第5章大数定律及中心极限定理习题及答案教学提纲
第五章_大数定律和中心极限定理 例题与解析

V 20 5 100 / 12 20
105 20 5 100 / 12 20
V 100 V 100 P 0 . 39 1 P 0 . 39 12 ) 20 12 ) 20 ( 10 ( 10
1 ( 0 . 39 ) 1 0 . 6517 0 . 3483
lim F n ( x ) F ( x )
W 则称{ F n ( x )} 弱收敛于F(x),记为 Fn ( x) F ( x)。 L { 称 }依分布收敛于,记为 。
n
n
n
定理5.2 (几种收敛之间的关系) P ,则 L 。 1. 若
n
L P 2. 设为常数,则 n 当且仅当 n 。 a.s. P n ,则 n 。 3. 若
设随机变量 1, 2, , n 相互独立且服从同一分布,且 具有相同的数学期望和方差:
E ( i ) ,D ( i ) , i 1,, , n , 2
2
则随机变量
n
i 1
n
i
n
n
n
L N ( 0, , 1)
即 n 的分布函数 F n ( x ) 对任何x满足
lim P (
n
n np
np (1 p )
x
x)
1 2
t
2
e
2
dt .
例2 (2002年数学四考研试题)
设随机变量 X 1, X 2, , X n 相互独立,S n
n
X i.
i 1
则根据列维-林德贝格中心极限定理,当n充分大时,S n 近似
概率与数理统计第5章大数定律及中心极限定理习题及答案

概率与数理统计第5章大数定律及中心极限定理习题及答案第一篇:概率与数理统计第5章大数定律及中心极限定理习题及答案第 5 章大数定律与中心极限定理一、填空题:1.设随机变量{ EMBED Equation.3 |E(ξ)=μ,方差,则由切比雪夫不等式有.2.设是n个相互独立同分布的随机变量,对于,写出所满足的切彼雪夫不等式,并估计.3.设随机变量相互独立且同分布, 而且有, , 令, 则对任意给定的, 由切比雪夫不等式直接可得.解:切比雪夫不等式指出:如果随机变量满足:与都存在, 则对任意给定的, 有 , 或者由于随机变量相互独立且同分布, 而且有所以4.设随机变量X满足:, 则由切比雪夫不等式, 有.解:切比雪夫不等式为:设随机变量X满足, 则对任意的, 有由此得5、设随机变量,则.6、设为相互独立的随机变量序列,且服从参数为的泊松分布,则.7、设表示n次独立重复试验中事件A出现的次数,是事件A在每次试验中出现的概率,则.8.设随机变量, 服从二项分布, 其中, 那么, 对于任一实数x, 有0.9.设为随机变量序列,为常数, 则依概率收敛于是指1 ,或 0。
10.设供电站电网有100盏电灯, 夜晚每盏灯开灯的概率皆为0.8.假设每盏灯开关是相互独立的, 若随机变量X为100盏灯中开着的灯数, 则由切比雪夫不等式估计, X落在75至85之间的概率不小于.解:, 于是二.计算题:1、在每次试验中,事件A发生的概率为0.5,利用切比雪夫不等式估计,在1000次独立试验中,事件A发生的次数在450至550次之间的概率.解:设表示1000次独立试验中事件A发生的次数,则2、一通信系统拥有50台相互独立起作用的交换机.在系统运行期间, 每台交换机能清晰接受信号的概率为0.90.系统正常工作时, 要求能清晰接受信号的交换机至少45台.求该通信系统能正常工作的概率.解:设X表示系统运行期间能清晰接受信号的交换机台数, 则由此 P(通信系统能正常工作)3、某微机系统有120个终端, 每个终端有5%的时间在使用, 若各终端使用与否是相互独立的, 试求有不少于10个终端在使用的概率.解:某时刻所使用的终端数7 由棣莫弗-拉普拉斯定理知4、某校共有4900个学生, 已知每天晚上每个学生到阅览室去学习的概率为0.1, 问阅览室要准备多少个座位, 才能以99%的概率保证每个去阅览室的学生都有座位.解:设去阅览室学习的人数为, 要准备k个座位.查分布表可得要准备539个座位,才能以99%的概率保证每个去阅览室学习的学生都有座位.5.随机地掷六颗骰子,试利用切比雪夫不等式估计:六颗骰子出现的点数总和不小于9且不超过33点的概率。
(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。
(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。
(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。
另外,利用本不等式估值时精确性也不够。
(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。
(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。
