4化学热力学基础
第4章 化学热力学

热化学反应方程式
定义:能表示出反应热的化学反应方程式 ex: aA + bB = gG + hH Q=?
怎样书写?
①一般化学反应是在恒压下进行,此时
Q p = △rH
②注明反应温度和压强(标准态: △rH )
③注明物质的聚集状态及晶形或者溶液浓度:
固-s, 液-l, 气-g,水溶液- aq
凝聚体系的相变过程(△T = 0, △P = 0)
VS ≈ VL, △V = 0, △(PV) = 0
则 △H = △U
化学反应(△T = 0)
当反应物和生成物为凝聚体系时
△H = △U [△(PV) = 0]
当反应物或生成物中有气体时 △H = △U + △(PV) △H = △U + △n · RT △n 指气体分子数的变化(生成物 – 反应物)
状态函数:确定体系状态的物理量
特点: 1)状态一定,体系的各状态函数一定 2)状态函数的变化只与始态和终态有 关, 与途径无关
3)状态复原时,状态函数也复原,状态 函数的改变值为零
状态函数的类别 广度性质:状态函数的值与体系内所含物 质的量成正比,如体积、质量等
强度性质:状态函数的值与体系内所含物 质的量无关,如温度、压强等
体积功的 计算公式
可见:P = 0 或 △V = 0 时,W体 = 0
即自由膨胀过程或恒容过程的 W体 = 0
研究的一般化学反应体系,通常在外压作 用下进行,都只作体积功,不作非体积功 内能(热力学能)、热、功
内能: 体系内一切能量的总和(内能的绝对 值目前无法求)
热: 是以微观混乱的形式传递的能量 功: 是以规则的形式传递的能量
化学热力学基础

Qp = ΔU +Δ (pV) = (U2 - U1) +p(V2 -V1) = (U2 + p2V2) - (U1 + p1V1)
ΔH 称为焓变。ΔH > 0,表明体系从环境吸热; ΔH < 0, 表明体系向环境放热。
4பைடு நூலகம்
1、“焓”不是系统所含的热量。QP与ΔH只是数值上相等, QP不是状态函数,而ΔH是状态函数 。 特别提醒
恒压过程、恒容过程,绝热过程和循环过程。
2
途径
完成这一过程的具体步骤。
4、热与功
体系与环境之间因为温度差而进行的能量交换形式。 热(Q) 体系从环境吸热:Q > 0 ;体系向环境放热:Q < 0 特点:不是状态函数 体系与环境之间除热以外的其它能量交换形式。
功(W)
环境对体系做功:W > 0 ;体系对环境做功:W < 0
7
对于任意的化学反应:aA + bB = gG + dD 标准摩尔反应焓变 rHm = H = g fHm(G)+ d fHm(D)- a fHm(A)- b fHm(B)
标准摩尔燃烧焓变 C H m
Θ
1mol纯物质在标准状态和指定温度下完全燃烧时的标准焓变。 完全燃烧是指C、H、N、S等分别被氧化为CO2(g)、H2O(l)、N2(g)、SO2(g) 。 规定:完全燃烧产物的 CHm= 0 。即: CHm(CO2,g) = CHm(H2O,l) = CHm(N2,g)= CHm(SO2,g) = CHm(O2,g) = 0 对于任意的化学反应:aA + bB = gG + dD rHm = H = a CHm(A)+ b CHm(B)- g CHm(G)- d CHm(D)
化学热力学基础

主要解决过程的能量效应问题,计算过程的功和反应热。
1、在计算应用过程中,不考虑非体积功。
即:W’= 0
2、化学反应发生后,T 始=T 终
ΔU = Q + W’+ W 体= Q + W 体 2.2.3.2 定容过程
定容热 QV: 若系统在变化过程中保持体积恒定,此时的热称为定容热。
2.4 热化学
规定:(1)在计算应用过程中,不考虑非体积功。即:W’= 0 (2)化学反应发生后,T 始=T 终
2.4.1 热化学方程式
热化学方程式表示指定的反应与指定条件下的反应热效应的关系的方程式。 H2 (g) + 1/2O2 (g) = H2O (l) △rHmθ =-285.8kJ/mol 1/2 N2 (g) + O2 (g) = NO2 (g) △rHmθ = 34kJ/mol
即: νA=-a,νB=B -b,νY=y,νZ=z
上式可简写成: 此式中的 B 代表反应物和产物。 反应进度(ξ):是表示物质变化进程的物理量。 其定义为: nBB(ξ)= nBB(0)- nBξB
式中nB(B 0)和nBBξ分别代表反应进度ξ=0(反应未开始)和ξ=ξ 时B的物质的量。由于反应未开始时nB(B 0) 为常量,因此
后,即系统的状态一定时,系统内部的能量总和(热力学能)就有确定的值。所以,热力学能
(U)是状态函数,其变化量 ΔU 与途径无关,其绝对值不可测定。可测量的只是ΔU
2.2.3 热力学第一定律
对于一与环境没有物质交换的系统(封闭系统),若环境对其作功 W 、系统从环境吸收热量 Q , 则系统的能量必有增加,根据能量守恒原理,增加的这部分能量等于 W 与 Q 之和:
化学热力学基础PPT课件

§2.1 热力学第一定律
第2章 化学热力学基础
(Thermochemistry)
§2.1 热力学第一定律
§2.2 热化学
§2.3 化学反应的方向
1
第2章 化学热力学基础
§2.1 热力学第一定律
研究化学反应必须研究的四个问题:
1. 化学反应中能量是如何转化的?
