粘均分子量测定方法
粘度法测分子量

粘度法测定聚合物的粘均分子量线型聚合物溶液的基本特性之一,是粘度比较大,并且其粘度值与分子量有关,因此可利用这一特性测定聚合物的分子量。
粘度法尽管是一种相对的方法,但因其仪器设备简单,操作方便,分子量适用范围大,又有相当好的实验精确度,所以成为人们最常用的实验技术,在生产和科研中得到广泛的应用。
一、 实验目的掌握粘度法测定聚合物分子量的原理及实验技术。
二、基本原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。
粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。
表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式2[][]spk c cηηη=+ --------------------------------------- (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。
另一个常用的式子是2[][]ln rc cηβηη=--------------------------------------- (2)式中k 与β均为常数,其中k 称为哈金斯参数。
对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。
如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。
从(1)式和(2)式看出,如果用sp cη或ln r cη对c 作图并外推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示0ln limlim[]sprc c ccηηη→→== ----------------------------------------(3)图1-1通常式(1)和式(2)只是在了r η=1.2~2.0范围内为直线关系。
当溶液浓度太高或分子量太大均得不到直线,如图1-2所示。
此时只能降低浓度再做一次。
特性粘度[η]的大小受下列因素影响: (1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。
高分子分子量的主要测定方法

高分子分子量的主要测定方法-CAL-FENGHAI.-(YICAI)-Company One1高分子分子量的主要测定方法用途高聚物的分子量及分子量分布,是研究聚合物及高分子材料性能的最基本数据之一。
它涉及到高分子材料及其制品的力学性能,高聚物的流变性质,聚合物加工性能和加工条件的选择。
也是在高分子化学、高分子物理领域对具体聚合反应,具体聚合物的结构研究所需的基本数据之一。
表征方法及原理 1.粘度法测相对分子量(粘均分子量Mη)用乌式粘度计,测高分子稀释溶液的特性粘数[η],根据Mark-Houwink公式[η]=kMα,从文献或有关手册查出k、α值,计算出高分子的分子量。
其中,k、α值因所用溶剂的不同及实验温度的不同而具有不同数值。
2.小角激光光散射法测重均分子量(Mw)当入射光电磁波通过介质时,使介质中的小粒子(如高分子)中的电子产生强迫振动,从而产生二次波源向各方向发射与振荡电场(入射光电磁波)同样频率的散射光波。
这种散射波的强弱和小粒子(高分子)中的偶极子数量相关,即和该高分子的质量或摩尔质量有关。
根据上述原理,使用激光光散射仪对高分子稀溶液测定和入射光呈小角度(2℃-7℃)时的散射光强度,从而计算出稀溶液中高分子的绝对重均分子量(MW)值。
采用动态光散射的测定可以测定粒子(高分子)的流体力学半径的分布,进而计算得到高分子分子量的分布曲线。
3.体积排除色谱法(SES)(也称凝胶渗透色谱法(GPC))当高分子溶液通过填充有特种多孔性填料的柱子时,溶液中高分子因其分子量的不同,而呈现不同大小的流体力学体积。
柱子的填充料表面和内部存在着各种大小不同的孔洞和通道,当被检测的高分子溶液随着淋洗液引入柱子后,高分子溶质即向填料内部孔洞渗透,渗透的程度和高分子体积的大小有关。
大于填料孔洞直径的高分子只能穿行于填料的颗粒之间,因此将首先被淋洗液带出柱子,而其他分子体积小于填料孔洞的高分子,则可以在填料孔洞内滞留,分子体积越小,则在填料内可滞留的孔洞越多,因此被淋洗出来的时间越长。
粘度测量

