高中物理牛顿运动定律解题技巧及练习题

合集下载

高中物理必修一 第四章第10讲 用牛顿运动定律解决问题

高中物理必修一 第四章第10讲 用牛顿运动定律解决问题

第10讲用牛顿运动定律解决问题考情剖析(注:①考纲要求及变化中Ⅰ代表了解和认识,Ⅱ代表理解和应用;②命题难度中的A 代表容易,B代表中等,C代表难)知识整合知识网络基础自测一、动力学的两大基本问题1.已知受力情况求运动情况根据牛顿第二定律,已知物体的__________情况,可以求物体的__________;再知道物体的初始条件(初位置和初速度),根据运动学公式,就可以求出物体在任一时刻的速度和位置,也就求解了物体的运动情况.注意:物体的运动情况是由所受的力及物体运动的初始条件(即初速度的大小和方向)共同决定的.2.已知物体的运动情况,求物体的受力情况.根据物体的运动情况,由运动学公式可以求出加速度,再根据__________可确定物体受的合外力,从而求出未知的力,或与力相关的某些物理量.如:动摩擦因数、劲度系数、力的方向等.二、超重和失重1.实重和视重实重:物体在地球附近受到的实际重力.悬挂于弹簧秤上的物体在____________时,弹簧秤的示数在数值上等于物体的重力,静止于水平支持面上的物体,对支持面的压力在数值上也等于物体的重力.视重:当弹簧秤和悬挂的物体在竖直方向上做________时,此时弹簧秤的示数叫物体的视重,视重不再等于物体的实重.2.超重当物体的加速度方向________时,它对悬挂物(如悬绳,弹簧秤)的拉力或对支持面的压力________实际重力的现象叫超重,亦即视重________实重.3.失重当物体的加速度方向________时,它对悬挂物的拉力或对支持面的压力________实际重力的现象叫失重.即视重________实重.完全失重:物体向下的加速度等于重力加速度时,它对悬挂物或支持面的压力等于____________的现象叫完全失重.它是失重现象中的一个特例.说明:超重和失重并不是物体受的重力增加或减小了,而是由于运动状态的改变,使视重和实重不符的现象.物体的重力并未改变.重点阐述重点知识概述1.两类运动力学基本问题的解题思路图解如下:可见,不论求解哪一类问题,求解加速度是解题的桥梁和纽带,而做好两个分析是解题的关键.2.运用牛顿运动定律解答两类运动力学基本问题的一般方法和步骤是:①取对象——确定研究对象;②画力图——对研究对象进行受力分析(和运动状态分析);③定方向——选取正方向(或建立坐标系),通常以加速度方向为正方向较为适宜;④列方程——根据牛顿运动定律列运动方程,根据运动学公式列方程;⑤解方程——统一单位,求解方程,并对计算结果进行分析检验或讨论.难点释疑1.连接体问题(1)两个(或两个以上)物体组成的系统,我们称之为连接体.连接体的加速度通常是相同的,但也有不同的情况,如一个静止,一个运动.(2)处理连接体问题的方法:整体法与隔离法.要么先整体后隔离,要么先隔离后整体.不管用什么方法解题,所使用的规律都是牛顿运动定律.①整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的外力,应用牛顿第二定律求出加速度(或其他求知量).②隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内两物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.③整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.【典型例题1】质量为M的小车放在光滑水平面上,小车上用细线悬挂另一质量为m的小球,且M>m.用一力F水平向右拉小球,使小球和车一起以加速度a向右运动,细线与竖直方向成α角,细线的拉力为F T.若用一力F′水平向左拉小车,使小球和车一起以加速度a′向左运动时,细线与竖直方向也成α角,细线的拉力为F T′,则()甲乙A.a′=a,F T′=F T B.a′>a,F T′=F TC.a′<a,F T′=F T D.a′>a,F T′>F T温馨提示隔离出小球进行受力分析,然后以小车和小球为整体进行受力,再结合牛顿第二定律即可解答本题.记录空间【变式训练1】如图所示,水平地面上有两块完全相同的木块A、B,在水平推力F的作用下运动,用F AB代表A、B间的相互作用力,则()A.若地面是完全光滑的,F AB=FB.若地面是完全光滑的,F AB=F 2C.若地面是有摩擦的,F AB=FD.若地面是有摩擦的,F AB=F 22.多过程问题处理多过程问题时应注意的两个问题(1)任何多过程的复杂物理问题都是由很多简单的小过程构成,上一过程的末是下一过程的初,对每一个过程分析后,列方程,联立求解.