(第3章)
2. 该反应能否自发进行?
(第3章)
(3)孤立系统(Isolated System) 系统和环境之间即无能量交换又无物质交换的 系统。
9
第2章 化学热力学基础
如:
§2.1 热力学第一定律
Zn + 2HCl → ZnCl2 + H2
系统
绝热
HCl
HCl
HCl
Zn
Zn
Zn
敞开系统
封闭系统
孤立系统
10
第2章 化学热力学基础
§2.1 热力学第一定律
1mol反应
表示消耗 0.5mol N2,1.5mol H2,生成 1mol NH3。
离开化学方程式谈反应进度是毫无意义的
36
第2章 化学热力学基础
νB
有一反应
N2(g) + 3H2(g)→ 2NH3(g)
t=0: n1(B)/mol 3.0 10.0
0.0
t=t´:n2(B)/mol 2.0 7.0
2.0
Δn(B)/mol -1.0 -3.0
2.0
33
第2章 化学热力学基础
§2.2 热化学
即消耗了 1.0 mol N2,3.0 mol H2,生成了 2.0 mol NH3,那么反应进度变化等于
定 压 过 程
大学基础化学第四章化学热力学基础_思维导图

化学热力学基础热力学系统和状态函数热力学概念系统与环境系统定义环境定义系统类型1.开放系统定义2.封闭系统定义3.隔离系统定义状态函数与过程状态定义平衡态定义状态函数定义取决于系统所处的状态,一旦状态确定,每个状态函数有唯一确定的值状态函数的变化值并不是系统状态,其变化值与中间环节无关分类广度性质定义例子:体积,物质的量,质量,自由能等强度性质定义例子:温度,密度,压力,浓度两者关系:强×广=广,广 广=强状态方程(物态方程)定义例子:PV=nRT过程定义分类等温过程等压过程等容过程绝热过程循环过程可逆过程自发过程特征单向性(不可逆过程)具有做功的能力具有一定的限度定义能量的转化热和功热定义符号表示正值和负值分别表示功定义符号表示正值和负值分别表示注意1:热和功都不是状态函数,不是系统的性质2:只存在于系统的变化过程中,其大小与途径密切相关以理想气体的等温膨胀为例体积功定义(We)公式公式中的单位Pa,m^3例子反抗外压的过程中非体积功定义(Wf)可逆过程(可逆功Wr)与最大功最大功公式可逆过程与不可逆过程的区别系统和环境能否同时恢复到原来的状态可逆过程是不可能实现,时间无限长每一微小步环境和系统都是平衡的能量守恒和化学反应热热力学能(内能)(广度性质)定义(系统内部)(状态函数)符号表示和单位理想气体的内能和焓只与温度有关热力学第一定律(能量守恒与转化定律)表述系统热力学变化公式(封闭系统)系统的焓定义(状态函数)(广度性质)符号表示与单位焓变的定义(后-前)正负分别表示H=U+pV等容反应的热效应dU=Qv(dV=0)(封闭系统无非体积功)(等容反应热等于系统内能的变化)热效应的概念:系统发生变化时,若无非体积功,且终与始态的温度相同,则系统放出或吸收的热量就称为该过程的热效应等压反应的热效应dU=Qp+W=Qp+p外×dVQp=(U2-U1)+p外(V2-V1)=(U2+p外V2)+(U1+p外V1)Qp=H2-H1=dH封闭系统无非体积功,等压反应热等于系统焓变等压与等容的关系反应物,产物均为气体dn=0——则Qp≈Qv反应物,产物都在溶液和固体中的反应可认为dV=0——则Qp≈Qv反应进度,热化学方程式与标准状态反应进度定义(对于反应物为负值,对于生成物为正值)式子表示单位摩尔反应热书写形式定义与方程式的