()A .对角线相等B .对角线相互垂直C .对角线相互平分D .对角互补【考点】 L8 :菱形的性质; LB :矩形的性质.菁优网版权所有【分析】根据菱形的性质及矩形的性质,结合各选项进行判断即可得出答案.【解答】解: A 、对角线相等,菱形不具有而矩形具有,故本选项错误;B 、对角线互相垂直,菱形具有而矩形不一定具有,故本选项正确;C 、对角线互相平分,菱形具有矩形也具有,故本选项错误;D 、对角互补,菱形具有矩形也具有,故本选项错误;故选: B .【点评】此题主要考查了菱形及矩形的性质,关键是需要同学们熟记菱形以及矩形的性质.5 .( 3 分)下列事件中,是必然事件的是()A .掷一次骰子,向上一面的点数是 6B .经过有交通信号灯的路口,遇到红灯C .任意画一个三角形,其内角和是 180 °D .射击运动员射击一次,命中靶心【考点】 K7 :三角形内角和定理; X1 :随机事件.菁优网版权所有【专题】 543 :概率及其应用.【分析】必然事件就是一定发生的事件,依据定义即可判断.【解答】解: A .掷一次骰子,向上一面的点数是 6 是随机事件;B .经过有交通信号灯的路口,遇到红灯是随机事件;C .任意画一个三角形,其内角和是 180 °是必然事件;D .射击运动员射击一次,命中靶心是随机事件;故选: C .【点评】本题考查了必然事件的概念.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6 .( 3 分)与分式﹣的值相等的是()A .B .﹣C .D .【考点】 65 :分式的基本性质.菁优网版权所有【专题】 513 :分式.【分析】利用分式的符号法则,即可得到与分式﹣的值相等的是.【解答】解:∵﹣=,∴与分式﹣的值相等的是,故选: C .【点评】本题主要考查了分式的基本性质,分子、分母、分式本身同时改变两处的符号,分式的值不变.7 .( 3 分)甲、乙两个学校统计人数,分别绘制了扇形统计图(如图),下列说法正确的是()A .甲校的男女生人数一样多B .甲、乙两个学校的人数一样多C .甲校的男生人数比乙校的男生人数多D .乙校的女生人数比甲校的女生人数多【考点】 VB :扇形统计图.菁优网版权所有【专题】 541 :数据的收集与整理.【分析】根据扇形统计图的特点和反应的数量之间的关系,男从甲校的扇形统计图中,可以看男生、女生各占甲校总人数的 50% 因此甲校的男女生人数一样多是正确的,其它选项都是不正确的.【解答】解:从甲校的扇形统计图中,可以看出男生、女生各占甲校总人数的50% ,因此甲校的男女生人数一样多是正确的,不知道甲、乙两校的总人数,依靠男、女生所占的百分比,不能判断各校男女人数的多少, B 、 C 、 D 均不正确故选: A .【点评】考查扇形统计图反应的是各个部分所占整体的百分比,当总体不确定时,所占百分比的多少不能判断各个部分所表示数量的多少,要切实理解这一本质,是解答此类问题的关键.8 .( 3 分)对于反比例函数 y =,下列说法错误的是()A .它的图象分布在第一、三象限B .它的两支图象关于原点对称C .当 x 1 < x 2 < 0 时,则 y 2 < y 1 < 0D . y 随 x 的增大而减小【考点】 G4 :反比例函数的性质.菁优网版权所有【专题】 534 :反比例函数及其应用.【分析】当 k > 0 ,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【解答】解: A 、∵反比例函数 y =中, 6 > 0 ,∴此函数图象在一、三象限,故本选项正确;B 、∵反比例函数 y =的图象双曲线关于原点对称,故本选项正确;C 、∵反比例函数 y =在每一象限内, y 随 x 的增大而减小,∴当 x 1 < x 2 < 0 时,则 y 2 < y 1 < 0 ,故本选项正确;D 、∵反比例函数 y =的图象在一、三象限,∴在每一象限内, y 随 x 的增大而减小,故本选项错误.故选: D .【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.二、填空题(每小题 4 分,共 32 分)9 .( 4 分)化简:= 4 .【考点】 73 :二次根式的性质与化简.菁优网版权所有【分析】根据二次根式的性质解答.【解答】解:原式=== 4 .