解线性代数方程
第2章解线性代数方程组的迭代法

第二章解线性代数方程组的迭代法2. 1 引言在许多实际问题中,常常需要求解这样的线性代数方程组,它的系数矩阵数很高,但非零元素很少,人们称其为大型稀疏线性代数方程组,对于这类方程组,如果它乂不具有带状性,那么,再用直接法求解就不太有效,因为用直接法进行消元或矩阵的三角分解时,没有考虑到系数矩阵的稀疏性,破坏了系数矩阵的形状,导致了计算量的增加和存储单元的浪费,于是,人们常用迭代法求解大型稀疏线性代数方程组。
迭代法只需要存储系数矩阵的非零元素,这样,占用内存在单元较少,能解高阶线性代数方程组。
山于迭代法是通过逐次迭代来逼近方程组的解,因此,收敛性和收敛速度是构造迭代法时要注意的问题。
那么,是否可以构造一种适用于一般情况的迭代法呢?回答是否定的,这是因为不同的系数矩阵具有不同的性态,一般地,每一种迭代法都具有一定的适用范围,在本章的学习中将会看到,有时,某种方法对一类方程组迭代收敛,而对另一类方程组进行迭代时就会发散。
因此,我们应该学会针对具有不同性质的线性代数方程组,构造合适的迭代方法。
本章主要介绍一些基本的迭代法,并在一定的范围内讨论其中儿种方法的收敛法。
2. 2 基本迭代法考虑线性方程组如坷+如勺+…+气兀”二勺a2t x i+a22x2 + - + a2…x n =b2■•••••••••••(2. 1)采用矩阵和向量记号,我们可以把(2.1)式写成Ax = h(2.2)其中,为非奇异矩阵,设下面我们介绍雅可比(Jacobi)迭代,高斯-塞德尔(Gauss-Seidel)迭代与S0R迭代以及SS0R迭代的基本思想和算法。
为了方便地给出矩阵表示式,我们引进下列矩阵分裂:4SD-U,(2.3)其中-a2\-a n\(1)雅可比迭代的基本思想从式(2.1)的第i个方程中解出X t=(/ = 1,2,•••,«)我们把迭代前面的值代入上式右边,山计算得到等式左边的值作为一次迭代的新值,然后再把这个新值代入右边,再从左边得到一个新值,如此反复,就得到了雅可比迭代公式。
线性代数解方程

线性代数解方程线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
简介由于科学研究中的非线性模型通常可以被对数为线性模型,使线性代数被广为地应用于自然科学和社会科学中。
概念线性代数就是代数学的一个分支,主要处置线性关系问题。
线性关系意即数学对象之间的关系就是以一次形式去抒发的。
比如,在解析几何里,平面上直线的方程就是二元一次方程;空间平面的方程就是三元一次方程,而空间直线视作两个平面平行,由两个三元一次方程所共同组成的方程组去则表示。
所含n个未知量的一次方程称作线性方程。
关于变量就是一次的函数称作线性函数。
线性关系问题缩写线性问题。
求解线性方程组的问题就是最简单的线性问题。
历史线性代数做为一个单一制的分支在20世纪才构成,然而它的历史却非常久远。
“鸡兔同笼”问题实际上就是一个直观的线性方程组解的问题。
最古老的线性问题就是线性方程组的数学分析,在中国古代的数学著作《九章算术·方程》章中,已经并作了比较完备的描述,其中所述方法实质上相等于现代的对方程组的生员矩阵的行颁布初等变换,解出未知量的方法。
由于费马和笛卡儿的工作,现代意义的线性代数基本上出现于十七世纪。
直到十八世纪末,线性代数的领域还只限于平面与空间。
十九世纪上半叶才完成了到n维线性空间的过渡。
随着研究线性方程组和变量的线性变换问题的深入细致,行列式和矩阵在18~19世纪期间先后产生,为处置线性问题提供更多了有力的工具,从而促进了线性代数的发展。
向量概念的导入,构成了向量空间的概念。
凡是线性问题都可以用向量空间的观点予以探讨。
因此,向量空间及其线性变换,以及与此二者联系的矩阵理论,形成了线性代数的中心内容。
矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。
线性代数求解方法和技巧

线性代数求解方法和技巧线性代数是数学中重要的一个分支,研究向量空间、线性变换和线性方程组等内容。
