运筹学最短路径实验
运筹学C语言实现Dijkstra算法求解图的最短路径

运筹学课程设计报告姓名:一、算法思想运用Dijkstra算法求解图的最短路径。
Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S 表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。
在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。
此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
二、算法流程或步骤Dijkstr算法具体步骤:(1)初始时,S只包含源点,即S=,v的距离为0。
U包含除v 外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。
(2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
(3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
(4)重复步骤(2)和(3)直到所有顶点都包含在S中。
三、算法源程序#include <iostream.h>int m;int n;float a[100][100];float dist[100];int prev[100];float MAX_V ALUE=10000;void dijkstra(){if(m<0||m>n) //当无顶点的情况return;bool *s=new bool[n+1];for(int i=0;i<n;i++){dist[i]=a[0][i]; //与源点相连的权值s[i]=false;if(dist[i]==MAX_V ALUE) //与源点无连接的顶点prev[i]=0; //设置对应权值为elseprev[i]=m; //与源点相连接的顶点设置为m }dist[m]=0;s[m]=true;for(int i1=0;i1<n;i1++){float temp=MAX_V ALUE;int u=m;for(int j=0;j<n;j++)if((!s[j])&&(dist[j]<temp))//与源点相连的顶点{u=j;temp=dist[j]; //设置temp成为与源点相连的顶点权值}s[u]=true;for(int j1=0;j1<n;j1++)if((!s[j1])&&(a[u][j1]<MAX_V ALUE)){float newdist=dist[u]+a[u][j1]; //算出与源点不直接相连的权值和if(newdist<dist[j1]){dist[j1]=newdist;prev[j1]=u;}}}}void path(){for(int i=0;i<n;i++)if(i!=m&&dist[i]<MAX_V ALUE){cout<<"由源到顶点"<<i<<"的最短路径为:(终点位置) "<<i;int temp=i;do{temp=prev[temp];cout<<" <-- "<<temp;}while(temp!=m);cout<<" (源位置)。
最短路径的实验报告

最短路径的实验报告最短路径的实验报告引言:最短路径问题是图论中一个经典的问题,涉及到在一个带有权重的图中找到两个顶点之间的最短路径。
本实验旨在通过实际操作和算法分析,深入探讨最短路径算法的性能和应用。
实验设计:本次实验使用了Dijkstra算法和Floyd-Warshall算法来解决最短路径问题。
首先,我们使用Python编程语言实现了这两个算法,并对它们进行了性能测试。
然后,我们选择了几个不同规模的图进行实验,以比较这两种算法的时间复杂度和空间复杂度。
最后,我们还在实际应用中使用了最短路径算法,以验证其实用性。
实验过程:1. 实现Dijkstra算法Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。
我们首先实现了该算法,并对其进行了性能测试。
在测试中,我们使用了一个包含1000个顶点和5000条边的图,记录了算法的运行时间。
结果显示,Dijkstra算法的时间复杂度为O(V^2),其中V表示图中的顶点数。
2. 实现Floyd-Warshall算法Floyd-Warshall算法是一种动态规划算法,用于求解所有顶点对之间的最短路径。
我们在Python中实现了该算法,并对其进行了性能测试。
在测试中,我们使用了一个包含100个顶点和5000条边的图,记录了算法的运行时间。
结果显示,Floyd-Warshall算法的时间复杂度为O(V^3),其中V表示图中的顶点数。
