运筹学最短路径实验
最短路径的实验报告

最短路径的实验报告最短路径的实验报告引言:最短路径问题是图论中一个经典的问题,涉及到在一个带有权重的图中找到两个顶点之间的最短路径。
本实验旨在通过实际操作和算法分析,深入探讨最短路径算法的性能和应用。
实验设计:本次实验使用了Dijkstra算法和Floyd-Warshall算法来解决最短路径问题。
首先,我们使用Python编程语言实现了这两个算法,并对它们进行了性能测试。
然后,我们选择了几个不同规模的图进行实验,以比较这两种算法的时间复杂度和空间复杂度。
最后,我们还在实际应用中使用了最短路径算法,以验证其实用性。
实验过程:1. 实现Dijkstra算法Dijkstra算法是一种贪心算法,用于求解单源最短路径问题。
我们首先实现了该算法,并对其进行了性能测试。
在测试中,我们使用了一个包含1000个顶点和5000条边的图,记录了算法的运行时间。
结果显示,Dijkstra算法的时间复杂度为O(V^2),其中V表示图中的顶点数。
2. 实现Floyd-Warshall算法Floyd-Warshall算法是一种动态规划算法,用于求解所有顶点对之间的最短路径。
我们在Python中实现了该算法,并对其进行了性能测试。
在测试中,我们使用了一个包含100个顶点和5000条边的图,记录了算法的运行时间。
结果显示,Floyd-Warshall算法的时间复杂度为O(V^3),其中V表示图中的顶点数。
3. 比较两种算法通过对Dijkstra算法和Floyd-Warshall算法的性能测试,我们可以看到,Dijkstra算法在处理较大规模的图时性能更好,而Floyd-Warshall算法在处理较小规模的图时性能更好。
因此,在实际应用中,我们可以根据图的规模选择合适的算法。
4. 应用实例为了验证最短路径算法的实际应用性,我们选择了一个城市交通网络图进行实验。
我们使用了Dijkstra算法来计算两个城市之间的最短路径,并将结果与实际的驾车时间进行比较。
最短路径实验报告

最短路径实验报告最短路径实验报告引言:最短路径算法是计算机科学中的一个经典问题,它在许多领域中都有广泛的应用,如交通规划、电路设计、网络通信等。
本实验旨在通过实践探索最短路径算法的实际应用,并对其性能进行评估。
一、问题描述:我们将研究一个城市的交通网络,其中包含多个节点和连接这些节点的道路。
每条道路都有一个权重,表示通过该道路所需的时间或距离。
我们的目标是找到两个节点之间的最短路径,即使得路径上各个道路权重之和最小的路径。
二、算法选择:为了解决这个问题,我们选择了Dijkstra算法和Floyd-Warshall算法作为比较对象。
Dijkstra算法是一种单源最短路径算法,它通过不断选择当前最短路径的节点来逐步扩展最短路径树。
Floyd-Warshall算法则是一种多源最短路径算法,它通过动态规划的方式计算任意两个节点之间的最短路径。
三、实验设计:我们首先构建了一个包含10个节点和15条道路的交通网络,每条道路的权重随机生成。
然后,我们分别使用Dijkstra算法和Floyd-Warshall算法计算两个节点之间的最短路径,并记录计算时间。
四、实验结果:经过实验,我们发现Dijkstra算法在计算单源最短路径时表现出色,但是在计算多源最短路径时效率较低。
而Floyd-Warshall算法在计算多源最短路径时表现出色,但是对于大型网络的单源最短路径计算则需要较长的时间。
五、性能评估:为了评估算法的性能,我们对不同规模的交通网络进行了测试,并记录了算法的计算时间。
实验结果显示,随着交通网络规模的增大,Dijkstra算法的计算时间呈指数级增长,而Floyd-Warshall算法的计算时间则呈多项式级增长。
因此,在处理大型网络时,Floyd-Warshall算法具有一定的优势。
六、实际应用:最短路径算法在实际应用中有着广泛的用途。
例如,在交通规划中,最短路径算法可以帮助我们找到最优的行车路线,减少交通拥堵。
运筹学论文最短路问题

运筹学论文——旅游路线最短问题摘要:随着社会的发展,人民的生活水平的提高,旅游逐渐成为一种时尚,越来越多的人喜欢旅游。
而如何才能最经济的旅游也成为人民考虑的一项重要环节,是选择旅游时间最短,旅游花费最少还是旅游路线最短等问题随之出现,如何决策成为一道难题。