(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。
(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。
概率论与数理统计第五章大数定律与中心极限定理习题解答

1.[一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。
解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知÷÷÷÷÷øöçççççèæ£-=÷÷÷÷÷øöçççççèæ´-£´-=£ååå===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=F =从而.2119.07881.01)1920(1)1920(161161=-=£-=>åå==i ii iXP XP3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为X i (L ,2,1=i ,1500),它们都在(-0.5, 0.5)上服从均匀分布。
于是: 025.05.0)(=+-==p X E i 12112)]5.0(5.0[)(2=--=i X D18.111251211500)(,0)(==´==i i X nD X nE þýüîí죣--=ïþïýüïîïíì£-=ïþïýüïîïíì>ååå===1515115115150011500115000i i i i i i X P X P X P ïïþïïýüïïîïïí죣--=å=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-´=F -=-F -F -=8.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言。
第五章 大数定律与中心极限定理

X X i N(n,n ) N(200,169),所以,
2
100
P{180 X 220} P{1.54 X 200 1.54}
若要准确计算,应该用贝努里公式:
P 6800 X 7200
7199 k 6801
k C10000 0.7k 0.310000k
如果用切比雪夫不等式估计: E (X) np 10000 0.7 7000, D (X) npq 10000 0.7 0.3 2100, 2100 P 6800 X 7200 P X 7000 200 1 2 0.95. 200
二、4个大数定律(P117定义5.1-P120) 教学——我教你学或你教我学. 内容:1.大数定律的条件与结论; 2. 4个大数定律的关系. 了解:4大数定律的结论
定义5.1(P117)
上一页
下一页
返回
1.陪学定理5.1“切比雪夫大数定律”(P118)
相互独立
X
limP{| X E( X ) | } 1
第五章 大数定律与中心极限定理
第一节 第二节 大数定律 中心极限定理
大数定律主要含义: 在随机事件的大量重复出现中,往往呈现几乎 必然的规律,这个规律就是大数定律。通俗地说, 这个定理就是,在试验不变的条件下,重复试验多 次,随机事件的频率近似于它的概率。比如,我们 向上抛一枚硬币,硬币落下后哪一面朝上本来是偶 然的,但当我们上抛硬币的次数足够多后,达到上 万次甚至几十万几百万次以后,我们就会发现,硬 币每一面向上的次数约占总次数的二分之一。偶然 中包含着必然。 简单地说,大数定律就是“当试验次数足够多时,事 件发生的频率无穷接近于该事件发生的概率。
第五章 大数定律及中心极限定理电子教案

(7
15
a
1,7
6
b0) .5上..1..8.有.1定42 00 42 义81 ,
0.5016
皮尔逊
li2m 40f0n0(x) f1(2x0)12
对罗于曼随诺机夫斯变基量列,n是 80否64有0
39699
逐点不00收..54太09敛02现53 实, 要求太 严!
Xn lim 0.X 5n( (n) p )( )
上的n函数列
0.5069
f
n
(
正x X设) n收面函德nn敛皮朝A 数: ·尔于上11 逊f 摩f( 12 (x 根x是)1)3,反f 指n 24 面( :x 53 朝) 1632( 2上0n 07340 x80831 ,2 94(a,1,40 b) 1)5116在有001 62 61区11963 间1 74
第五章 大数定律与中心极限定理
§1 大数定律
2/8
“概率”的概念是如何产生的
设 n 次独立重复试验中事件 发A 生的
次数为 n A , 则当 n时,有
随机变量
Xn
nA n
p
n重伯努利试验
频怎率样理解“概越率来P (越A )接近”?