3. 比较两种算法通过对Dijkstra算法和Floyd-Warshall算法的性能测试,我们可以看到,Dijkstra算法在处理较大规模的图时性能更好,而Floyd-Warshall算法在处理较小规模的图时性能更好。
因此,在实际应用中,我们可以根据图的规模选择合适的算法。
4. 应用实例为了验证最短路径算法的实际应用性,我们选择了一个城市交通网络图进行实验。
我们使用了Dijkstra算法来计算两个城市之间的最短路径,并将结果与实际的驾车时间进行比较。
实验三最短路径的算法(离散数学实验报告)

实验三最短路径的算法(离散数学实验报告)实验3:最短路径算法⼀、实验⽬的通过本实验的学习,理解Floyd(弗洛伊得)最短路径算法的思想⼆、实验内容⽤C语⾔编程实现求赋权图中任意两点间最短路径的Floyd算法,并能对给定的两结点⾃动求出最短路径三、实验原理、⽅法和⼿段1、Floyd算法的原理定义:Dk[i,j] 表⽰赋权图中从结点vi出发仅通过v0,v1,┉,vk-1中的某些结点到达vj的最短路径的长度,若从vi到vj没有仅通过v0,v1,┉,vk-1 的路径,则D[i,j]=∝即D-1[i,j] 表⽰赋权图中从结点vi到vj的边的长度,若没有从结点vi到vj的边,则D[i,j]=∝D0[i,j] 表⽰赋权图中从结点vi到vj的”最短”路径的长度, 这条路上除了可能有v0外没有其它结点D1[i,j] 表⽰赋权图中从结点vi到vj的”最短”路径的长度, 这条路上除了可能有v0,v1外没有其它结点┉┉┉根据此定义,D k[i,j]=min{ D k-1[i,j] , D k-1[i,k-1]+D k-1[k-1,j] }定义:path[i,j]表⽰从结点vi到vj的“最短”路径上vi的后继结点四、实验要求要求输出每对结点之间的最短路径长度以及其最短路径五、实验步骤(⼀)算法描述Step 1 初始化有向图的成本邻矩阵D、路径矩阵path若从结点vi到vj有边,则D[i,j]= vi到vj的边的长度,path[i,j]= i;否则D[i,j]=∝,path[i,j]=-1Step 2 刷新D、path 对k=1,2,┉n 重复Step 3和Step 4Step 3 刷新⾏对i=1,2,┉n 重复Step 4Step 4 刷新Mij 对j=1,2,┉n若D k-1[i,k]+D k-1[k,j][结束循环][结束Step 3循环][结束Step 2循环]Step 5 退出(⼆)程序框图参考主程序框图其中,打印最短路径中间结点调⽤递归函数dist(),其框图如下,其中fist,end是当前有向边的起点和终点dist(int first, int end)七、测试⽤例:1、输⼊成本邻接矩阵:D :06380532290141003210∝∝∝∝V V V V V V V V (其中∝可⽤某个⾜够⼤的数据值代替,⽐如100)可得最短路径矩阵:P :131132122211111010103210--------V V V V V V V V以及各顶点之间的最短路径和最短路径长度:从V0到V1的最短路径长度为:1 ;最短路径为:V0→V1 从V0到V2的最短路径长度为:9 ;最短路径为:V0→V1→V3→V2 从V0到V3的最短路径长度为:3 ;最短路径为:V0→V1→V3 从V1到V0的最短路径长度为:11;最短路径为:V1→V3→V2→V0从V1到V2的最短路径长度为:8 ;最短路径为:V1→V3→V2 从V1到V3的最短路径长度为:2 ;最短路径为:V1→V3 从V2到V0的最短路径长度为:3 ;最短路径为:V2→V0 从V2到V1的最短路径长度为:4 ;最短路径为:V2→V0→V1 从V2到V3的最短路径长度为:6 ;最短路径为:V2→V0→V1→V3 从V3到V0的最短路径长度为:9 ;最短路径为:V3→V2→V0 从V3到V1的最短路径长度为:10;最短路径为:V3→V2→V0→V1 从V3到V2的最短路径长度为:6 ;最短路径为:V3→V2 参考程序: #include #define INFINITY 100 #define Max 10int a[Max][Max],P[Max][Max]; main() {void Print_Flod(int d);int i,j,k,D=4;printf("请输⼊成本邻接矩阵:\n");for(i=0;ifor(j=0;j{scanf("%d",&a[i][j]);}for(i=0;ifor(j=0;j{if(a[i][j]>0&& a[i][j]elseP[i][j]=-1;}for(k=0;kfor(i=0;ifor(j=0;jif (a[i][k]+a[k][j]{a[i][j]=a[i][k]+a[k][j];P[i][j]=k;}Print_Flod(D);}void Print_Flod(int d){void dist(int first,int end);int i,j;for(i=0;ifor(j=0;jif(i!=j){ printf("from V%d to V%d: ",i,j); dist(i,j);printf("V%d",j);printf(" (The length is: %d)\n",a[i][j]); }}void dist(int first,int end){ int x;x=P[first][end];if(x!=first){ dist(first,x); dist(x,end); }else printf("V%d->",x);}输出结果:。