(2)注意两个过程的连接处,加速度可能突变,但速度不会突变,速度是联系前后两个阶段的桥梁.如本题中的小球先做匀减速运动到管口,后做平抛运动.【典型例题2】水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1m/s运行,一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离L=2m,g取10m/s2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率.温馨提示N和牛顿第二定律可得第一题,当速度达到传送带速度时匀加速直线运动结束,第(3)问中对应的情景即为行李由A端加速运动到B端时,速度与传送带速度一致.记录空间【变式训练2】如图所示,传送带与地面夹角θ=37°,从A→B长度为16m,传送带以10m/s的速率逆时针转动.在传送带上端A无初速度地放一个质量为0.5kg的物体,它与传送带之间的动摩擦因数为0.5.求物体从A运动到B所需时间是多少?(sin37°=0.6,cos37°=0.8)【典型例题3】如图甲所示,先将物体A固定在斜面上,给A施加沿斜面向上的拉力F=30N,突然释放物体,物体开始运动,2s后再撤去拉力F,物体的v-t图象如图乙所示(取沿斜面向上为正方向,滑动摩擦力等于最大静摩擦力,取物体开始运动为计时起点),试求:甲乙(1)物体A的质量.(2)物体A与斜面间的动摩擦因数.(3)斜面的倾角θ.温馨提示(纵轴表示的量)与自变量(横轴表示的量)的制约关系;(2)看图线本身,识别两个相关量的变化趋势,从而分析具体的物理过程;(3)看交点,分清两相关量的变化范围及给出的相关条件,明确图线与坐标轴的交点、图线斜率、图线与坐标轴围成的“面积”的物理意义.在看懂以上三方面后,进一步弄清“图象与公式”、“图象与图象”、“图象与物体”之间的联系与变通,以便对有关的物理问题作出准确的判断.记录空间【变式训练3】(13年江苏模拟)受水平拉力F作用的物体,在光滑水平面上做直线运动,其v-t图线如图所示,则()A.在t1时刻,拉力F为零B.在0~t1秒内,拉力F大小不断减小C.在t1~t2秒内,拉力F大小不断减小D.在t1~t2秒内,拉力F大小可能先减小后增大易错诊所1.临界性问题(1)临界问题是指物体的运动性质发生突变,要发生而尚未发生改变时的状态.此时运动物体的特殊条件往往是解题的突破口.(2)动力学中的典型临界问题:①接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力F N=0;②相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值;③绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0;④加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.(3)解题技巧:一般先以某个状态为研究的突破点,进行受力分析和运动分析,以临界条件为切入点,根据牛顿运动定律和运动学公式列方程求解讨论.【典型例题4】如图所示,质量为m=1kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2kg,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F,要使物块m 相对斜面静止,试确定推力F的取值范围.(g=10m/s2)温馨提示F较小时,物块有相对斜面向下运动的可能性,此时物块受到的摩擦力沿斜面向上;当推力F较大时,物块有相对斜面向上运动的可能性,此时物块受到的摩擦力沿斜面向下.找准备临界状态是求解此题的关键.记录空间【变式训练4】如图所示,一细线的一端固定于倾角为θ=30°的光滑楔形块A的顶端处,细线的另一端拴一质量为m的小球.(1)当楔形块至少以多大的加速度向左加速运动时,小球对楔形块压力为零?(2)当楔形块以a=2g的加速度向左加速运动时,小球对线的拉力为多大?2.超重与失重问题(1)(2)①超重:物体的加速度方向是竖直向上的.物体并不一定是竖直向上做加速运动,也可以是竖直向下做减速运动.失重:物体的加速度方向是竖直向下的,物体既可以是向下做加速运动,也可以是向上做减速运动.②尽管物体不在竖直方向上运动,但只要其加速度在竖直方向上有分量,即a y≠0就可以.当a y的方向竖直向上时,物体处于超重状态;当a y的方向竖直向下时,物体处于失重状态.③当物体处于完全失重状态时,重力只产生使物体具有a=g的加速度效果,不再产生其他效果.