在实际问题中,我们常常需要用线性代数的方法来解决问题,因此掌握线性代数的求解方法和技巧对于理解和应用数学是非常重要的。
首先,我们讨论线性方程组的求解方法。
线性方程组是由一组线性方程组成的方程组,其中每个方程的未知数的次数都为1。
对于n个未知数和m个方程的线性方程组,我们有以下几种常用的求解方法:1. 列主元消元法:这是最常用的线性方程组求解方法之一。
它的基本思想是通过行变换将线性方程组化为一个三角形式,进而求解得到方程组的解。
在进行行变换时,要选择合适的列主元,即选择主元元素绝对值最大的一列作为主元素。
2. 矩阵求逆法:对于一个可逆的n阶方阵A,我们可以通过求A的逆矩阵来求解线性方程组Ax=b。
具体地,我们首先通过高斯消元法将方程组化为三角形式,然后根据三角形式的矩阵求逆公式来求解x。
3. LU分解法:对于一个n阶非奇异矩阵A,我们可以将其分解为一个下三角矩阵L和一个上三角矩阵U的乘积,即A=LU。
接着,我们可以通过LU分解来求解线性方程组Ax=b。
具体地,我们首先通过LU分解将方程组化为Lc=b和Ux=c两个方程组,然后依次求解这两个方程组得到x的值。
除了以上的求解方法,还有一些线性方程组的特殊情况和对应的求解方法:1. 齐次线性方程组:如果线性方程组右边的常数项都为0,即b=0,那么我们称为齐次线性方程组。
对于齐次线性方程组,其解空间是一个向量空间。
我们可以通过高斯消元法来求解齐次线性方程组,先将其化为三角形式,然后确定自由未知量的个数,最后确定解空间的基底。
2. 奇异线性方程组:如果线性方程组的系数矩阵A是奇异矩阵,即det(A)=0,那么我们称为奇异线性方程组。
对于奇异线性方程组,其解可能不存在,或者存在无穷多解。
我们可以通过计算矩阵A的秩来确定线性方程组的解的情况。
另外,在实际问题中,我们可能会遇到大规模的线性方程组,这时候求解方法和技巧还需要考虑到计算效率的问题。
07线性代数方程组的解法

总计∑ n (k2k) n(n21)
k1
3
除法
n1
k
n(n1)
k1
2
回 代 总 计 算 量 n(n1) 2
总 乘 除 法 共 n 3 3 n 2 1 3 n (n 3 0 ,为 9 8 9 0 )
21
三、Gauss消去法的矩阵表示
每一步消去过程相当于左乘初等变换矩阵Lk
a x a x a x a b 得
到
(1)
同
解 (1)
方
程 (1)A(3组 )x=b(1() 3)
(1)
11 1
12 2
13 3
1n
1
a x a x (2) (2)
22 2
23 3
a x(3) 33 3
a b (2) (2)
2n
2
a b (3) (3)
11 1
12 2
1n n
1
b x 22 2
b2nxn g 2
称 消 元 过 程 。 逐 次 计 算 b出 nn x xn n, x gn 1 n,, x 1 称 回 代 过 1程 0 。
一、Gauss 消去法计算过程
a a b b 统一记 → 号 (1) : , →(1)
(2) ,
2
(3)
(2)
2
1
0
1
L m 0 2
32
1
0 mn2 0
m a a
(2) (2)
i2
i2
22
i 3,4, ,n
常见的线性代数求解方法

常见的线性代数求解方法
1.列主元消去法
列主元消去法是一种经典的求解线性方程组的方法。
它通过将
方程组转化为上三角矩阵的形式来求解。
这个方法的关键在于选取
主元的策略。
一种常见的选取主元的策略是选择当前列中绝对值最
大的元素作为主元,然后进行消去操作,直到将矩阵转化为上三角
矩阵。
2.高斯-约当消去法
高斯-约当消去法是另一种常见的线性方程组求解方法。
它通
过消去矩阵的下三角部分来将线性方程组转化为上三角矩阵的形式。
这个方法也需要选择主元,常见的选择策略是选取当前行中绝对值
最大的元素作为主元,然后进行消去操作。
3.LU分解法
LU分解法是将矩阵分解为一对矩阵的乘积的方法。
这个方法的思想是先将矩阵分解为一个下三角矩阵和一个上三角矩阵,然后通过求解上三角矩阵和下三角矩阵的两个方程组来求解原始的线性方程组。
4.Jacobi迭代法
Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过将原始的线性方程组转化为一个对角矩阵和另一个矩阵的乘积的形式,然后通过迭代求解这个对角矩阵和另一个矩阵的方程组来逼近线性方程组的解。
5.Gauss-Seidel迭代法
Gauss-Seidel迭代法是另一种迭代求解线性方程组的方法。
它与Jacobi迭代法类似,但是在每一次迭代中,它使用前一次迭代得到的部分解来更新当前的解。
这个方法通常比Jacobi迭代法收敛得更快。
以上是一些常见的线性代数求解方法。
每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解线性方程组的问题。
线性代数方程组的解法

说明:线性方程组的初等变换是可逆的。 即,方程组(1)经初等变换化为一个新方 程组,那么新方程组也可以经过初等变换还 原为原方程组(1)。因而,方程组(1)与 它经过若干此初等变换之后得到的新方程组 是同解的。
⎧ a11 x1 + a12 x 2 + L + a1n x n = b1 ⎪ a x + a x + L+ a x = b ⎪ 21 1 22 2 2n n 2 ⎨ ⎪ LLLLLLLLLLLL ⎪a m 1 x1 + a m 2 x 2 + L + a mn x n = bm ⎩
L a1n ⎞ ⎟ L a2 n ⎟ L L⎟ ⎟ L amn ⎟ ⎠
矩阵A的 (m , n)元
这m × n个数称为 A的元素 , 简称为元素 (元 ).
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵称为复矩阵.
例如
⎛ 1 0 3 5⎞ ⎟ 是一个 2 × 4 实矩阵, ⎜ ⎝ − 9 6 4 3⎠ ⎛ 1⎞ ⎜ ⎟ ⎜ 2⎟ ⎜ 4⎟ ⎝ ⎠
问题:是否每个矩阵都可以经过初等行变换化 为梯矩阵呢? 定理1 任意m × n矩阵A总可以经初等行变换化为梯
矩阵及最简形。
证明 Step1 若A的元全为0, A已经是一个阶梯矩阵。
Step2 设非零矩阵A的第 j1 列是自左而右的第 一个非零列,设 a1 j ≠ 0 (否则,若 a ij1 非零,作 行变换 r1 ↔ ri ,总可使第j1列的第一个元非零), 矩阵A的各行分别作行变换:
解
同理可得
−2 −2 1 1 −2 1 0 1 − 3 = −10, −1
D1 = 1 0
1
1 1
− 3 = −5, D2 = 2 −1 −1 1 = −5, 0
第三章线性代数方程组的直接解法

由此看出,高斯消去法解方程组基本思想是设
法通消常去把方按程照组的先系消数元矩,阵后A回的代主两对个角线步下骤的求元解素线,而性 将方A程x=组b化的为方等法价称的上为三高角斯形(方G程a组us,s然)后消再去通法过。回
代过程便可获得方程组的解。换一种说法就是用矩 阵行的初等变换将原方程组系数矩阵化为上三角形 矩阵,而以上三角形矩阵为系数的方程组的求解比较 简单,可以从最后一个方程开始,依次向前代入求出 未知变量 xn , xn1 , , x1 这种求解上三角方程组的 方法称为回代, 通过一个方程乘或除以某个常数,以 及将两个方程相加减,逐步减少方程中的变元数,最 终将方程组化成上三角方程组,一般将这一过程称为 消元,然后再回代求解。
3.2.2 高斯消去法算法构造 我们知道,线性方程组(3.1)用矩阵形式表示为
a11 a12 a21 a22 an1 an2
a1n
a2n
ann
x1 b1
x
2
b2
xn bn
每个方程只含有一个未知数,从而得出所求的解。
整个过程分为消元和回代两个部分。
(1)消元过程 第1步:将方程①乘上(-2)加到方程 ②上去,将 方程 ①乘上 1 加到方程 ③上去,这样就消去
2
了第2、3个方程的 x1 项,于是就得到等价方程 组
2x1 x2 3x3 1
2
x1
x2
3x3
1
4x2 x3 2
5 2
x2
3 2
x3
13 2
线性代数 线性代数方程组的解

当 r ( A) > r ( A) 时,
未知数表示. 未知数表示. 通解表达式中就出现 n-k 个任意常数. 个任意常数.