【点评】解答此题,要根据二次根式的性质:= | a | 解题.10 .( 4 分)约分:= 3 a .【考点】 66 :约分.菁优网版权所有【专题】 513 :分式.【分析】直接利用分式的基本性质化简得出答案.【解答】解:= 3 a .故答案为: 3 a .【点评】此题主要考查了约分,正确化简分式是解题关键.11 .( 4 分)要使有意义,则 x 的取值范围是x ≥ 3 .【考点】 72 :二次根式有意义的条件.菁优网版权所有【分析】根据二次根式的性质知,被开方数大于或等于 0 ,据此可以求出 x 的范围.【解答】解:根据题意得: x ﹣3 ≥ 0 ,解得:x ≥ 3 ;故答案是:x ≥ 3 .【点评】考查了二次根式的意义和性质.概念:式子(a ≥ 0 )叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12 .( 4 分)如图,△ ABC 中,∠ BAC = 30 °,将△ ABC 绕点 A 按顺时针方向旋转 85 °得到△ ADE ,则∠ DAE 的度数为 30 °.【考点】 R2 :旋转的性质.菁优网版权所有【专题】 11 :计算题.【分析】直接利用旋转的性质求解.【解答】解:∵△ ABC 绕点 A 按顺时针方向旋转 85 °,对应得到△ ADE ,∴∠ DAE =∠ BAC = 30 °.故答案为 30 °.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形全等.13 .( 4 分)如图,在▱ ABCD 中, AD = 6 ,点 E 、 F 分别是 BD 、 CD 的中点,则 EF = 3 .【考点】 KX :三角形中位线定理; L5 :平行四边形的性质.菁优网版权所有【分析】由四边形 ABCD 是平行四边形,根据平行四边形的对边相等,可得 BC =AD = 8 ,又由点 E 、 F 分别是 BD 、 CD 的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形 ABCD 是平行四边形,∴ BC = AD = 6 ,∵点 E 、 F 分别是 BD 、 CD 的中点,∴ EF =BC =× 6 = 3 .故答案为: 3 .【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.14 .( 4 分)某灯泡厂的一次质量检查,从 3000 个灯泡中抽查了 300 个,其中有 3 个不合格,则出现不合格灯泡的频率为 0.01 .【考点】 V6 :频数与频率.菁优网版权所有【专题】 543 :概率及其应用.【分析】根据频率的概念计算即可.【解答】解: 300 个灯泡中有 3 个不合格,则出现不合格灯泡的频率为:= 0.01 ,故答案为: 0.01 .【点评】本题考查的是频率的计算,掌握频率是指每个对象出现的次数与总次数的比值是解题的关键.15 .( 4 分)如图,若菱形 ABCD 的顶点 A , B 的坐标分别为( 3 , 0 ),(﹣2 , 0 ),点 D 在 y 轴上,则点 C 的坐标是(﹣ 5 , 4 ).【考点】 D5 :坐标与图形性质; L8 :菱形的性质.菁优网版权所有【专题】 556 :矩形菱形正方形.【分析】利用菱形的性质以及勾股定理得出 DO 的长,进而求出 C 点坐标.【解答】解:∵菱形 ABCD 的顶点 A , B 的坐标分别为( 3 , 0 ),(﹣ 2 , 0 ),点 D 在 y 轴上,∴ AB = 5 ,∴ AD = 5 ,∴由勾股定理知: OD === 4 ,∴点 C 的坐标是:(﹣ 5 , 4 ).故答案为:(﹣ 5 , 4 ).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出 DO 的长是解题关键.16 .( 4 分)若一次函数 y = x +5 的图象与反比例函数 y =的图象交于点( a ,b ),则﹣= 2.5 .【考点】 G8 :反比例函数与一次函数的交点问题.菁优网版权所有【专题】 533 :一次函数及其应用; 534 :反比例函数及其应用.【分析】由题意得: b = a +5 , ab = 2 ,即可求解.【解答】解:由题意得: b = a +5 , ab = 2 ,故==,故答案为 2.5 .