怎样定义极限 lim Xn p n
“频率稳定性”的严格数学描述是什么
在概率论的公理化体系建立以后,大数定律可在理论上
进行严格的证明而成为意义明确的定理,故现在教材上称
为“大数定理”.
为什么叫“大数定律” END 而不叫“大数定理”
第五章 大数定律与中心极限定理
第五章 大数定律与中心极限定理
§1 大数定律
3/8
“抛硬币”试验将一枚硬币连续抛 n次 ,记
A{正面朝上 }
概率论与数理统计第五章 大数定律 中心极限定理

x
1
t
2
e
2
dt ( x )
即
n ~ N ( np, np(1 p ))
近似地
下面演示不难看到中心极限定理的客观背景
f
g
0
1
h
2 3 x
例:20个0-1分布的和的分布
几个(0,1)上均匀分布的和的分布 X1 ~f(x) X1 +X2~g(x)
2
由切比雪夫不等式
n 1 P Xk 1 2 n k 1
n 2
上式中令 n 得
lim P {|
n
1
n i 1
X i | } 1
n
定理1的另一种叙述形式
设随机变量X 1,X 2 ,, X n , 相互独立,且具 有相同的数学期望和方差:E ( X k ) , D( X k ) ( k 1,2,),则序列X X .
设
1 第k次取到号码 0 Xk 否则 0
0 , 0.9
,k=1,2, …
问对序列{Xk}能否应用大数定律?
解:
1 Xk ~ 0.1
E(Xk)=0.1,
k=1,2, …
诸Xk 独立同分布,且期望存在,故能使用大 数定律. 即对任意的ε>0,
lim P{|
n
X n
k 1
lim P {|
n
nA n nA
p | } 1
或 证明
lim P {|
n
p | } 0
伯努利
n
因为nA ~ b( n, p ),由此可表示为 nA X 1 X 2 X n
第五章 大数定律 中心极限定律

第五章 大数定律 中心极限定律例1 设一批产品的废品率为014.0=P ,若要使一箱中至少有100个合格品的概率不低于0.9,求一箱中至少应装入多少个产品?试分别用中心极限定律和泊松定理求其近似值。
例2 某车间有200台车床,由于各种原因每台车床只有60%的时间在开动,每台车床开动期间耗电量为E ,问至少供应此车间多少电量才能以99.9%的概率保证此车间不因供电不足而影响生产?例 3 一保险公司有10000人投保,每人每年付12元保险费,已知一年内人口死亡率为006.0,如死亡,则公司付其家属1000元赔偿费,求1)保险公司年利润为零的概率 2)保险公司年利润不少于60000元的概率。
例4 设{}n X 为独立随机变量序列,()()n n n n n X P X P 2122110,212-===±=+,,,2,1 =n 证明 {}n X 服从大数定律例 5 设随机变量X 的数学期望μ=)(X E ,方差()2σ=X D ,利用切比雪夫不等式估计 {}σμ3≥-X P例6 试证当∞→n 时,21!0→∑=-n k kn k n e习 题一 填空题1 设随机变量X 的数学期望μ=EX ,方差2σ=DX ,则由切比雪夫不等式有:{}________3≤≥-σμX P2 设随机变量1001,,X X 相互独立同分布,且()()100,,2,1!11 ===-i e k k X P i ,则________1201001=⎭⎬⎫⎩⎨⎧<∑=i i X P3 设随机变量n X X X ,,,21 相互独立同分布,()()()n i X D X E i i ,,2,1,8, ===μ 对于∑==ni i X n X 11,写出所满足的切比雪夫不等式______并估计{}_____4≥<-μX P4 10万粒种子有1万粒不发芽,今从中任取100粒,问至少有80粒发芽的概率是_____二 解答题1. 某单位有200台电话分机,每架分机有5%的时间要使用外线通话,假设每架分机是否使用外线是相互独立的,问该单位总机需要安装多少条外线,才能以90%以上的概率保证分机使用时不等候?2. 甲、乙两个电影院在竞争1000名观众,假定每个观众任选一个影院且观众间的选择是彼此独立的,问每个影院至少要设多少座位,才能保证因缺少座位而使观众离去的概率小于1%?3. 