④处于超重和失重状态下的液体的浮力公式分别为F浮=ρV排(g+a)和F浮=ρV排(g-a);处于完全失重状态下的液体F浮=0,即液体对浸在液体中的物体不再产生浮力.⑤物体处于超重或失重状态时,物体的重力始终存在,大小也没有变化.⑥发生超重或失重现象与物体的速度无关,只取决于加速度的大小和方向.⑦物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.⑧在完全失重的状态下,平时一切由重力产生的物理现象都会完全消失,如单摆停摆、浸在水中的物体不再受浮力、液体柱不再产生压强等.【典型例题5】如图所示,A为电磁铁,C为胶木秤盘,电磁铁A和秤盘C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点.当电磁铁通电,在铁片被吸引上升的过程中,轻绳中拉力F的大小为()A.F=mg B.Mg<F<(M+m)gC.F=(M+m)g D.F>(M+m)g温馨提示记录空间【变式训练5】电梯的顶部挂一个弹簧测力计,测力计下端挂了一个重物,电梯匀速直线运动时,弹簧测力计的示数为10N,在某时刻电梯中的人观察到弹簧测力计的示数变为8N,关于电梯的运动(如图所示),以下说法正确的是(g取10m/s2)()A.电梯可能向上加速运动,加速度大小为4m/s2B.电梯可能向下加速运动,加速度大小为4m/s2C.电梯可能向上减速运动,加速度大小为2m/s2D.电梯可能向下减速运动,加速度大小为2m/s2随堂演练1.火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为()A.人跳起后,车厢内空气给他以向前的力,带着他随同火车一起向前运动B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动C.人跳起后,车在继续向前运动,所以人落下后必是偏后一些,只是由于时间很短,偏后距离太小,不明显而已D.人跳起后直到落地,在水平方向上人和车始终有相同的速度2.物体静止于一斜面上(如图所示),则下列说法正确的是()第2题图A.物体对斜面的压力和斜面对物体的支持力是一对平衡力B.物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C.物体所受重力和斜面对物体的作用力是一对作用力和反作用力D.物体所受的重力可以分解为沿斜面向下的力和对斜面的压力3.在位于印度安得拉邦斯里赫里戈达岛的萨蒂什·达万航天中心,一枚PSLV—C14型极地卫星运载火箭携带七颗卫星发射升空,成功实现“一箭七星”发射,相关图片如图所示.则下列说法正确的是()第3题图A.火箭发射时,喷出的高速气流对火箭的作用力大于火箭对气流的作用力B.发射初期,火箭处于超重状态,但它受到的重力却越来越小C.高温高压燃气从火箭尾部喷出时对火箭的作用力与火箭对燃气的作用力大小相等D.发射的七颗卫星进入轨道正常运转后,均处于完全失重状态4.两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如图所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力()第4题图A.等于零B.方向沿斜面向上C.大小等于μ1mg cosθD.大小等于μ2mg cosθ5.【变式训练4】中若题干条件不变,当细线拉力刚好为零时,则楔形块的加速度多大?运动方向如何?此时小球对楔形块的压力多大?6.如图所示,长为L,内壁光滑的直管与水平地面成30°角固定放置,将一质量为m 的小球固定在管底,用一轻质光滑细线将小球与质量为M=km的小物块相连,小物块悬挂于管口,现将小球释放,一段时间后,小物块落地静止不动,小球继续向上运动,通过管口的转向装置后做平抛运动,小球的转向过程中速率不变.(重力加速度为g)(1)求小物块下落过程中的加速度大小;(2)求小球从管口抛出时的速度大小;(3)试证明小球平抛运动的水平位移总小于2 2L.第6题图7.放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.重力加速度g=10m/s2.求:(1)物块在运动过程中受到的滑动摩擦力的大小;(2)物块在3~6s内的加速度大小;(3)物块与地面间的动摩擦因数.第7题图第10讲用牛顿运动定律解决问题知识整合基础自测一、 1.受力加速度2.牛顿第二定律二、 1.静止或匀速运动变速运动2.向上大于大于3.向下小于小于零重点阐述【典型例题1】质量为M的小车放在光滑水平面上,小车上用细线悬挂另一质量为m的小球,且M>m.