写法有关标准状态(标准压强100KPa)对气体(理想气体,标准压强)(混合气体的每个气体的分压都是标准压强)对纯液体和纯固体(标准压强)对溶液(标准压力,溶质浓度1mol/L理想稀溶液)对溶剂(标准压力)对生物系统(37度,PH=7)参考温度:298.15K(25°C)热化学反应方程式热化学反应方程式中的热效应符号写法(4点)注意事项(3点)盖斯定律和反应热的计算盖斯定律的运用盖斯定律(不做非体积功和等压或等容以及恒温条件下)由标准摩尔生成焓计算反应热摩尔生成焓与标准摩尔生成焓定义符号单位C的稳定单质是石墨不是金刚石稳定物质的标准摩尔生成焓为零生成物质的化学计量数要为1式子(反应式产物-反应物)(化学计量数都取正值)同一种物质不同聚集状态的标准摩尔生成焓不同由标准摩尔燃烧焓计算反应热标准摩尔燃烧焓定义单位符号式子(反应物-产物)(化学计量数都带正号)理解完全燃烧和完全氧化(其标准摩尔燃烧焓为0)熵和Gibbs自由能熵(状态函数)(广度性质)定义单位符号等温可逆过程熵与反应热的关系式温度对熵的影响热力学第三定律定义规定熵(ST)与绝对熵(S0)标准摩尔熵定义单位符号稳定物质单质的标准摩尔熵不为0,因为不是绝对零度的完整晶体对于水溶液中离子的标准摩尔熵是....标准摩尔熵的规律(6个)标准摩尔熵变(后-前)熵增加原理(热力学第二定律)定义数学表达式熵变与0的比较的含义Gibbs自由能(广度性质)(状态函数)符号表示式子吉布斯自由能变化和非体积功用吉布斯自由能变化判定反应方向标准状态下标准摩尔自由能定义符号单位稳定物质单质标准摩尔自由能为0计算两个式子(一个只能在25度时,另一个任意)注意单位统一非标准状态下式子反应商对溶液对纯气体对混合相判断反应的依据。
化学热力学基础

一、反应热与化学反应方向
早在 19 世纪 70 年代,法国化学家贝塞洛和 丹麦化学家汤姆森提出,反应热是判断化学反应 方向的判据。
许多放热反应在常温、常压下确实能自发进 行,但少数吸热反应在常温、常压下也能自发进 行。这说明反应热是影响化学反应方向的重要因 素,但不是决定反应方向的惟一因素。
二、熵变与化学反应方向
书写热化学方程式应注意以下几点: (1)习惯上将化学反应方程式写在左边,相应的 ΔH
和ΔU写在右边,两者之间用逗号或分号隔开。 (2)注明反应的温度和压力。
(3)注明反应物和产物的聚集状态,分别用 s、l 和 g 表示固态、液态和气态,用 aq 表示水溶液,如 果固态物质存在不同的晶型,也要注明晶型。
(4)同一化学反应,当化学计量数不同时,反应的 摩尔热力学能变和摩尔焓变也不同。
四、赫斯定律
化学反应,不管是一步完成或分成几步完成, 反应热总是相等的。上述规律称为赫斯定律。
A rHm(T ) D
r H m,1(T )
r H m,3(T )
B rHm,2 (T) C
r Hm (T ) r Hm,1(T ) r H m,2 (T ) r H m,3(T )
dGT , p ≤ δW
对有限的化学变化:
(rGm )T ,p ≤W
当 W 0 时:
(rGm )T , p ≤ 0
在标准状态,上式可改写为:
(rGm )T ≤ 0
四、温度对化学反应方向的影响
表2 ΔH、ΔS 及T 对反应自发性的影响
反应实例
ΔH ΔS ΔG = ΔH–TΔS
① H2(g) + Cl2(g) = 2HCl(g) — +
(1)敞开系统:系统与环境之间既有 能量交换,又有物质交换。
大学化学——化学热力学基础.