最短路径实验报告

最短路径实验报告最短路径实验报告引言:最短路径算法是计算机科学中的一个经典问题,它在许多领域中都有广泛的应用,如交通规划、电路设计、网络通信等。
本实验旨在通过实践探索最短路径算法的实际应用,并对其性能进行评估。
一、问题描述:我们将研究一个城市的交通网络,其中包含多个节点和连接这些节点的道路。
每条道路都有一个权重,表示通过该道路所需的时间或距离。
我们的目标是找到两个节点之间的最短路径,即使得路径上各个道路权重之和最小的路径。
二、算法选择:为了解决这个问题,我们选择了Dijkstra算法和Floyd-Warshall算法作为比较对象。
Dijkstra算法是一种单源最短路径算法,它通过不断选择当前最短路径的节点来逐步扩展最短路径树。
Floyd-Warshall算法则是一种多源最短路径算法,它通过动态规划的方式计算任意两个节点之间的最短路径。
三、实验设计:我们首先构建了一个包含10个节点和15条道路的交通网络,每条道路的权重随机生成。
然后,我们分别使用Dijkstra算法和Floyd-Warshall算法计算两个节点之间的最短路径,并记录计算时间。
四、实验结果:经过实验,我们发现Dijkstra算法在计算单源最短路径时表现出色,但是在计算多源最短路径时效率较低。
而Floyd-Warshall算法在计算多源最短路径时表现出色,但是对于大型网络的单源最短路径计算则需要较长的时间。
五、性能评估:为了评估算法的性能,我们对不同规模的交通网络进行了测试,并记录了算法的计算时间。
实验结果显示,随着交通网络规模的增大,Dijkstra算法的计算时间呈指数级增长,而Floyd-Warshall算法的计算时间则呈多项式级增长。
因此,在处理大型网络时,Floyd-Warshall算法具有一定的优势。
六、实际应用:最短路径算法在实际应用中有着广泛的用途。
例如,在交通规划中,最短路径算法可以帮助我们找到最优的行车路线,减少交通拥堵。
运筹学最短路径问题实验报告

实验报告填写说明
(实验项目名称、实验项目类型必须与实验教学大纲保持一致)
1.实验环境:
实验用的硬件、软件环境。
2.实验目的:
根据实验教学大纲,写出实验的要求和目的。
3.实验原理:
简要说明本实验项目所涉及的理论知识。
4.实验步骤:
这是实验报告极其重要的容。
对于验证性验,要写清楚操作方法,需要经过哪几个步骤来实现其操作。
对于设计性和综合性实验,还应写出设计思路和设计方法。
对于创新性实验,还应注明其创新点。
5.实验结论:
根据实验过程中得到的结果,做出结论。
6.实验总结:
本次实验的收获、体会和建议。
7.指导教师评语及成绩:
指导教师依据学生的实际报告内容,给出本次实验报告的评价和成绩。
附录1:源程序。
实验一最短路径求解最短路径求解

实验一最短路径求解最短路径求解
实验一:最短路径求解
实验目的:利用Excel 线性规划求解最短思路。
实验环境:Microsoft Excel2003,Windows XP。
实验注意事项:
实验内容:使用线性规划计算机程序求解图1.1网络拓扑图中s
点到t 点间的最短路径。
图1.1 网络拓扑图
实验步骤:
1. 添加“规划求解”项,可通过“工具” “加载宏”加入该项
功能。
2. 将网络拓扑图转化成关联矩阵
A 矩阵表示各节点与各边相接的连接关系,若边e i 与节点v i
无关联则在此型式为0;若边e i 表示从节点v i 流出为1,若边e i 表示从节点v i 流入为-1。
列出各弧长向量W :
A 矩阵与向量W 出更可完整描述出数据流结构。
3. 根据Bellman 方程和约束条件进行求解
约束条件:若形成两点之间的最长路径,则起点s 必有一出路径,终点t 必有一入路径,其他中间节点必然一进有一进一出的路径。
Bellman 方程中Xi 向量为求解目标,Xi 代表此边是否在最短路
径上,如在最短路径上测度为1,若不在取值为0。
4. 使用Excel 线性规划求解,选择主菜单的“工具” “规划求解”即可进入“规划求解
参数”定义窗口;
其中目标单元格为Wi ×Xi ,可变单元格为Xi ,约束条件为Xi ≤1,且为整数;