【点评】本题考查的是反比例函数图象与一次函数图象交点问题,将交点坐标代入函数表达式,确定 a 、 b 的关系,即可求解.三、解答题(共 84 分)17 .( 10 分)计算:( 1 )﹣+ ;( 2 )(+2 )(﹣ 2 ) + × .【考点】 4F :平方差公式; 79 :二次根式的混合运算.菁优网版权所有【专题】 514 :二次根式.【分析】( 1 )先化简二次根式,最后合并即可;( 2 )先运用平方差公式计算,再计算二次根式乘法,最后计算加法.【解答】解:( 1 )原式= 2 ﹣ 3 +4 = 3 ;( 2 )原式=() 2 ﹣ 2 2 + = 5 .【点评】本题主要考查了二次根式的混合运算,解题的关键是掌握运算顺序,并熟练运用乘法公式简便计算.18 .( 10 分)( 1 )化简:( 1+ )÷ ;( 2 )解方程:= 1 ﹣.【考点】 6C :分式的混合运算; B3 :解分式方程.菁优网版权所有【专题】 513 :分式.【分析】( 1 )分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.( 2 )解分式方程的步骤:① 去分母;② 求出整式方程的解;③ 检验;④ 得出结论.【解答】解:( 1 )原式=(+ )×=×= x +1 .( 2 )方程两边同乘( x ﹣ 2 ),得2 x = x ﹣ 2+1 ,解得 x =﹣ 1 ,经检验,当 x =﹣ 1 时, x ﹣ 2 =﹣3 ≠ 0 ,所以 x =﹣ 1 原方程的解.【点评】本题主要考查了分式运算以及解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为 0 ,所以应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为 0 ,则整式方程的解是原分式方程的解.19 .( 9 分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图完成下列问题:( 1 )调查的总人数为是 80 人;( 2 )补全条形统计图;( 3 )该单位共有 1000 人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?【考点】 V5 :用样本估计总体; VB :扇形统计图; VC :条形统计图.菁优网版权所有【专题】 542 :统计的应用.【分析】( 1 )根据步行人数以及百分比求出总人数即可.( 2 )求出骑自行车的人数,画出条形图即可.( 3 )利用调查后骑自行车的人数的百分比× 1000 即可解决问题.【解答】解:( 1 )总人数= 8 ÷ 10% = 80 (人)故答案为: 80 .( 2 )如图;骑自行车的人数= 80 ×( 1 ﹣ 25% ﹣ 10% ﹣ 45% )= 16 (人),条形图如图所示:( 3 ) 1000 ×( 25%+20% )= 450 (人),答:现在骑自行车的人数约为 450 人【点评】本题考查条形统计图,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20 .( 6 分)已知:方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,△ ABC 的顶点均在格点上,点 C 的坐标为( 4 ,﹣ 1 ).( 1 )请以原点 O 为对称点,画出与△ ABC 对称的△ A 1 B 1 C 1 ,并直接写出点A 1 、B 1 、C 1 的坐标;( 2 )△ ABC 的面积是 6 .【考点】 R8 :作图﹣旋转变换.菁优网版权所有【专题】 1 :常规题型.【分析】( 1 )直接利用旋转的性质得出对应点位置进而得出答案;( 2 )直接利用三角形面积求法进而得出答案.【解答】解:( 1 )如图所示:△ A 1 B 1 C 1 ,即为所求;A 1 (﹣ 1 , 4 )、B 1 (﹣ 5 , 4 )、C 1 (﹣ 4 , 1 );( 2 )△ ABC 的面积是:× 4 × 3 = 6 .故答案为: 6 .【点评】此题主要考查了旋转变换以及三角形面积求法,正确得出对应点位置是解题关键.21 .( 15 分)如图,在菱形 ABCD 中,对角线 AC 、 BD 相交于点 O ,过点 D 作对角线 BD 的垂线交 BA 的延长线于点 E .