某教授根据以往的经验知道,他的一个学生在期末考试中的成绩是均值为75的随机变量,a )假设这教授知道该学生成绩的方差是25,试给出此学生的成绩将超过85的概率上限; b )你对这个学生取得65分到85分之间的概率能说些什么? c)* 不用中心极限定理,求出应有多少如上的学生参加考试,才能保证他们的平均分数在70到80分之间的概率至少是0.9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,,Λ21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i Λ218===ξμξ对于∑==ni in 1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X L 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==L , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X L 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i ===L 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,,Λ21为相互独立的随机变量序列,且),,(Λ21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=L , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X L 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指 {}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
10. 设供电站电网有100盏电灯, 夜晚每盏灯开灯的概率皆为0.8. 假设每盏灯开关是相 互独立的, 若随机变量X 为100盏灯中开着的灯数, 则由切比雪夫不等式估计, X 落 在75至85之间的概率不小于 259 .解:()80,()16E X D X ==, 于是169(7585)(|80|5)1.2525P X P X <<=-<≥-=二.计算题:1、在每次试验中,事件A 发生的概率为0.5,利用切比雪夫不等式估计,在1000次独立试验中,事件A 发生的次数在450至550次之间的概率.解:设X 表示1000次独立试验中事件A 发生的次数,则250)(,500)(==X D X E}50|500{|}550450{≤-=≤≤X P X P9.02500250150)(1}50|)({|2=-=-≥≤-=X D X E X P2、一通信系统拥有50台相互独立起作用的交换机. 在系统运行期间, 每台交换机能清晰接受信号的概率为0.90. 系统正常工作时, 要求能清晰接受信号的交换机至少45台. 求该通信系统能正常工作的概率. 解:设X 表示系统运行期间能清晰接受信号的交换机台数, 则~(50,0.90).X B由此 P(通信系统能正常工作)(4550)P X =≤≤P =≤≤(2.36)(0)0.99090.50.4909.ΦΦ≈-=-=3、某微机系统有120个终端, 每个终端有5%的时间在使用, 若各终端使用与否是相互独立 的, 试求有不少于10个终端在使用的概率.解:某时刻所使用的终端数~(120,0.05),6, 5.b np npq ξ==7 由棣莫弗-拉普拉斯定理知{10}11(1.67)0.0475.P ξΦΦ≥=-≈-=4、某校共有4900个学生, 已知每天晚上每个学生到阅览室去学习的概率为0.1, 问阅览室 要准备多少个座位, 才能以99%的概率保证每个去阅览室的学生都有座位.解:设去阅览室学习的人数为ξ, 要准备k 个座位.~(,),4900,0.1,49000.1b n p n p np ξ===⨯=21.==4900490{0}2121k P k ξΦΦΦΦ⎛⎫⎛⎫--⎛⎫⎛⎫≤≤≈-=- ⎪ ⎪⎝⎭⎝⎭490490(23.23)0.99.2121k k ΦΦΦ--⎛⎫⎛⎫=--≈= ⎪ ⎪⎝⎭⎝⎭查(0,1)N 分布表可得4902.3263,21 2.3263490538.852321k k -==⨯+=539.≈要准备539个座位,才能以99%的概率保证每个去阅览室学习的学生都有座位.5.随机地掷六颗骰子 ,试利用切比雪夫不等式估计:六颗骰子出现的点数总和不小于9且不超过33点的概率。
解:设 η表 示 六 颗 骰 子 出 现 的 点 数 总 和。