AXi 表示向量值为Bellman 方程中所示(这里为方便求解,特将
s 点的AXs 值-1,将t 点的AXt 值+1,这样约束向量AXi=『0,0,0,0』)。
点击“求解”可得规划目标。
最短路径实验报告

云南财经大学信息学院学生综合性与设计性实验报告(2013—2014 学年第 2 学期)一、实验内容与目的1.内容查看“最短路径.swf”,选择熟悉的程序设计语言定义有向图,根据动画演示求取从有向图任一结点到其他结点的最短路径。
2.实验目的了解最短路径的概论,掌握求最短路径的方法。
二、实验原理或技术路线(可使用流程图描述)实验原理:(李燕妮负责设计,周丽琼负责编程)图是由结点的有穷集合V和边的集合E组成,求最短路径用迪杰斯特拉算法:1)适用条件&范围:a) 单源最短路径(从源点s到其它所有顶点v);b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图)c) 所有边权非负(任取(i,j)∈E都有Wij≥0);2)算法描述:a)初始化:dis[v]=maxint(v∈V,v≠s); dis[s]=0; pre[s]=s; S={s};b)For i:=1 to n1.取V-S中的一顶点u使得dis[u]=min{dis[v]|v∈V-S}2.S=S+{u}3.For V-S中每个顶点v do Relax(u,v,Wu,v)c)算法结束:dis[i]为s到i的最短距离;pre[i]为i的前驱节点三、实验环境条件(使用的软件环境)Microsoft Visual C++6.0四、实验方法、步骤(列出程序代码或操作过程)/*本程序的功能是求图中任意两点间的最短路径*/#include<stdio.h>#include<stdlib.h>#include<conio.h>#include<string.h>#define ING 9999typedef struct ArcCell{int adj;/*顶点关系类型,用1表示相邻,0表示不相邻*/}ArcCell,**AdjMatrix;/*邻接矩阵*/typedef struct type{char data[3];/*顶点值*/}VertexType;typedef struct{VertexType *vexs; /*顶点向量*/AdjMatrix arcs; /*邻接矩阵*/int vexnum,arcnum; /*图的顶点数和边数*/}MGraph;/*初始图*/void InitGraph(MGraph *G){int i,nu,mu;printf("\n输入顶点的个数和(边)弧的个数:");scanf("%d %d",&nu,&mu);G->arcs=(ArcCell **)malloc(nu*sizeof(ArcCell *));for(i=0;i<nu;i++)/*分配邻接矩阵空间*/G->arcs[i]=(ArcCell *)malloc(nu*sizeof(ArcCell));G->vexs=(VertexType *)malloc(nu*sizeof(VertexType)); /*分配顶点空间*/ G->vexnum=nu;G->arcnum=mu; /*图的顶点数和边数*/}void InsertGraph(MGraph *G,int i,VertexType e){if(i<0||i>G->vexnum) return;strcpy(G->vexs[i].data,e.data);}/*确定v1在图顶点中的位置*/int Locate(MGraph G,VertexType v1){int i;for(i=0;i<G.vexnum;i++)if(strcmp(v1.data,G.vexs[i].data)==0) return i;return -1;}/*采用数组(邻接矩阵)和邻接表表示无向图*/void CreateUND(MGraph *G){int i,j,k,*p,w;VertexType v1,v2;p=(int *)malloc(G->vexnum*sizeof(int));for(i=0;i<10;i++) p[i]=0;for(i=0;i<G->vexnum;++i) /*初始邻接表*/{for(j=0;j<G->vexnum;++j)G->arcs[i][j].adj=ING;}for(k=0;k<G->arcnum;++k){printf("\n输入第%d 条(边)弧相对的两个顶点值:\n",k+1);scanf("%s %s",v1.data,v2.data);/*输入相邻的两个点值*/printf("输入它们的权值: ");scanf("%d",&w);i=Locate(*G,v1);j=Locate(*G,v2); /*用i 和j来确定它们的位置*/G->arcs[i][j].adj=w;}}/*输出邻接矩阵*/void Pint(MGraph G){int i,j;for(i=0;i<G.vexnum;i++){for(j=0;j<G.vexnum;j++){if(G.arcs[i][j].adj!