( 1 )证明:四边形 ACDE 是平行四边形;( 2 )若 AC = 8 , BD = 6 ,求△ ADE 的周长.【考点】 L7 :平行四边形的判定与性质; L8 :菱形的性质.菁优网版权所有【分析】( 1 )根据平行四边形的判定证明即可;( 2 )利用平行四边形的性质得出平行四边形的周长即可.【解答】( 1 )证明:∵四边形 ABCD 是菱形,∴ AB ∥ CD , AC ⊥ BD ,∴ AE ∥ CD ,∠ AOB = 90 °,∵ DE ⊥ BD ,即∠ EDB = 90 °,∴∠ AOB =∠ EDB ,∴ DE ∥ AC ,∴四边形 ACDE 是平行四边形;( 2 )解:∵四边形 ABCD 是菱形, AC = 8 , BD = 6 ,∴ AO = 4 , DO = 3 , AD = CD = 5 ,∵四边形 ACDE 是平行四边形,∴ AE = CD = 5 , DE = AC = 8 ,∴△ ADE 的周长为 AD + AE + DE = 5+5+8 = 18 .【点评】此题考查平行四边形的性质和判定问题,关键是根据平行四边形的判定解答即可.22 .( 5 分)为了改善生态环境,防止水土流失,某村计划在荒坡上种树 1200 棵,由于青年志愿者支援,实际每天种树的棵树是原计划的 1.5 倍,结果提前 4 天完成任务,原计划每天种树多少棵?【考点】 B7 :分式方程的应用.菁优网版权所有【专题】 126 :工程问题; 522 :分式方程及应用; 69 :应用意识.【分析】设原计划每天种树 x 棵.根据工作量=工作效率×工作时间列出方程,解答即可【解答】解:设原计划每天种树 x 棵.由题意,得﹣= 4解得, x = 100经检验, x = 100 是原方程的解.答:原计划每天种树 100 棵.【点评】此题主要考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.工程类问题主要用到公式:工作总量=工作效率×工作时间.23 .( 15分)一蓄水池每小时的排水量 V ( m 3 / h )与排完水池中的水所用的时间 t ( h )之间成反比例函数关系,其图象如图所示.( 1 )求 V 与 t 之间的函数表达式;( 2 )若要 2 h 排完水池中的水,那么每小时的排水量应该是多少?( 3 )如果每小时排水量不超过 4000 m 3 ,那么水池中的水至少要多少小时才能排完?【考点】 GA :反比例函数的应用.菁优网版权所有【专题】 534 :反比例函数及其应用.【分析】( 1 )直接利用待定系数法求出反比例函数解析式即可;( 2 )利用 t = 2 代入进而得出 V 的值;( 3 )把 V = 4 000 代入 V =,求出答案.【解答】解:( 1 )设函数表达式为 V =,把( 6 , 3000 )代入 V =,得 3000 =.解得: k = 1800 ,所以 V 与 t 之间的函数表达式为: V =;( 2 )把 t = 2 代入 V =,得 V = 9000 ,答:每小时的排水量应该是 9 000 m 3 ;( 3 )把 V = 4 000 代入 V =,得 t = 4.5 ,根据反比例函数的性质, V 随 t 的增大而减小,因此水池中的水至少要 4.5 h 才能排完.【点评】此题主要考查了反比例函数的应用,正确求出函数关系式是解题关键.24 .( 15分)如图,点 E 、 F 分别为正方形 ABCD 的边 BC 、 CD 上的动点,连接 AE 、 AF ,且满足∠ EAF = 45 °.( 1 )求证: BE + DF = EF ;( 2 )若正方形边长为 1 ,则△ ECF 的面积最大为 3 ﹣ 2 .【考点】 KD :全等三角形的判定与性质; LE :正方形的性质.菁优网版权所有【专题】 553 :图形的全等; 556 :矩形菱形正方形.【分析】( 1 )延长 EB 到 G ,使 BG = DF ,连接 AG ,由“ SAS ”可证△ ADF ≌△ABG ,可得 AF = AG ,由“ SAS ”可证△ GAE ≌△ FAE ,可得 EF = EG ,即可得结论;( 2 )设 DF = x , BE = y , EC = 1 ﹣ y , CF = 1 ﹣ x , EF = x + y ,由勾股定理可求 y ==,由三角形面积公式和二次函数的性质可求△ ECF 的面积的最大值.