然而,如果运用运筹学方法来解决这一系列的问题,那么这些问题就能迎刃而解。
本文以旅游路线最短问题为列,给出问题的解法,确定最短路线,实现优化问题。
关键词:最短路 0-1规划约束条件提出问题:从重庆乘飞机到北京、杭州、桂林、哈尔滨、昆明五个城市做旅游,每个城市去且仅去一次,再回到重庆,问如何安排旅游线路,使总旅程最短。
各城市之间的航线距离如下表:问题分析:1.这是一个求路线最短的问题,题目给出了两两城市之间的距离,而在最短路线中,这些城市有的两个城市是直接相连接的(即紧接着先后到达的关系),有些城市之间就可能没有这种关系,所以给出的两两城市距离中有些在最后的最短路线距离计算中使用到了,有些则没有用。
这是一个0-1规划的问题,也是一个线性规划的问题。
2.由于每个城市去且仅去一次,最终肯定是形成一个圈的结构,这就导致了这六个城市其中有的两个城市是直接相连的,另外也有两个城市是不连接的。
这就可以考虑设0-1变量,如果两个城市紧接着去旅游的则为1,否则为0。
就如同下图3.因为每个城市只去一次,所以其中任何一个城市的必有且仅有一条进入路线和一条出去的路线。
LINGO解法:为了方便解题,给上面六个城市进行编号,如下表(因为重庆是起点,将其标为1)重庆北京杭州桂林哈尔滨昆明1 2 3 4 5 6假设:设变量x11。
如果x11=1,则表示城市i与城市j直接相连(即先后紧接到达关系),否则若x11=0,则表示城市i与城市j不相连。
特别说明:xij和xji是同一变量,都表示表示城市i与城市j是否有相连的关系。
这里取其中xij (i<j)的变量。
模型建立:由于这是一个最短路线的问题,且变量已经设好。
最短路径实验报告

云南财经大学信息学院学生综合性与设计性实验报告(2013—2014 学年第 2 学期)一、实验内容与目的1.内容查看“最短路径.swf”,选择熟悉的程序设计语言定义有向图,根据动画演示求取从有向图任一结点到其他结点的最短路径。
2.实验目的了解最短路径的概论,掌握求最短路径的方法。
二、实验原理或技术路线(可使用流程图描述)实验原理:(李燕妮负责设计,周丽琼负责编程)图是由结点的有穷集合V和边的集合E组成,求最短路径用迪杰斯特拉算法:1)适用条件&范围:a) 单源最短路径(从源点s到其它所有顶点v);b) 有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图)c) 所有边权非负(任取(i,j)∈E都有Wij≥0);2)算法描述:a)初始化:dis[v]=maxint(v∈V,v≠s); dis[s]=0; pre[s]=s; S={s};b)For i:=1 to n1.取V-S中的一顶点u使得dis[u]=min{dis[v]|v∈V-S}2.S=S+{u}3.For V-S中每个顶点v do Relax(u,v,Wu,v)c)算法结束:dis[i]为s到i的最短距离;pre[i]为i的前驱节点三、实验环境条件(使用的软件环境)Microsoft Visual C++6.0四、实验方法、步骤(列出程序代码或操作过程)/*本程序的功能是求图中任意两点间的最短路径*/#include<stdio.h>#include<stdlib.h>#include<conio.h>#include<string.h>#define ING 9999typedef struct ArcCell{int adj;/*顶点关系类型,用1表示相邻,0表示不相邻*/}ArcCell,**AdjMatrix;/*邻接矩阵*/typedef struct type{char data[3];/*顶点值*/}VertexType;typedef struct{VertexType *vexs; /*顶点向量*/AdjMatrix arcs; /*邻接矩阵*/int vexnum,arcnum; /*图的顶点数和边数*/}MGraph;/*初始图*/void InitGraph(MGraph *G){int i,nu,mu;printf("\n输入顶点的个数和(边)弧的个数:");scanf("%d %d",&nu,&mu);G->arcs=(ArcCell **)malloc(nu*sizeof(ArcCell *));for(i=0;i<nu;i++)/*分配邻接矩阵空间*/G->arcs[i]=(ArcCell *)malloc(nu*sizeof(ArcCell));G->vexs=(VertexType *)malloc(nu*sizeof(VertexType)); /*分配顶点空间*/ G->vexnum=nu;G->arcnum=mu; /*图的顶点数和边数*/}void InsertGraph(MGraph *G,int i,VertexType e){if(i<0||i>G->vexnum) return;strcpy(G->vexs[i].data,e.data);}/*确定v1在图顶点中的位置*/int Locate(MGraph G,VertexType v1){int i;for(i=0;i<G.vexnum;i++)if(strcmp(v1.data,G.vexs[i].data)==0) return i;return -1;}/*采用数组(邻接矩阵)和邻接表表示无向图*/void CreateUND(MGraph *G){int i,j,k,*p,w;VertexType v1,v2;p=(int *)malloc(G->vexnum*sizeof(int));for(i=0;i<10;i++) p[i]=0;for(i=0;i<G->vexnum;++i) /*初始邻接表*/{for(j=0;j<G->vexnum;++j)G->arcs[i][j].adj=ING;}for(k=0;k<G->arcnum;++k){printf("\n输入第%d 条(边)弧相对的两个顶点值:\n",k+1);scanf("%s %s",v1.data,v2.data);/*输入相邻的两个点值*/printf("输入它们的权值: ");scanf("%d",&w);i=Locate(*G,v1);j=Locate(*G,v2); /*用i 和j来确定它们的位置*/G->arcs[i][j].adj=w;}}/*输出邻接矩阵*/void Pint(MGraph G){int i,j;for(i=0;i<G.vexnum;i++){for(j=0;j<G.vexnum;j++){if(G.arcs[i][j].adj!=ING)printf("\t%d",G.arcs[i][j].adj);else{if(i==j)printf("\t0");else printf("\t∞");}}printf("\n");}}/*对顶点V0到其余顶点v的最短路径p[v]及其带权长度D[v]若p[v][w]为1,则w是从V0到W当前求得最短路径上的顶点, final[v]为1,当且仅当v属于S,即已经求得从v0到v的最短路*/void ShortestPath(MGraph G,int v0,int **p,int *D){int v,u,i,w,min;int *final;final=(int *)malloc(G.vexnum*sizeof(int));/*分配空间*/for(v=0;v<G.vexnum;++v){final[v]=0;D[v]=G.arcs[v0][v].adj;/*初始化*/for(w=0;w<G.vexnum;++w) p[v][w]=0;/*设空路径*/if(D[v]<ING){p[v][v0]=1;p[v][v]=1;}/*v到v0有路径*/}D[v0]=0;final[v0]=1;/*初始化,V0顶点属于S集*/for(i=1;i<G.vexnum;i++){/*其余G.vexnum-1个顶点*/min=ING;for(w=0;w<G.vexnum;++w) /*求出矩阵这一行的最小值*/ if(!final[w]) /*W顶点属于V-S中*/if(D[w]<min){v=w;min=D[w];}final[v]=1;/*离V0顶点最近的V加入S集*/for(w=0;w<G.vexnum;++w) /*更新当前最短路径及距离*/ if(!final[w]&&(min+G.arcs[v][w].adj<D[w])){ /*不是最小的,修改D[w],P[w]*/D[w]=min+G.arcs[v][w].adj;for(u=0;u<G.vexnum;u++)p[w][u]=p[v][u];p[w][w]=1;}}free(final);}void