=ING)printf("\t%d",G.arcs[i][j].adj);else{if(i==j)printf("\t0");else printf("\t∞");}}printf("\n");}}/*对顶点V0到其余顶点v的最短路径p[v]及其带权长度D[v]若p[v][w]为1,则w是从V0到W当前求得最短路径上的顶点, final[v]为1,当且仅当v属于S,即已经求得从v0到v的最短路*/void ShortestPath(MGraph G,int v0,int **p,int *D){int v,u,i,w,min;int *final;final=(int *)malloc(G.vexnum*sizeof(int));/*分配空间*/for(v=0;v<G.vexnum;++v){final[v]=0;D[v]=G.arcs[v0][v].adj;/*初始化*/for(w=0;w<G.vexnum;++w) p[v][w]=0;/*设空路径*/if(D[v]<ING){p[v][v0]=1;p[v][v]=1;}/*v到v0有路径*/}D[v0]=0;final[v0]=1;/*初始化,V0顶点属于S集*/for(i=1;i<G.vexnum;i++){/*其余G.vexnum-1个顶点*/min=ING;for(w=0;w<G.vexnum;++w) /*求出矩阵这一行的最小值*/ if(!final[w]) /*W顶点属于V-S中*/if(D[w]<min){v=w;min=D[w];}final[v]=1;/*离V0顶点最近的V加入S集*/for(w=0;w<G.vexnum;++w) /*更新当前最短路径及距离*/ if(!final[w]&&(min+G.arcs[v][w].adj<D[w])){ /*不是最小的,修改D[w],P[w]*/D[w]=min+G.arcs[v][w].adj;for(u=0;u<G.vexnum;u++)p[w][u]=p[v][u];p[w][w]=1;}}free(final);}void main(){MGraph G;VertexType e;int i,j;int **p;int *D;InitGraph(&G);p=(int **)malloc(G.vexnum*sizeof(int *));for(i=0;i<G.vexnum;i++)p[i]=(int *)malloc(G.vexnum*sizeof(int));D=(int *)malloc(G.vexnum*sizeof(int));printf("顶点值:\n");for(i=0;i<G.vexnum;++i)/*给图顶点向量付值*/{scanf("%s",e.data);InsertGraph(&G,i,e);}CreateUND(&G);/*构造图结构*/printf("邻接矩阵为:\n");Pint(G);for(i=0;i<G.vexnum;i++) /*输出邻接矩阵*/{ShortestPath(G,i,p,D); /*调用最短函数*/for(j=0;j<G.vexnum;j++)if(i!=j) printf(" %s 到%s 的最短路径为%d \n",G.vexs[i].data,G.vexs[j].data,D[j]);printf("\n\n");}getch();}五、实验过程原始记录( 测试数据、图表)请给出各个操作步骤的截图和说明,要求有对时间复杂度和空间复杂度的说明。
最短路径实验指导书

实验八最短路径实验一、实验目的通过最短路径求解的实验,帮助学生熟练掌握图的顶点和边的概念,以及其存储实现;掌握图的基本运算和利用图解决实际问题的基本方法。
二、实验内容以严蔚敏《数据结构(C语言版)》教科书图7.33交通图为例,求解最短路径。
具体内容包括:1、用文本文件组织图的顶点和图的边。
2、图的存储表示:从文件中输入图的顶点和图的边,并转换为图的存储结构表示。
3、求解交通图的最短路径,并用文件保存图的最短途径数据。
4、求解从一个城市出发到其它所有城市的最短路径。
5、求解从一个城市到另一个城市的最短路径。
三、实验仪器微型计算机实验用编程语言:Turbo C 2.0,Borland C 3.0等以上版本四、实验原理图是顶点的集合和边的集合。
边定义了顶点之间的关系。
1、图的存储表示(1)图的顶点的表示在交通图中,图的一个顶点表示一个城市的名字。
城市的名字用一个字符串表示。
因此,图的顶点集用一个二维字符数组表示,也可以说以字符串为单位的一维数组表示。