乌氏粘度计测量纺丝溶液粘均分子量的测量方法将纺丝溶液中各组分按原比例稀释至1:7:10:10(即:蛋白质含量为1,盐含量为7,酸和氺含量均为10),然后在磁力搅拌器上搅拌均匀,不同批次的搅拌时间应该一致,取均匀稀释后的溶液,参照乌氏粘度计使用方法测量溶液的粘度。
一、纺丝溶液浓度的测定
1)取样:称取培养皿的质量m1,取溶解后纺丝液5g左右,在培养皿上均匀成膜,称取成膜后的培养皿质量m2;
2)沉淀:反复用清水浸泡纺丝溶液沉淀出蛋白质,直至溶液中溶剂全部析出为止,然后用蒸馏水清洗,各批次清洗时间应一致;
3)烘干:将清洗完毕后的培养皿和蛋白质放入烘箱中烘干,称取质量m3;
4)浓度:纺丝溶液中蛋白质的实际浓度为C = (m3-m1)/ (m2-m1)×100%
二、纺丝溶液稀释方法
1)取样:用50ml的烧杯取溶解后比较均匀的纺丝溶液5-6g左右,根据溶液的实际浓度计算出取样溶液中实际的蛋白质、酸、盐、水的含量,然后将溶液配比至比例为1:7:10:10(蛋白质:盐:酸:水);
2)搅拌:将配比好的待稀释溶液置于磁力搅拌器上搅拌至均匀状态用于乌氏粘度计进行粘度测试,各批次搅拌时间转速温度一致;
三、粘度测量
测量:用乌氏粘度计测量稀释后的均匀溶液的粘度,测试要在60℃恒温条件下进行;。
三粘度法测定聚合物的粘均分子量

实验3 粘度法测定聚合物的粘均分子量一 实验目的掌握粘度法测定聚合物分子量的原理及实验技术。
二、实验原理聚合物溶液与小分子溶液不同,甚至在极稀的情况下,仍具有较大的粘度。
粘度是分子运动时内摩擦力的量度,因溶液浓度增加,分子间相互作用力增加,运动时阻力就增大。
表示聚合物溶液粘度和浓度关系的经验公式很多,最常用的是哈金斯(Huggins )公式2[][]spk c cηηη=+ --------------------------------------- (1)在给定的体系中k 是一个常数,它表征溶液中高分子间和高分子与溶剂分子间的相互作用。
另一个常用的式子是2[][]ln rc cηβηη=--------------------------------------- (2)式中k 与β均为常数,其中k 称为哈金斯参数。
对于柔性链聚合物良溶剂体系,k =1/3,k+β= l/2。
如果溶剂变劣,k 变大;如果聚合物有支化,随支化度增高而显著增加。
从(1)式和(2)式看出,如果用sp cη或ln r cη对c 作图并外推到c →0(即无限稀释),两条直线会在纵坐标上交于一点,其共同截距即为特性粘度[η],如图1-1所示0ln limlim[]sprc c ccηηη→→==----------------------------------------(3)通常式(1)和式(2)只是在了r η=1.2~2.0范围内为直线关系。
当溶液浓度太高或分子量太大均得不到直线,如图1-2所示。
此时只能降低浓度再做一次。
特性粘度[η]的大小受下列因素影响: (1)分子量:线型或轻度交联的聚合物分子量增大,[η]增大。
(2)分子形状:分子量相同时,支化分子的形状趋于球形,[η]较线型分子的小。
(3)溶剂特性:聚合物在良溶剂中,大分子较伸展,[η]较大,而在不良溶剂中,大分子较卷曲,[η]较小。
(4)温度:在良溶剂中,温度升高,对[η]影响不大,而在不良溶剂中,若温度升高使溶剂变为良好,则[η]增大。
粘度法测定高聚物的粘均分子量