注意:
(1) 摩尔反应指按反应方程式中化学计量数表示的 量所完成的反应。由于反应的焓变与所进行反应的 物质的量有关,所以,不同的反应,其摩尔焓变值 不同。
2Al(s) + 3/2O2(g) = Al2O3(s) ΔH1 = -1675.7 kJ•mol-1 4Al(s) + 3O2(g) = 2Al2O3(s) ΔH2 = 2ΔH1= -3351.4 kJ•mol-1 (2) B为反应系统中某物质的化学计量数,对生成 物取正值,对反应物取负值,计算时切勿丢掉。 (3) 反应的标准摩尔焓变等于生成物的标准生成 焓之和,减去反应物的标准生成焓之和,切勿颠倒。
第1章
化学热力学基础
热效应 可能性 方向性 限 度 反应机理 反应速率
热力学: 研究能量转换过程中所遵循规律的科学。 化学热力学: 研究化学反应,物理变
化(如:相变热,溶解热)
过程中能量交换。
化学动力学: 研究反应进行的速率
和所经过的中间步骤。
1.1 化学反应热的测量
1.1.1 基本概念 1.1.2 化学反应热的测量
1.反应热的测量
化学反应时放出或吸收的热叫做反应的热效(反应热) 弹式量热计测 q 钢弹组件 q弹 = C • T 吸热介质(水) q水= cm• T qV = _ ( q弹 + q水) = _ ( C + c•m) T
恒容反应热qv与恒压反应热 qp的关系
敞口容器与封闭容器
1.2 化学反应的理论计算
物质的绝对熵 性质:状态函数
波尔兹曼公式 S = k • ln S :熵 K:波尔兹曼常数 :混乱度(热力学概率)
化学热力学基础

Q 和W 都不是状态函数
体积功
体积功是体系在反抗外压发生体积变 化时而引起的体系与环境间能量的传递。 W体= p外ΔV
p内 P内 ΔV
P外 p外
第二节 热力学第一定律和热化学
热力学第一定律
能量只能从一种形式转化为另一种形式,从一个 物体传递给另一个物体,但在转化和传递过程中,能 量的总数量不变。 它的另一种表达形式就是:不供给能量而连续不 断的对外做功的第一类永动机是不可能造成的。
CaCO3 (方解石)
CaO(s)+ CO2(g)
△ rH m
CaO(s)+ CO2(g)
Ca(s)+ C (石墨)+ O2
标准生成焓
温度T下,由标准态的各元素的稳定单质生成 标准态下1mol某纯物质的热效应称为该物质的标 准摩尔生成焓(standard molar enthalpy of formation)简称标准生成焓。
example
例:2H2(g)+O2(g)=2H2O(g)
△rHm(298.15K)=-483.6 kJ· -1 mol H2(g)+1/2O2(g)=H2O(g)
△rHm(298.15K)=-241.8 kJ· -1 mol
标准摩尔生成焓和标准摩尔燃烧焓
CaCO3 (方解石) Qp =△rH=H2 - H1 =∑H(生成物) - ∑H(反应物)
练习题 求H2O(l)→H2O(g) ΔrHm
ΔfHm
1 查表: H2(g) + O2(g) = H2O(l) 2
H2O(l) = -285.8 kJ· -1 mol
1 H2(g) + O2(g) = H2O(g) 2
ΔfHm H2O(g) = -241.8 kJ· -1 mol ΔrHm = ΔfHm H2O(g)-ΔfHm H2O(l) ΔrHm = -241.8+285.8 = 44.0 kJ· -1 mol
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要内容:
术语和基本概念
热力学第一定律
焓与焓变 热化学 熵 吉布斯自由能
化学守恒定律。热和功是系统与环境之间能量传递的两种形式。
化学反应中的反应热与系统的组成、状态以及反应条件有关。
注意热化学方程式的书写。
由标准摩尔生成焓计算化学反应的标准摩尔焓变。
功用符号 W 表示,功的 SI 单位为 J 环境对系统做功 W > 0;系统对环境做功 W < 0。 W 与 Q 一样也不是状态函数,其值与具体的变化途径有关。
功分体积功和非体积功两大类。
●体积功:系统在反抗外界压强发生体积变化时,有功产生,称为体积功。例如:气缸中气体的膨胀或被 压缩。
●非体积功:体积功以外的所有其他形式的功为非体积功, 如电功、表面功等。