main(){MGraph G;VertexType e;int i,j;int **p;int *D;InitGraph(&G);p=(int **)malloc(G.vexnum*sizeof(int *));for(i=0;i<G.vexnum;i++)p[i]=(int *)malloc(G.vexnum*sizeof(int));D=(int *)malloc(G.vexnum*sizeof(int));printf("顶点值:\n");for(i=0;i<G.vexnum;++i)/*给图顶点向量付值*/{scanf("%s",e.data);InsertGraph(&G,i,e);}CreateUND(&G);/*构造图结构*/printf("邻接矩阵为:\n");Pint(G);for(i=0;i<G.vexnum;i++) /*输出邻接矩阵*/{ShortestPath(G,i,p,D); /*调用最短函数*/for(j=0;j<G.vexnum;j++)if(i!=j) printf(" %s 到%s 的最短路径为%d \n",G.vexs[i].data,G.vexs[j].data,D[j]);printf("\n\n");}getch();}五、实验过程原始记录( 测试数据、图表)请给出各个操作步骤的截图和说明,要求有对时间复杂度和空间复杂度的说明。
运筹学及其应用10.2 最短路问题

3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 6,2 2
∞,1
v9
6
3
3 4
10 4
v6 2 v7 ∞,1
11,4
∞,1
v8
18
v2 5,3 1
6 2
v1
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 6,2 2
∞,1
v9
6
3
3 4
10 4
v6 2 v7 9,5
10,5
12,5
v8
19
v2 5,3 1
9
v2 6,1 1
6 2
v1
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 ∞,1 2
6
3
4 10
4
v6
2
v7
∞,1
∞,1
∞,1
v9
3
∞,1
v8
10
v2 6,1 1
6 2
v1
3
3,1
v3
0,0
6
1
2
10
v4
1,1
v5 ∞,1 2
6
3
4 10
4
v6
2
v7
∞,1
∞,1
∞,1
v9
3
∞,1
v8
11
v2 6,1 1
6 2
v1
3
3,1
v3
0,0
6
1
2
迪杰斯特拉算法求最短路径图解

迪杰斯特拉算法求最短路径图解
迪杰斯特拉算法是在用运筹学中解决路径搜索问题时候非常有用的一种算法。
它适用于求解从一个点到其他所有点的最短路径。
这种算法主要应用于交通网络,求解旅游问题,处理穿越桥梁或隧道的情况等等。
迪杰斯特拉算法的含义就是“最短路径”。
这种算法比较常见的一种,因为它
可以用于解决上述类型的问题,也能够给出即时的答案。
需要说明的是,运用迪杰斯特拉算法求解最短路径,需要满足一定的条件:必须满足图的邻接关系,并且确定用于求最短路径的起点和终点。
迪杰斯特拉的步骤可以分为四步:
第一步:先从所有节点中选择一个起始节点,找出该节点与其他节点之间的最
短路径;
第二步:选择一个未被访问的节点,计算从起始节点到该节点的最短路径长度;
第三步:在剩余节点中重复步骤二直至起始节点与所有节点均被访问;
第四步:当所有节点都被访问后,根据记录的信息,选择起始节点通往其他节
点的最短路径。
一旦经过这四步完成了最短路径的搜索,就可以使用迪杰斯特拉算法解决最短
路径问题了。
这种算法的特点在于它的有效性,准确性和便捷性,可以找出最短路径的最优解来解决问题,并且很容易实施。
解决最短路径问题时,使用该算法的一大优势在于可以考虑到不同的费用,这也就意味着可以计算具有很高效率的最短路径。
运筹学最短路径问题

运筹学最短路径问题
在运筹学中,最短路径问题是指寻找图中两个节点之间的最短路径。
最短路径可以通过一系列边连接起来,使得路径上的累计权值总和最小。
最短路径问题是运筹学中的经典问题,有广泛的应用领域,如交通网络规划、物流路径优化等。