粘度法测定高聚物的粘均分子量高聚物摩尔质量不仅反映了高聚物分子的大小,而且直接关系到它的物理性能,是个重要的基本参数。
与一般的无机物或低分子的有机物不同,高聚物多是摩尔质量大小不同的大分子混合物,所以通常所测高聚物摩尔质量是一个统计平均值。
测定高聚摩尔质量的方法很多,而不同方法所得平均摩尔质量也有所不同。
比较起来,粘度法设备简单,操作方便,并有很好的实验精度,是常用的方法之一。
用该法求得的摩尔质量成为粘均摩尔质量。
粘度法测高聚物溶液摩尔质量时,常用名词的物理意义,如表1所示:表1 常用名词的物理意义符号名称与物理意义η0纯溶剂的粘度,溶剂分子与溶剂分子间的内摩擦表现出来的粘度。
η溶液的粘度,溶剂分子与溶剂分子之间、高分子与高分子之间和高分子与溶剂分子之间三者内摩擦的综合表现。
ηr相对粘度,ηr=η/η0,溶液粘度对溶剂粘度的相对值。
ηsp增比粘度,ηsp= (η -η0) / η0 = η / η0 –1 = ηr – 1,反映了高分子与高分子之间,纯溶剂与高分子之间的内摩擦效应。
ηsp/C比浓粘度,单位浓度下所显示出的粘度。
[η]特性粘度,,反映了高分子与溶剂分子之间的内摩擦。
高聚物稀溶液的粘度是它在流动时内摩擦力大小的反映,这种流动过程中的内摩擦主要有:纯溶剂分子间的内摩擦,记作η0;高聚物分子与溶剂分子间的内摩擦;以及高聚物分子间的内摩擦。
这三种内摩擦的总和称为高聚物溶液的粘度,记作η。
实践证明,在相同温度下η>η0 ,为了比较这两种粘度,引入增比粘度的概念,以ηsp表示:ηsp =(η -η0)/η0 =η/ η0 -1 =ηr -1 (5)式中,ηr称为相对粘度,反映的仍是整个溶液的粘度行为,而ηsp则是扣除了溶剂分子间的内摩擦以后仅仅是纯溶剂与高聚物分子间以及高聚物分子间的内摩擦之和。
高聚物溶液的ηsp往往随质量浓度C的增加而增加。
为了便于比较,定义单位浓度的增比粘度ηsp/C为比浓粘度,定义lnηr /C为比浓对数粘度。
聚合物分子量的测定-黏度法

NaNO3 溶液,
五、结果处理
实验数据记录表格
溶液 1mol/L NO3PAM 0.01g/100ml 由实验数据得:
—
时间/s t0 t
77.41 82.83
实验数据 77.15 82.38
77.10 82.33
t0=(t01+t02+t03)/3=77.22s
—
t=(t1+t2+t3)/3=82.51s c=0.01g/100mL 所以: (t-t。) η sp = =0.06851 t。 lnη r=ln(t/t0)=0.06626 1 [η ] =2c (η sp + lnη r)= 6.7385 所以: M v = 1.40×10 ×[η ]3/2=2.45×10 即,聚合物的粘均分子量为 2.45×10
中国石油大学 化学原理(二) 实验报告
班级: 石工 同组者: 学号: 实验日期: 姓名: 教师: 成绩: 耿杰
聚合物分子量的测定---粘度法
一、 实验目的
学会一种测定分子量的方法。
二、 实验原理
由于聚合物具有多分散性,所以聚合物的分子量是一个平均值。有许多测定分子量的 方法(如光散射法、渗透压法、超速离心法、端基分析法等) ,但最简单、而使用范围又广 是粘度法。由粘度法测的的聚合物的分子量叫做粘均分子量,以“ M v”表示。 粘度法又分多点法和一点法: 1.多点法 多点法测点聚合物粘均分子量的计算依据是: [η ] = k M vɑ 式中:[η ]— 特性粘度; k,ɑ—与温度和溶剂有关的常数; M v — 聚合物的粘均分子量。 若是溶剂的粘度为η
0
―― ―― ――Βιβλιοθήκη (7-1),聚合物溶液浓度为 c(100mL 所含聚合物的克数表示)时的粘
1.粘度法测定聚合物的粘均分子量