ξi ,表 示 第 i 颗 骰 子 出 现 的 点 数 ,i = 1,2,…,6ξ1, ξ2, … ,ξ6 相 互 独 立 , 显 然 ηξ==∑i i 16()()235211235449621612765432161222===-+++==+++++=ηηξξD E D E i i Λ {}{}12339≤-=≤≤ηηηE p p {}131>--=ηηE p()9.03383511691≈-=-≥ηD 6. 设随机变量n ξξξ,,,Λ21 相互独立,且均服从指数分布()0000>⎩⎨⎧≤>=-λλλx x e x f x )( 为 使 10095101111≥⎭⎬⎫⎩⎨⎧<-∑=λλξn k k n P , 问: n 的最小值应如何 ?解: E D k k ξλξλ==112, ()21211111,11λξξλξn D n n D n E nk k n k k n k k ==⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∑∑∑===由 切 比 雪 夫 不 等 式 得⎪⎪⎭⎫ ⎝⎛<-∑=λλξ101111nk k n P ,1009510111101112211≥⎪⎭⎫ ⎝⎛-≥⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<⎪⎭⎫ ⎝⎛-=∑∑==λλλξξn n E n P nk k nk k 即 110095100-≥n n , 从 而 n ≥ 2000 , 故 n 的 最 小 值 是 20007.抽样检查产品质量时,如果发现次品多于10个,则拒绝接受这批产品,设某批产品次品率为10%,问至少应抽取多少个产品检查才能保证拒绝接受该产品的概率达到0.9?解:∴ 设n 为至少应取的产品数,X 是其中的次品数,则)1.0,(~n b X ,9.0}10{≥>X P ,而9.0}9.01.01.0109.01.01.0{≥⨯⨯⨯->⨯⨯⨯-n n n n X P所以1.0}09.01.0109.01.01.0{≤-≤⨯⨯⨯-nn n n X P由中心极限定理知,当n 充分大时, 有1.0)3.01.010(}09.01.0109.01.01.0{=-Φ≈-≤⨯⨯-n nn n n n X P ,∴ 由1.0)3.01.010(=-Φnn查表得28.13.01.010-=-nn147=∴n8.(1)一个复杂系统由100个相互独立的元件组成,在系统运行期间每个元件损坏的概率为0.1,又知为使系统正常运行,至少必需要有85个元件工作,求系统的可靠程度(即正常运行的概率);(2)上述系统假设有n 个相互独立的元件组成,而且又要求至少有80%的元件工作才能使系统正常运行,问n 至少为多大时才能保证系统的可靠程度为0.95? 解:(1)设X 表示正常工作的元件数,则)9.0,100(~b X ,9901009.01.01009.010099085{}85100{}85{-≤⨯⨯⨯-≤-=≥≥=≥X P X P X P}31039035{≤-≤-=X P由中心极限定理可知))35(1()310()35()310(}85{Φ--Φ=-Φ-Φ=≥X P 95.0)35(1)35()310(=Φ=-Φ+Φ=(2)设X 表示正常工作的元件数,则)9.0,(~n b Xnnn n X n n P n X n P n X P 3.02.01.09.09.03.01.0{)8.0()8.0(≤⨯⨯-≤-=≤≤=≥}3.09.03{}323.09.03{nnX n P n n n X n P -≤-=≤-≤-= 95.0)3()3(1=Φ=-Φ-=nn353=∴n25=∴n9.一部件包括10部分,每部分的长度是一随机变量,相互独立且具有同一分布,其数学期望为2 mm ,均方差为0.05 mm ,规定总长度为20 ± 0.1 mm 时产品合格,试求产品合格的概率。
已 知 :Φ( 0.6 ) = 0.7257;Φ( 0.63 ) = 0.7357。
解:设 每 个 部 分 的 长 度 为 X i ( i = 1, 2, …, 10 ) E ( X i ) = 2 = μ, D( X i ) = σ2= ( 0.05 )2 ,依题意 ,得合格品的概率为⎭⎬⎫⎩⎨⎧≤-≤-∑=102010101..i i X P ⎭⎬⎫⎩⎨⎧≤⨯-⨯≤-=∑=6302100501831630101.)(...i i X P⎰⎰---==63.00263.063.022221221dte dte t t ππ4714.017357.02121263.022=-⨯=-⨯=⎰∞--dtet π10.计算机在进行加法计算时,把每个加数取为最接近它的整数来计算,设所有取整误差是相 互独立的随机变量,并且都在区间[- 0.5,0.5 ]上服从均匀分布,求1200个数相加时误 差总和的绝对值小于10的概率。