用一力F水平向右拉小球,使小球和车一起以加速度a向右运动,细线与竖直方向成α角,细线的拉力为F T.若用一力F′水平向左拉小车,使小球和车一起以加速度a′向左运动时,细线与竖直方向也成α角,细线的拉力为F T′,则()甲乙A.a′=a,F T′=F T B.a′>a,F T′=F TC.a′<a,F T′=F T D.a′>a,F T′>F T【答案】B【解析】两种情况下对球受力分析如图所示,由甲图可知F-F T sinα=ma①F T cosα=mg②所以F T=mgcosα由乙图知F T′cosα=mg③F T′sinα=ma′④所以F T′=mgcosα,a′=gtanα,故F T′=F T,D错由①②两式得F=ma+mgtanα⑤同时对小车、小球整体分析可知a=Fm+M,将⑤式代入得到a=mgtanαM,因为M>m所以a′>a,故B正确.变式训练1BD【解析】无摩擦时,F AB=F2M×M=F2,A错,B对;当有摩擦时,先整体求加速度F-f=2Ma再隔离对B受力分析,F AB=F-f2M×M+f2=F2,C错,D对,故选BD.【典型例题2】水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图.紧绷的传送带AB始终保持恒定的速率v=1m/s运行,一质量为m=4kg的行李无初速度地放在A处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2m ,g 取10m/s 2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处,求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.【答案】 (1)4N 1m/s 2 (2)1s (3)2s 2m/s 2【解析】 (1)滑动摩擦力F f =μmg =0.1×4×10N =4N ,加速度a =F f m=μg =0.1×10m/s 2=1m/s 2.(2)行李达到与传送带相同速率后不再加速,则v =at 1,t 1=v a =11s =1s.(3)行李始终匀加速运行时间最短,加速度仍为a =1m/s 2,当行李到达右端时,有v 2min =2aL ,v min =2aL =2×1×2m/s =2m/s ,所以传送带对应的最小运行速率为2m/s.行李最短运行时间由v min =at min 得t min =v min a =21s =2s. 变式训练2 2s 【解析】 物体的运动分为两个过程:第一个过程是在物体速度等于传送带速度之前,物体做匀加速直线运动;第二个过程是物体速度等于传送带速度以后的运动.其中速度刚好相同时的点是一个转折点,此后的运动情况要看mgsin θ与所受的最大静摩擦力的关系.若μ<tan θ,则继续向下加速;若μ≥tan θ,则将随传送带一起匀速运动.分析清楚了受力情况与运动情况,再利用相应规律求解即可.本题中最大静摩擦力等于滑动摩擦力大小.物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一个沿传送带向下的滑动摩擦力F ,物体受力情况如图甲所示.物体由静止加速,由牛顿第二定律有mgsin θ+μmg cos θ=ma 1,得a 1=10×(0.6+0.5×0.8)m/s 2=10m/s 2.物体加速至与传送带速度相等需要的时间t 1=v a 1=1010s =1s ,t 1时间内位移x =12a 1t 21=5m.甲乙由于μ<tan θ,物体在重力作用下将继续加速运动,当物体速度大于传送带速度时,传送带给物体一沿传送带向上的滑动摩擦力F′.此时物体受力情况如图乙所示,由牛顿第二定律有mgsin θ-μmg cos θ=ma 2,得a 2=2m/s 2.设后一阶段物体滑至底端所用的时间为t 2,由L -x =vt 2+12a 2t 22解得t 2=1s ,t 2=-11s(舍去).所以物体由A →B 的时间t =t 1+t 2=2s.【典型例题3】 如图甲所示,先将物体A 固定在斜面上,给A 施加沿斜面向上的拉力F =30N ,突然释放物体,物体开始运动,2s 后再撤去拉力F ,物体的v -t 图象如图乙所示(取沿斜面向上为正方向,滑动摩擦力等于最大静摩擦力,取物体开始运动为计时起点),试求:甲乙(1)物体A 的质量.(2)物体A 与斜面间的动摩擦因数.(3)斜面的倾角θ.