【解答】证明:( 1 )延长 EB 到 G ,使 BG = DF ,连接 AG ,∵正方形 ABCD ,∴∠ D =∠ ABC = 90 °=∠ ABG . AB = AD , BG = DF∴△ ADF ≌△ ABG ( SAS ),∴ AF = AG ,∵∠ DAF =∠ BAG ,∵∠ DAF + ∠ BAE = 90 °﹣∠ EAF = 45 °,∴∠ BAG + ∠ BAE = 45 °,∴∠ GAE =∠ FAE ,又∵ AE = AE ,∴△ GAE ≌△ FAE ( SAS ),∴ EF = EG ,∵ GE = GB + BE ,∴ EF = BE + DF .( 2 )设 DF = x , BE = y ,∴ EC = 1 ﹣ y , CF = 1 ﹣ x , EF = x + y∵ EF 2 = EC 2 + FC 2 ,∴( x + y ) 2 =( 1 ﹣ y ) 2 + ( 1 ﹣ x ) 2 ,∴ y ==∵ S △ CEF =× CE × CF =( 1 ﹣ x )( 1 ﹣ y )=∴ S △ CEF == 3 ﹣ [ ( x +1 ) + ] ≥ 3 ﹣ 2 ×∴△ ECF 的面积最大值= 3 ﹣ 2故答案为: 3 ﹣ 2【点评】本题考查正方形的性质,全等三角形的判定和性质,三角形的面积的求法以及面积的最值的解法,考查转化思想以及计算能力.。

2020-2021学年八年级下学期期末考试数学试卷含答案

2020-2021学年八年级下学期期末考试数学试卷含答案
表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:
(1)该市人均月生活用水的收费标准是:不超过5吨,每吨按_____元收取;超过5吨的部分,每吨按_____元收取;
(2)请写出 与 的函数关系式;
(3)若某个家庭有5人,五月份的生活用水费共76元,则该家庭这个月用了多少吨生活用水?
24.(本题满分8分)
A. B.
C. D.无法比较 的大小
5.某超市对员工进行三项测试:电脑、语言、商品知识,并按三项测试得分的5:3:2的比例确定测试总分,已知某员工三项得分分别为80,70,75,则这位超市员工的总分为( )
A. 78 B.76
C.77 D.79
6.直角三角形中,两直角边分别是12和5,则斜边上的中线长是( ).
三个等边△ABD、△BEC、△ACF.
(1)判断四边形ADEF的形状,并证明你的结论;
(2)当△ABC满足什么条件时,四边形ADEF是菱形?是矩形?
23.(本题满分10分)
随着地球上的水资源日益枯竭,各级政府越来越重视倡导节
约用水.某市对居民生活用水按“阶梯水价”方式进行收费,人均
月生活用水收费标准如图所示.图中 表示人均月生活用水的吨数,
若四边形PQCD平行四边形
PD=CQ
∴24-t=3t
解得:t=6 …………4分
若四边形PQCD为等腰梯形
PD=CQ
过D作DE⊥BC于E
则四边形ABED为矩形
∴BE=AD=24cm
∴EC=BC-BE=2cm
∴QC-PD=2CE
即3t-(24-t)=4
解得:t=7(s)…………7分
A.34 B.26
C.8.5 D.6.5
7.矩形具有而菱形不具有的性质是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵), ∴每人植树量的平均数约是 4.73 棵,结论 D 不正确. 故选 D. 考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
8Байду номын сангаасD
解析:D 【解析】 【分析】 由(a-b)(a2-b2-c2)=0,可得:a-b=0,或 a2-b2-c2=0,进而可得 a=b 或 a2=b2+c2,进而判 断△ABC 的形状为等腰三角形或直角三角形. 【详解】 解:∵(a-b)(a2-b2-c2)=0, ∴a-b=0,或 a2-b2-c2=0, 即 a=b 或 a2=b2+c2, ∴△ABC 的形状为等腰三角形或直角三角形. 故选:D. 【点睛】 本题考查了勾股定理的逆定理以及等腰三角形的判定,解题时注意:有两边相等的三角形 是等腰三角形,满足 a2+b2=c2 的三角形是直角三角形.