β k +1 , ⋯, β m 中至少有一个不等于零 . α11 α12 ⋯α1n β1 不妨设 β k +1 ≠ 0 . ......................... 此时第 k+1 个方程变成 α k 1 α k 2 ⋯α kn β k 0x1 + 0 x2 + ⋯ + 0 xn = β k +1 ≠ 0 0 0 ⋯ 0 β k +1 这是不可能的. 这是不可能的. ..................... 因此方程无解. 因此方程无解. 0 0 ⋯ 0 βm
4.2.1
Байду номын сангаас齐次线性代数方程组
定理 3 (1) 齐次线性方程组有非平凡解 齐次线性方程组有非平凡解的充分必要条件是 有非平凡解的充分必要条件是 r ( A) < n (系数矩阵的秩小于未知数的个数) 系数矩阵的秩小于未知数的个数) (2) 若齐次线性方程组有非平凡解, 齐次线性方程组有非平凡解,则通解中含有
四个未知数, 四个未知数,两个方程. 选 x2, x4 为自由未知量, 为自由未知量,
r ( A) = 2, n = 4 . 方 程 组有非 平 凡 解 .
令 x2 = t1 , x4 = t2 .
1
1 x1 = −2t1 + 5 t2 x2 = t1 则有 3 x = − t2 3 10 x = t2 4
通解表达式中包含两个任意常数 t1 , t2 . 令
−2 1/ 5 x1 1 0 x 2 . , α2 = x = , α1 = 0 −3/10 x3 0 1 x4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解线性代数方程————————————————————————————————作者:————————————————————————————————日期:求解线性方程组的直接解法5.3特殊矩阵的三角分解①实对称矩阵的LDL T分解设A是实对称阵,且A的所有顺序主子式均不为零,则LDR分解中R=L T, 故可用以作LDL T分解.这就是说,当A的对角元素非零时,我们可以作LU分解,也就得到LDL T分解,L相同,是单位上三角阵,U的对角元素构成D.不过没有利用对称性,存储量运算量都未能节省—预计是一半。
试用n=3的计算表格说明如何实现节省。
d1=u11 =a11u12=a12l21=u12/d1u13=a13l31=u13/d1d2=u22=a22-l21u12u23=a23-l21u13l32=u23/d2u33=a33-l31u13-l32u23这样,可用上半部元素逐列计算D,L T。
也可用下半部元素逐行计算L,D。
引进輔助量t1, t2代替u1j,u2j,并利用对称性得到:d1=a11t1=a21l21= t1/d1d2= a22-t1l21t1=a31 l31=t1/d1t2=a32-t1l21l32=t2/d2d3=a33-t1l31-t2l32据此不难写出LDL T分解A=LDL T的计算公式和程序(逐行计算L,D).d1=a11for i=2:nfor j=1:i-1t j=a ij-l j1t1-l j2t2-…-l j,j-1t j-1l ij=t j/d jendd i=a ii-l i1t1-l i2t2-…- l i,i-1t i-1end存储约n(n+1)/2单元,乘加运算各约n3/6.利用LDL T分解解Ax=b分四步:1.分解A=LDL T2.解Lg=b 求g3.解Dy=g 求y4.解L T x=y 求x②实对称正定矩阵的LL T分解A实对称正定时顺序主子式皆正,可作LDL T,D的对角元素皆正,有正的平方根。
因此有LL T 分解A =LL T ,L 下三角阵,对角元素皆正,是LDL T 中的LD 1/2.乃可用上半部元素逐列计算L T .l 11=a 111/2 l 21= a 12/l 11 l 31=a 13/l 11l 22=(a 22-l 212)1/2 l 32=(a 23-l 21l 31)/l 22l 33=a 33-l 312-l 322也可用下半部元素逐行计算L .计算表格和算法安排如下:l 11=a 111/2l 21= a 21/l 11 l 22=(a 22-l 212)1/2l 31= a 31/l 11 l 32=(a 32-l 31l 21)/l 22l 33=(a 33-l 312-l 322)1/2l 11=a 111/2 for i =2:nfor j =1:i -1l ij =(a ij -l i 1l j 1-l i 2l j 2-…-l i ,j-1l j ,j-1)/d jjend2/121,2221)(-----=i i i i ii ii l l l a l Λ end存储量,运算量同LDL T 分解,但要n 次求平方根.