常见的最短路径算法包括迪杰斯特拉算法和弗洛伊德算法。
迪杰斯特拉算法是用于解决单源最短路径问题的一种算法。
它从起点开始,通过不断更新节点的最短路径估计值和前驱节点,逐步扩展到其他节点,直到找到目标节点或所有节点都被处理。
弗洛伊德算法是用于解决全源最短路径问题的一种算法。
它通过动态规划的方式,对所有节点之间的最短路径进行逐步计算和更新,最终得到所有节点之间的最短路径。
除了迪杰斯特拉算法和弗洛伊德算法,还有其他一些算法可以用于解决最短路径问题,如贝尔曼-福特算法和A*算法等。
总之,最短路径问题在运筹学中具有重要的实际应用价值,可以通过不同的算法来求解。
这些算法在实践中可以根据具体的问题特点和需求选择合适的算法进行求解。
运筹学最短路问题实验报告

运筹学最短路问题实验报告
姓名:雷超敏
学号:
班级:安全101
指导教师:冯树虎
一、实验目的:
1、学会独立建模能力,并用模型解决相关现实问题。
2、通过实验,把所学的运筹学理论知识与实践相结合,从而强化相关理论知识。
3、进一步加强对现实问题的认识,提高独立运用理论知识解决现实问题。
4、通过上机实验检验运筹学理论,发现相关理论知识的适用范围及不足。
二、实验任务:
1、提出一个有关运筹学的实际问题;
2、建立模型;
3、运用软件进行求解;
4、撰写分析报告。
三、实验软件
Excel2003。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验学时:4
实验日期:2012年11月30日
实验要求:案例模型分析
实验内容:用最短路径模型解决具体问题
前言
运输是物流过程的主要职能之一,也是物流过程各项业务的中心活动。物流过程中的其它各项活动,如包装、装卸搬运、物流信息等,都是围绕着运输而进行的。可以说,在科学技术不断进步、生产的社会化和专业化程度不断提高的今天,一切物质产品的生产和消费都离不开运输。物流合理化,在很大程度上取决于运输合理化。所以,在物流过程的各项业务活动中,运输是关键,起着举足轻重的作用。而有效的缩减路径可以使得运输费用降低。本文运用Dijkstra算法求出最短路径,以最大限度地节约运输费用降低物流成本,Dijkstra算法用于求解最短路径问题最常用的方法之一。
实验总结
科学合理的运输路线对物流的成本的大小影响很大。Dijkstra算法就是通过一种方法,使运输路线最短,运费最少,尽可能的降低物流成本,提高产品的竞争力,Dijkstra,根据距 从近到远的顺序,依次求得 到 各顶点的最短路径和距离,直至 ,算法结束。根据记录的最后路径 逆推至 , , ,总结出路径为 ,所以最短距离为15.
Dijkstra算法的基本步骤如下:
(1)给起点 以P标号 ,其余各点均给以T标号, 。
(2)若 点为刚得到的p标号的点,考虑这样的点为 ,考虑 这条边,且 为T标号,对 的T标号进行如下更改
(3)比较所有具有T标号的点,把最小者改为P标号,即 ,当存在两个以上最小者时,可同时改为P标号,若全部点均为P标号,则停止,否则 代 改为第二步重做。
6. (1) 为刚得到P标号的点,考察
(2) 比较所有T标号, , 最小,给 以P标号,令 ,记录路径
7. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, , 最小,给 以P标号,令 ,记录路径
8. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, 最小,给 以P标号,令 ,记录路径
至此可以得到最短路径为 ,最短行程为15
3. (1) 为刚得到P标号的点,考察边
(2)比较所有T标号, , 最小,给 以P标号,令 ,记录路径
4. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, , 最小,给 以P标号,令
,记录路径
5. (1) 为刚得到P标号的点,考察
(2)比较所有T标号, , 最小,给 以P标号,令 ,记录路径
案例分析
下图所示是某地区 才能使总行程最短?使用Dijkstra求解。
5 9
4 4 7 5 4
6 4 5 1
7 6
步骤:
1.首先给 以P标号, ,给其余所有的点以T标号,
2.(1)考察点 ,边
(2)比较所有T标号 , 最小,所以给 以P标号,令 ,记录路径