2.B
解析:B 【解析】 【分析】 根据两函数图象平行 k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】
∵将直线 l1 向下平移若干个单位后得直线 l2 , ∴直线 l1 ∥直线 l2 , ∴ k1 k2 , ∵直线 l1 向下平移若干个单位后得直线 l2 , ∴ b1 b2 ,
∴当 x 5 时, y1 y2
D.每人植树量的平均数是 5 棵
8.已知 a,b, c 是 ABC 的三边,且满足 (a b)(a2 b2 c2 ) 0 ,则 ABC 是( )
A.直角三角形
B.等边三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
9.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示
700
售价(元/块)
900
B 品牌手表 100 160
他计划用 4 万元资金一次性购进这两种品牌手表共 100 块,设该经销商购进 A 品牌手表 x 块,这两种品牌手表全部销售完后获得利润为 y 元. (1)试写出 y 与 x 之间的函数关系式; (2)若要求全部销售完后获得的利润不少于 1.26 万元,该经销商有哪几种进货方案; (3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元. 24.甲、乙两名射击选示在 10 次射击训练中的成绩统计图(部分)如图所示:
围;
(3)直接写出乙车出发多长时间两车相距 120 千米.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 试题分析:首先写出各个命题的逆命题,再进一步判断真假. 解:A、逆命题是三个角对应相等的两个三角形全等,错误; B、绝对值相等的两个数相等,错误; C、同位角相等,两条直线平行,正确; D、相等的两个角都是 45°,错误. 故选 C.
4.以下命题,正确的是( ).
A.对角线相等的菱形是正方形
B.对角线相等的平行四边形是正方形
C.对角线互相垂直的平行四边形是正方形
D.对角线互相垂直平分的四边形是正方形
5.下列计算正确的是( )
C.BC=AD
D.∠A=∠C
A. (4)2 =2
B. 5 2= 3 C. 5 2 = 10 D. 6 2=3
5.C
解析:C 【解析】
【分析】 根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得. 【详解】
A. 42 =4,故 A 选项错误;
B. 5 与 2 不是同类二次根式,不能合并,故 B 选项错误; C. 5 2 = 10 ,故 C 选项正确;
D. 6 2 = 3 ,故 D 选项错误,
2020-2021 苏州景范中学│草桥中学│八年级数学下期末试题带答案
一、选择题
1.下列各命题的逆命题成立的是( )
A.全等三角形的对应角相等
B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等
D.如果两个角都是 45°,那么这两个角相等
2.一次函数 y1 k1x b1 的图象 l1 如图所示,将直线 l1 向下平移若干个单位后得直线 l2 ,
故选 B. 【点睛】 本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与 图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移 加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移 前后的解析式有什么关系.
3.C
解析:C 【解析】 【分析】 根据平行四边形的判定方法,逐项判断即可. 【详解】 ∵AB∥CD, ∴当 AB=CD 时,由一组对边平行且相等的四边形为平行四边形可知该条件正确; 当 BC∥AD 时,由两组对边分别平行的四边形为平行四边形可知该条件正确; 当∠A=∠C 时,可求得∠B=∠D,由两组对角分别相等的四边形为平行四边形可知该条件 正确; 当 BC=AD 时,该四边形可能为等腰梯形,故该条件不正确; 故选:C. 【点睛】 本题主要考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.
的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角
三角形较长直角边长为 a,较短直角边长为 b.若 ab=8,大正方形的面积为 25,则小正方
形的边长为 ( )
A.9
B.6
C.4
D.3
10.若正比例函数的图象经过点( ,2),则这个图象必经过点( ).