[例] 在CCl4的沸点 349.9K和压力 100kPa下,蒸发 100g CCl4需吸收 19.5kJ热,计算 1mol CCl4蒸发的△U和 △H
[解] 反应方程式: CCl4 (l) = CCl4 (g) 1mol CCl4需吸收热: Qp= 19.5kJ/100g ×153.8g/mol = 30kJ/mol △H=Qp= △U+P·△V=△U+△ngRT △U = 27.1kJ/mol
2.2.3.1 热力学第一定律的应用
主要解决过程的能量效应问题,计算过程的功和反应热。
1、在计算应用过程中,不考虑非体积功。
即:W’= 0
2、化学反应发生后,T 始=T 终
ΔU = Q + W’+ W 体= Q + W 体 2.2.3.2 定容过程
定容热 QV: 若系统在变化过程中保持体积恒定,此时的热称为定容热。
2.1 热力学的术语和基本概念
2.1.1 系统和环境
系统是被研究的对象。它是由大量微观粒子(分子、原子和离子)组成的宏观集合体。系统具有 边界,这一边界可以是实际的界面也可以是人为确定的用来划定研究对象的空间范围。环境是系统之 外的与之相关的物质世界,如容器壁等。
根据系统和环境之间物质、能量传递情况的不同,将系统分为以下三种情况:
ΔrGm = 0
ΔrGmθ = 0
系统处于平衡状态
△rGmθ =△rHmθ -T△rSmθ
⑴△rHmθ<0 △rSmθ>0 △rGmθ<0
放热熵增,任意温度自发
⑵△rHmθ<0 △rSmθ<0
高温: △rGmθ>0 低温:△rGmθ<0 放热熵减,低温有利
⑶△rHmθ>0 △rSmθ>0
高温: △rGmθ<0 低温:△rGmθ>0 吸热熵增,高温有利
的△U 和等压反应热?
[解] 反应方程式: N2H4 (g) + O2 (g) = N2 (g) + 2H2O (l) 1mol 联氨在等容下燃烧时放热: Qv= -20.7kJ/g ×32g/mol= -662kJ/mol △U=Qv = - 662kJ/mol △H=Qp= △U+P·△V=△U+△ngRT △ng= -1 Qp=-662+(-1)×0.00831×298=-665kJ/mol
定义:H = U + pV
(1)焓(enthalpy)是人们在处理体系状态变化时引入的一个状态函数;
(2)焓的 SI 单位为 J;
(3)焓的绝对值无法测量,可测量的只是ΔH;
(4)在等压只做体积功的条件下,体系焓变等于体系内能变化和等压体积功之和,即ΔH=ΔU + pΔV;
(5)在定压且不做非体积功的过程中,定压容热在数值上等于系统的焓变,即 Qp=ΔH
●敞开系统:系统与环境之间既有能量交换又有物质交换。 ●封闭系统:系统与环境之间有能量交换但没有物质交换。 ●隔离系统:系统与环境之间既没有物质交换,又无能量交换。
OPEN
CLOSED
ISOLATED
Heat flow
Heat flow
2.1.2 状态和状态函数
由一系列表征体系性质的物理量所确定下来的体系的存在形式称为体系的状态。借以确定体系状态的 物理量称为体系的状态函数,例如压力、体积、温度等。
Hess 定律的实质是:焓是状态函数,系统的焓变只与始态和终态有关,而与变化的途径无关。 总反应的焓变等于各分布反应的焓变之和。
应用 Gibbs 自由能判断反应进行的方向和限度
非标准态
标准态
反应进行的方向和限度
ΔrGm < 0
ΔrGmθ < 0
反应正向自发进行
ΔrGm > 0
ΔrGmθ > 0
反应正向不自发
后,即系统的状态一定时,系统内部的能量总和(热力学能)就有确定的值。所以,热力学能
(U)是状态函数,其变化量 ΔU 与途径无关,其绝对值不可测定。可测量的只是ΔU
2.2.3 热力学第一定律
对于一与环境没有物质交换的系统(封闭系统),若环境对其作功 W 、系统从环境吸收热量 Q , 则系统的能量必有增加,根据能量守恒原理,增加的这部分能量等于 W 与 Q 之和:
2.4 热化学
规定:(1)在计算应用过程中,不考虑非体积功。即:W’= 0 (2)化学反应发生后,T 始=T 终
2.4.1 热化学方程式