用C语言定义为:char city[CityNum][NameLenght];图的顶点在图中的位置用顶点名(城市名)在一维顶点向两种的序号表示。
顶点在图的位置(序号)与顶点的输入顺序有关。
对于同一个图,顶点的输入顺序不同,顶点在图中的位置不同,但不影响计算结果。
(2)图的边的表示在交通图中,边表示城市之间的交通线路,在本例中假设交通线路为铁路。
边上的权值表示铁路的长度(公里数)。
考虑铁路都是双向行使,交通图用无向图来表示。
为了方便求的任给两个城市是否有铁路相连,以及铁路的长度,用邻接矩阵表示交通图中各城市之间的邻接关系。
用C语言定义为:int arc[CityNum][CityNum](3)图的总体存储表示图的总体存储表示定义如下:#define CityNum 30 //最大城市结点数#define NameLenght 12 //城市名字长度#define Infinity 10000 //若城市间没有路径距离设定为Infinitytypedef char Vextype[NameLenght];typedef int Arctype;typedef struct{ Vextype vexs[CityNum]; // 顶点数组Arctype arcs[CityNum][CityNum]; //边矩阵,权值w ijint vexnum,arcnum; //顶点数,边数} Mgraph2、最短路径的表示最短路径值用矩阵表示,其定义如下:int dist[CityNum][CityNum]其中,dist[i][j]表示第i个城市到第j个城市的最短路径值路径顶点序列用路径矩阵表示,定义如下:int Path[CityNum][CityNum]其中,Path[i][j]表示第i个城市到第j个城市的路径上,第j个城市的前一个城市(序号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学合理的运输路线对物流的成本的大小影响很大。Dijkstra算法就是通过一种方法,使运输路线最短,运费最少,尽可能的降低物流成本,提高产品的竞争力,Dijkstra,根据距 从近到远的顺序,依次求得 到 各顶点的最短路径和距离,直至 ,算法结束。根据记录的最后路径 逆推至 , , ,总结出路径为 ,所以最短距离为1号, , 最小,给 以P标号,令 ,记录路径
7. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, , 最小,给 以P标号,令 ,记录路径
8. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, 最小,给 以P标号,令 ,记录路径
至此可以得到最短路径为 ,最短行程为15
Dijkstra算法的基本步骤如下:
(1)给起点 以P标号 ,其余各点均给以T标号, 。
(2)若 点为刚得到的p标号的点,考虑这样的点为 ,考虑 这条边,且 为T标号,对 的T标号进行如下更改
(3)比较所有具有T标号的点,把最小者改为P标号,即 ,当存在两个以上最小者时,可同时改为P标号,若全部点均为P标号,则停止,否则 代 改为第二步重做。
案例分析
下图所示是某地区交通运输的示意图,试问从 出发,经哪条路线达到 才能使总行程最短?使用Dijkstra求解。
5 9
4 4 7 5 4
6 4 5 1
7 6
步骤:
1.首先给 以P标号, ,给其余所有的点以T标号,
2.(1)考察点 ,边
(2)比较所有T标号 , 最小,所以给 以P标号,令 ,记录路径
实验项目:最短路径问题
实验学时:4
实验日期:2012年11月30日
实验要求:案例模型分析
实验内容:用最短路径模型解决具体问题
前言
运输是物流过程的主要职能之一,也是物流过程各项业务的中心活动。物流过程中的其它各项活动,如包装、装卸搬运、物流信息等,都是围绕着运输而进行的。可以说,在科学技术不断进步、生产的社会化和专业化程度不断提高的今天,一切物质产品的生产和消费都离不开运输。物流合理化,在很大程度上取决于运输合理化。所以,在物流过程的各项业务活动中,运输是关键,起着举足轻重的作用。而有效的缩减路径可以使得运输费用降低。本文运用Dijkstra算法求出最短路径,以最大限度地节约运输费用降低物流成本,Dijkstra算法用于求解最短路径问题最常用的方法之一。
3. (1) 为刚得到P标号的点,考察边
(2)比较所有T标号, , 最小,给 以P标号,令 ,记录路径
4. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, , 最小,给 以P标号,令
,记录路径
5. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, , 最小,给 以P标号,令 ,记录路径