A.(1,2)
B.( , ) C.(2, )
l2 的函数表达式为 y2 k2x b2 .下列说法中错误的是( )
A. k1 k2
B. b1 b2
C. b1 b2
D.当 x 5 时,
y1 y2
3.如图,在四边形 ABCD 中,AB∥CD,要使得四边形 ABCD 是平行四边形,可添加的
条件不正确的是 ( )
A.AB=CD
B.BC∥AD
6.如图,O 是矩形 ABCD 对角线 AC 的中点,M 是 AD 的中点,若 BC=8,OB=5,则 OM 的长为( )
A.1
B.2
C.3
D.4
7.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是
()
A.参加本次植树活动共有 30 人
B.每人植树量的众数是 4 棵
C.每人植树量的中位数是 5 棵
D.(1, )
11.如图,长方形纸片 ABCD 中,AB=4,BC=6,点 E 在 AB 边上,将纸片沿 CE 折
叠,点 B 落在点 F 处,EF,CF 分别交 AD 于点 G,H,且 EG=GH,则 AE 的长为( )
A. 2
B.1
3
C. 3 2
D.2
12.下列各组数,可以作为直角三角形的三边长的是( )
三、解答题
21.(1)
27 - 1 3
18 -
12 ;(2) 2 12 3 5 2
4
22.如图, ABCD 中,延长 AD 到点 F ,延长 CB 到点 E ,使 DF BE ,连接 AE 、
CF .
求证:四边形 AECF 是平行四边形.
23.某经销商从市场得知如下信息: A 品牌手表
进价(元/块)
15.若 ab <0,则代数式 a2b 可化简为_____. 16.若 x<2,化简 (x 2)2 +|3﹣x|的正确结果是__. 17.如图,在平面直角坐标系 xOy 中,点 C(0, 6) ,射线 CE//x 轴,直线 y x b 交线 段 OC 于点 B ,交 x 轴于点 A , D 是射线 CE 上一点.若存在点 D ,使得△ABD 恰为等 腰直角三角形,则 b 的值为_______.
根据以上信息,请解答下面的问题;
选手
A 平均数
中位数

a
8

7.5
b
众数 8 6和9
方差 c 2.65
(1)补全甲选手 10 次成绩频数分布图.
(2)a=
,b=
,c=

(3)教练根据两名选手手的 10 次成绩,决定选甲选手参加射击比赛,教练的理由是什
么?(至少从两个不同角度说明理由).
25.甲、乙两车分别从相距 480km 的 A、B 两地相向而行,乙车比甲车先出发 1 小时,并
11.B
解析:B 【解析】 【分析】 根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到 FH=AE, GF=AG,得到 AH=BE=EF,设 AE=x,则 AH=BE=EF=4-x,根据勾股定理即可得到结论. 【详解】 ∵将△CBE 沿 CE 翻折至△CFE, ∴∠F=∠B=∠A=90°,BE=EF, 在△AGE 与△FGH 中,
以各自的速度匀速行驶,途径 C 地,甲车到达 C 地停留 1 小时,因有事按原路原速返回 A
地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y(千
米)与甲车出发所用的时间 x(小时)的关系如图,结合图象信息解答下列问题:
(1)乙车的速度是
千米/时,t= 小时;
(2)求甲车距它出发地的路程 y 与它出发的时间 x 的函数关系式,并写出自变量的取值范
4.A
解析:A 【解析】 【分析】 利用正方形的判定方法分别判断后即可确定正确的选项. 【详解】 A、对角线相等的菱形是正方形,正确,是真命题; B、对角线相等的平行四边形是矩形,故错误,是假命题; C、对角线互相垂直的平行四边形是菱形,故错误,是假命题; D、对角线互相垂直平分的四边形是菱形,故错误,是假命题, 故选:A. 【点睛】 考查了命题与定理的知识,解题的关键是了解正方形的判定方法.
9.D
解析:D 【解析】 【分析】 已知 ab=8 可求出四个三角形的面积,用大正方形面积减去四个三角形的面积得到小正方 形的面积,根据面积利用算术平方根求小正方形的边长. 【详解】
相关文档
最新文档