热化学方程式表示指定的反应与指定条件下的反应热效应的关系的方程式。 H2 (g) + 1/2O2 (g) = H2O (l) △rHmθ =-285.8kJ/mol 1/2 N2 (g) + O2 (g) = NO2 (g) △rHmθ = 34kJ/mol
2.2.3.3 定压过程
定压热 Qp 若系统在变化过程中保持压力恒定,此时的热称为定压热。 Qp =ΔU - W
=ΔU + pΔV =(U2 – U1) +(p2V2 – p1V1) =ΔU + pΔV 令 H=U+pV,则:Qp=ΔH H—反应热焓 在恒压反应过程中,体系吸收的热量全部用来改变体系的热焓
2.1.3 过程和途径
过程:系统的状态发生变化,从始态变到终态,即称作系统经历了一个热力学过程,简称过程 途径:实现过程的每一种具体方式称为一种途径。
n(H2)=1mol 等温过程
1 T = 100K p = 100kPa
定压过程
n(H2)=1mol
T = 100K p = 300kPa
2
定压过程
n(H2)=1mol
⑷△rHmθ>0 △rSmθ<0 △rGmθ>0
吸热熵减,任意温度不自发
教学目的:
了解系统、环境、相等概念,熟悉能量守恒与转化定律。 理解状态函数、焓与摩尔焓变、标准摩尔生成焓等概念。 掌握热化学方程式、反应焓变、Hess 定律及有关计算。 掌握熵的定义、Gibbs 自由能和吉布斯—亥姆霍兹(Gibbs—Helmholtz)方程、并会判断反应进 行的方向
即: νA=-a,νB=B -b,νY=y,νZ=z
上式可简写成: 此式中的 B 代表反应物和产物。 反应进度(ξ):是表示物质变化进程的物理量。 其定义为: nBB(ξ)= nBB(0)- nBξB
式中nB(B 0)和nBBξ分别代表反应进度ξ=0(反应未开始)和ξ=ξ 时B的物质的量。由于反应未开始时nB(B 0) 为常量,因此
2.1.4 热力学标准状态
1. 气体物质的标准状态,是气体在指定温度 T,压力 p = pθ的状态, pθ=100kPa; 2. 纯固体和液体的标准状态,分别是在指定温度 T,压力 p = pθ时纯固体和纯液体的状态; 3. 溶液中溶质B的标准状态,是在指定温度T,压力p = pθ,质量摩尔浓度b = bθ时溶质的状态, bθ = 1mol/kg。 注意:热力学标准状态:
2.2.2 热力学能
在不考虑系统的整体与和势能的情况下,系统内所有微观粒子的全部能量之和称为系统的热力
学能,又称为内能,记作 U。
•
微观粒子的全部能量来自于微观粒子的运动与相互作用。这些运动与作用包括分子的平动、
转动和振动,分子间的相互吸引与排斥,以及分子内原子间的相互作用,原子内核与电子的相
互作用,核内基本粒子的相互作用等。当系统内部组成的物种的物质的量以及某些条件确定之
3
T = 200K p = 100kPa
等温过程
n(H2)=1mol
T = 200K p = 300kPa
4
根据过程中系统的 p,V,T 变化特点,将过程分为以下三种情况: ●等温过程:始态、终态的温度相等,并且过程中始终保持这个温度。 ●定压过程:始态、终态的压力相等,并且过程中始终保持这个压力。 ●定容过程:系统的始态与终态容积相同,并且过程中始终保持同样的容积。
1. p = 100kPa; 2. 与温度无关,可为任意指定温度,如 273.15K、500K 等。
2.2.1 热和功
1.热(Q) 系统与环境之间由于存在温度差而传递的能量称为热。
热交换过程中,体系发生化学变化或相变。(变化过程中,温度不变)
热用符号 Q 表示, SI 单位为 J。 热力学中规定:系统吸热 Q > 0;系统放热 Q < 0。 Q 不是状态函数,其值与具体的变化途径有关。 2.功(W) 系统与环境之间以除热以外的其他形式而传递的能量称为功。
★反应进度 ξ 与化学反应计量式相匹配。
例如:若上反应计量式改写为:
在特殊条件下,热力学第一定律呈现其特殊的形式: ●隔离系统的过程:隔离系统 Q=0,W=0,所以 ΔU=0。即隔离系统的热力学能是守恒的。 ●循环过程:系统由始态经一系列变化又回复到原来的过程叫做循环过程。ΔU=0,Q= — W。
2.3 焓与焓变
dξ=νB-1dnBB
对有限变化来说 Δξ=νB-1ΔnB
例如: 反应 N2(g) + 3H2(g) → 2NH3(g) ξ
平衡时 nB/B mol 3.0