利用LL T 分解解Ax =b 分三步:1.分解A =LL T2.解 Lg =b 求g 3.解 L T x =g 求x③ 三对角方程组的追赶法消去法或LU 分解用于三对角方程组有特殊形式,即称追赶法.设Ax =f : b 1x 1+ c 1x 2=f 1a i x i-1+b i x i +c i x i+1=f i i=2,3,n -1 a n x n-1+b n x n =f nA 是三对角阵,则L ,U 同样结构.L 的对角元素为α2,α3,…,αn ,U 的对角元素为β1,β2,…,βn ,上对角元素同A .1.分解A =LU : β1= b 1,αi =a i /βi-1,βi = b i -αi c i -1, i=2,3,…,n 2.解 Lg =f 求g : g 1=f 1,g i =f i -αi f i -1, i=2,3,…,n 3.解 U x =g 求x : x n =g n /βn ,x i =(g i -c i x i +1)/βi , i=n -1,n -2,…,1编程时,A 可用三个一维数组,f 用一个一维数组.L ,U 存入A 。
g ,x存入f 。
还有一种计算格式,消去时用主元素除主行元素,即分解A 为下三角矩阵和单位上三角矩阵之积,相当于对A T 作LU 分解.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--n nnn n nnn g g g a a f f f b a c c b a c b M M O O O O O M M O O O O O 2112221121122211)()()(βγγβγβ括号中是单位上三角矩阵的上对角元素.计算步骤:1.分解A =LU : β1=b 1,γ1=c 1/β1,βi =b i -a i γi -1,γi =c i /βi , i=2,3,…,n 2.解 Lg =f 求g : g 1=f 1/β1,g i =(f i -a i g i -1)/βi , i=2,3,…,n 3.解 U x =g 求x : x n =g n ,x i =g i -γi x i +1, i=n -1,n -2,…,1 三对角矩阵是带形矩阵的特例.所谓带形矩阵是那些主对角线附近几条对角线以外元素皆零的矩阵,即a ij ≠0,仅当-m 1<j-i <m 2.带形矩阵的LU 分解也保持结构.5.4 向量和矩阵的范数引入实数的绝对值和复数的模(也称绝对值)来表示实数和复数的”大小”,从而带来许多用处.例如,数列收敛的概念就是通过绝对值来表示的.范数这个概念就是这些表示”大小”的数值普遍化.它在研究数值计算方法的收敛性和稳定性中有着重要的应用. ① 向量的范数定义1. 如果向量)(n n C R x 或∈的某个实值函数x x N =)( ,满足条件:1. 正定性:║x ║≥0,║x ║=0 iff x =02. 齐次性:║c x ║=│c │║x ║, C c ∈∀3.三角不等式:①║x +y ║≤║x ║+║y ║ ② | y x - |y x -≤则称C n 中定义了向量范数║x ║为向量x 的范数。
可见向量范数是向量的一种具有特殊性质的实值函数。
常用向量范数有:(令x =( x 1,x 2,…,x n )T )1-范数: ║x ║1=│x 1│+│x 2│+…+│x n │ 2-范数: ║x ║2=(│x 1│2+│x 2│2+…+│x n │2)1/2 ∞-范数: ║x ║∞=max(│x 1│,│x 2│,…,│x n │)易得║x ║∞≤║x ║2≤║x ║1≤n 1/2║x ║2≤n ║x ║∞P -范数: ).,1[,)(11∞∈=∑=P x xni P Pi P其中定理1.C n 中任意两种向量范数║x ║α,║x ║β是等价的,即m ,M >0使m ║x ║α≤║x ║β≤M ║x ║可根据范数的连续性来证明它.由定理1可得。
定理2.0lim lim )()(=-⇔=*∞→*∞→x x x x k k k k ,其中•为向量的任一种范数。
此时称{x (k )}收敛于x ,记作x (k ) →x (k →∞),或x x k k =∞→)(lim 。
② 矩阵的范数定义2.设R X C X n n ∈→∈•⨯:,满足1. 正定性:║X ║≥0,║X ║=0 iff X =02. 齐次性:║c X ║=│c │║X ║, C c ∈∀3. 三角不等式:║X +Y ║≤║X ║+║Y ║4. 相容性: ║XY ║≤║X ║║Y ║ 则称C n ⨯n 中定义了矩阵范数,║X ║为矩阵X 的范数.注意:矩阵X 可视为n 2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.║Ax ║≤║A ║║x ║所谓由向量范数导出的矩阵范数与该向量范数就是相容的.定理3. 设A 是n ×n 矩阵,║•║是n 维向量范数则║A ║=max{║Ax ║/║x ║=1}= max{║Ax ║/║x ║,x ≠0}是一种矩阵范数,称为由该向量范数导出的矩阵范数或算子范数,它们具有相容性或者说是相容的。