粘度法测定聚合物的粘均分子量分子量即相对分子质量是聚合物最基本的结构参数之一,与材料的性能有密切的关系。
测定聚合物相对分子质量的方法很多,不同测定方法所得出的统计平均相对分子质量的意义有所不同,其适应的分子量范围也不同。
在高分子工业和研究中最常用的方法是粘度法,它是一种相对的方法,适用于分子量在104 ~ 107范围的聚合物,测定方便,又有较高的实验精度。
通过聚合物溶液的粘度测定,除了提供粘均分子量v M 外,还可得到聚合物的无扰链尺寸和膨胀因子。
一、 实验目的(1) 掌握毛细管粘度计测定聚合物相对分子质量的原理;(2) 学会使用粘度法测定特性粘数。
二、 实验原理由于聚合物的相对分子质量远大于溶剂,因此将聚合物溶解于溶剂时,溶液的粘度(η)将大于纯溶剂的粘度(η0)。
可用多种方式来表示溶液粘度相对于溶剂粘度的变化,其名称及定义如表1-1所示。
表1-1 溶液粘度的各种定义及表达式溶液的粘度与溶液的浓度有关,为了消除粘度对浓度的依赖性,定义了一种特性粘数[η],其定义式为cc c c r 0sp 0ln lim lim ][h h h ®®== (1-1) 特性粘数[η]又称为极限粘数,其值与浓度无关,量纲是浓度的倒数。
特性粘数取决于聚合物的相对分子质量和结构、溶液的温度和溶剂的特性,当温度和溶剂一定时,对于同种聚合物而言,其特性粘数就仅与其分子量有关。
因此,如果能建立相对分子质量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到聚合物的分子量。
这就是用粘度法测定聚合物分子量的理论依据。
根据式(1-1)的定义式,只要测定一系列不同浓度下的比浓粘度和比浓对数粘度,然后对浓度作图,并外推到浓度为零时,得到的比浓粘度和比浓对数粘度就是特性粘数。
实验表明,在稀溶液范围内,比浓粘度和比浓对数粘度与溶液浓度之间呈线性关系,可以用两个近似的经验方程来表示:c k c 2sp][][h h h += (1-2)c c2r ][][ln h b h h -= (1-3) 式(1-2)和式(1-3)分别称为Huggins 和Kraemer 方程式。
1.粘度法测定聚合物的粘均分子量

1.粘度法测定聚合物的粘均分⼦量粘度法测定聚合物的粘均分⼦量分⼦量即相对分⼦质量是聚合物最基本的结构参数之⼀,与材料的性能有密切的关系。
测定聚合物相对分⼦质量的⽅法很多,不同测定⽅法所得出的统计平均相对分⼦质量的意义有所不同,其适应的分⼦量范围也不同。
在⾼分⼦⼯业和研究中最常⽤的⽅法是粘度法,它是⼀种相对的⽅法,适⽤于分⼦量在104 ~ 107范围的聚合物,测定⽅便,⼜有较⾼的实验精度。
通过聚合物溶液的粘度测定,除了提供粘均分⼦量v M 外,还可得到聚合物的⽆扰链尺⼨和膨胀因⼦。
⼀、实验⽬的(1)掌握⽑细管粘度计测定聚合物相对分⼦质量的原理;(2)学会使⽤粘度法测定特性粘数。
⼆、实验原理由于聚合物的相对分⼦质量远⼤于溶剂,因此将聚合物溶解于溶剂时,溶液的粘度(η)将⼤于纯溶剂的粘度(η0)。
可⽤多种⽅式来表⽰溶液粘度相对于溶剂粘度的变化,其名称及定义如表1-1所⽰。
表1-1 溶液粘度的各种定义及表达式溶液的粘度与溶液的浓度有关,为了消除粘度对浓度的依赖性,定义了⼀种特性粘数[η],其定义式为cc c c r 0sp 0ln lim lim ][h h h ??== (1-1) 特性粘数[η]⼜称为极限粘数,其值与浓度⽆关,量纲是浓度的倒数。
特性粘数取决于聚合物的相对分⼦质量和结构、溶液的温度和溶剂的特性,当温度和溶剂⼀定时,对于同种聚合物⽽⾔,其特性粘数就仅与其分⼦量有关。
因此,如果能建⽴相对分⼦质量与特性粘数之间的定量关系,就可以通过特性粘数的测定得到聚合物的分⼦量。
这就是⽤粘度法测定聚合物分⼦量的理论依据。
根据式(1-1)的定义式,只要测定⼀系列不同浓度下的⽐浓粘度和⽐浓对数粘度,然后对浓度作图,并外推到浓度为零时,得到的⽐浓粘度和⽐浓对数粘度就是特性粘数。
实验表明,在稀溶液范围内,⽐浓粘度和⽐浓对数粘度与溶液浓度之间呈线性关系,可以⽤两个近似的经验⽅程来表⽰:c k c 2sp][][h h h += (1-2)c c2r ][][ln h b h h -= (1-3) 式(1-2)和式(1-3)分别称为Huggins 和Kraemer ⽅程式。