单位矩阵的算子范数为1。
可以证明任一种矩阵范数总有与之相容的向量范数.例如定义:║x ║=║X ║,X =(xx …x )常用的三种向量范数导出的矩阵范数是1-范数:║A ║1= max{║Ax ║1/║x ║1=1}=∑=≤≤ni jj nj a 11max2-范数:║A ║2=max{║Ax ║2/║x ║2=1}=1λ,λ1是A T A 的最大特征值.∞-范数:║A ║∞=max{║Ax ║∞/║x ║∞=1}=∑=≤≤nj ij ni a 11max此外还有Frobenius 范数:∑==nj i ij Fa A1,212)(.它与向量2-范数相容.③ 矩阵譜半径定义3.设A 是n ×n 矩阵,λi 是其特征值,i =1,2,…,n .称i ni A λρ≤≤=1max )(为A 的譜半径.譜半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系:ρ(A )≤║A ║因为任一特征对λ,x ,Ax =λx ,令X =(xx …x ),可得AX =λX .两边取范数,由矩阵范数的相容性和齐次性就导出结果.定理3. 矩阵序列I ,A ,A 2,…A k ,…收敛于零的充分必要条件是ρ(A )<1.5.5 误差分析① 病态现象例3给出一个方程组顺序消去法解的误差很大,主元素法解的误差很小.该方程组数据有微小变化时解的变化也小.但有些方程组不是这样的,数据有微小变化时解的变化大.换句话说后一种方程组对数据变化敏感,前一种方程组对数据变化不敏感,这两种方程组(和相应的矩阵)分别称为病态的和良态的. 例5. 病态方程组⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡110001.220001.1111,02220001.1111例6. 病态矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-28004200168014042006480270024016802700120012014024012016,7/16/15/14/16/15/14/13/15/14/13/12/14/13/12/11144H H H 4取五位有效数字,其逆误差在前面第二、三位上:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--2871.14310.0-1726.1144.20-4310.0-6650.12771.3- 246.491726.12771.3-1229.972.122144.20- 246.4972.122248.16② 扰动分析与矩阵条件数现在考虑系数、右端项有扰动时解的变化,也就是数据有误差时解的误差. 设Ax =b ,右端项有扰动A (x +δx )=b +δb ,A 可逆解皆存在惟一,其差δx =A -1δb, ║δx ║≤║A -1║║δb ║, ║δx ║/║x ║≤(║A -1║║A ║)║δb ║/║b ║再考虑系数有扰动(A +δA )(x +δx )=b.首先,当A 可逆,║A -1║║δA ║<1时A +δA 可逆.因为此时ρ(A -1δA )≤║A -1δA ║≤║A -1║║δA ║<1,I +A -1δA 可逆,从而A +δA=A (I +A -1δA )可逆.原方程与扰动方程解皆存在惟一,二方程相减有A δx = -δA (x +δx ), δx = -A -1δA (x +δx )两边取范数可得║δx ║≤║A -1║║δA ║(║x ║+║δx ║)从而有AAA AA A xxδδδ111---≤类似的方法不难导出一般情况下,即系数、右端项都有扰动时的估计:⎪⎪⎭⎫⎝⎛+-≤--A A x xA A AA A A xxδδδδδ111 注意到估计式表明:║A -1║║A ║不大,对解的影响也不大; ║A -1║║A ║越大,扰动对解的影响也越大.这就是说该向量是方程组敏感性以及病态或良态的度量,称为矩阵的条件数,记为Cond(A )ν=║A -1║ν║A ║ν.它有如下性质:1. Cond(A )≥12. Cond(c A )=Cond(A ),c ≠03. Cond(A )2=║A -1║2║A ║2=21λλ称为谱条件数。