【答案】 (1)2kg (2)0.5 (3)37° 【解析】 由题图乙可知,0~2s ,物体的加速度为a 1=Δv 1Δt 1=5m/s 2 ① 2s ~3s ,物体的加速度为a 2=-10m/s 2 ② 3s ~5s ,物体的加速度为a 3=-2m/s ③ 由题中图象可知,前3s 内物体沿斜面向上运动,受到的滑动摩擦力沿斜面向下,3s 后物体沿斜面向下运动,则受到的滑动摩擦力变为沿斜面向上,由牛顿运动定律可得0~2s ,F -μmg cos θ-mgsin θ=ma 1 ④ 2s ~3s ,-μmg cos θ-mgsin θ=ma 2 ⑤ 3s ~5s ,μmg cos θ-mgsin θ=ma 3 ⑥ 联立①②③④⑤⑥式解得:m =2kg ,μ=0.5,θ=37°.变式训练3 AB 【解析】 由v -t 图象可知t 1时刻,图线切线斜率为0,此时物体做匀速直线运动,物体水平方向合力为0,则拉力F 为0,A 对;0~t 1秒内,图线切线斜率不断减小,此时物体做加速度不断减小的加速运动,F 不断减小,B 对;同理t 1~t 2秒内,F 不断增大,CD 错;故选AB.【典型例题4】如图所示,质量为m =1kg 的物块放在倾角为θ=37°的斜面体上,斜面质量为M =2kg ,斜面与物块间的动摩擦因数为μ=0.2,地面光滑,现对斜面体施一水平推力F ,要使物块m 相对斜面静止,试确定推力F 的取值范围.(g =10m/s 2)【答案】 14.4N ≤F ≤33.6N 【解析】 (1)设物块处于相对斜面向下滑动的临界状态时的推力为F 1,此时物块受力如图所示,取加速度的方向为x 轴正方向.对物块分析,在水平方向有F N sin θ-μF N cos θ=ma 1 竖直方向有F N cos θ+μF N sin θ-mg =0 对整体有F 1=(M +m)a 1 代入数值得a 1=4.8m/s 2,F 1=14.4N (2)设物块处于相对斜面向上滑动的临界状态时的推力为F 2,对物块分析,在水平方向有F′N sin θ+μF′N cos θ=ma 2,竖直方向有F′N cos θ-μF′N sin θ-mg =0,对整体有F 2=(M +m)a 2代入数值得a 2=11.2m/s 2,F 2=33.6N 综上所述可知推力F 的取值范围为:14.4N ≤F ≤33.6N.变式训练4 (1)3g (2)5mg 【解析】 (1)小球对楔形块恰无压力时受力情况如图所示.由牛顿运动定律,得mgcot θ=ma 0,所以a 0=gcot θ=gcot30°=3g (2)当a =2g 时,由于a>a 0,所以此时小球已离开楔形块,设此时细线与水平方向的夹角为α,则其受力情况如图所示,由牛顿运动定律,得mgcot α=ma ,即cot α=a/g =2,所以F′T =mg/sin α=5mg 或F′T =(mg )2+(ma )2=5mg 根据牛顿第三定律,小球对线的拉力F T ″=F′T =5mg【典型例题5】 如图所示,A 为电磁铁,C 为胶木秤盘,电磁铁A 和秤盘C(包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点.当电磁铁通电,在铁片被吸引上升的过程中,轻绳中拉力F 的大小为( )A .F =mgB .Mg<F<(M +m)gC .F =(M +m)gD .F>(M +m)g【答案】 D 【解析】 方法一 铁片被吸引上升的过程是加速度逐渐增大的加速运动过程,设A 对B 的吸引力为F 1,由于铁片向上加速运动,故有F 1>mg.根据牛顿第三定律可得:B 对A 的吸引力F′1=F 1>mg.由于电磁铁和秤盘处于静止状态,所以有F =F′1+Mg>(M +m)g ,所以选D.方法二 本题可用超重与失重知识快速解决,以A 、B 、C 系统为研究对象,A 、C 静止,铁片B 由静止被吸引而加速上升.则系统的重心加速上升,系统处于超重状态,因此轻绳拉力F>(M +m)g.变式训练5 C 【解析】 由分析可知,物块的加速度a =10N -8N 1kg=2m/s 2,方向向下,所以物块只可能向上减速或向下加速运动,故选C.随堂演练1.D 【解析】 人从跳起到落地的过程中,水平方向不受外力作用,保持着原来所具有的速度做匀速直线运动,所以仍落回车上原处.2.B 【解析】 物体静止于斜面上时,受到重力G ,斜面的支持力F N 和摩擦力F f 三个力作用.其中重力反作用力是物体对地球的引力,支持力的反作用力是物体对斜面的压力,摩擦力的反作用力是物体对斜面的摩擦力,这里有两对平衡力,一对是支持力F N 与重力在垂直斜面方向的分力mg cos θ,另一对是重力沿斜面向下的分力mg sin θ与摩擦力F f .这里一定要注意:物体对斜面的压力是物体与斜面互相挤压,发生形变而产生的弹力,与重力在垂直斜面方向的分力是截然不同的两个力.3.BCD 【解析】 由作用力与反作用力大小相等,可知A 错误,火箭发射初期,因为火箭向上加速运动,故处于超重状态,随着火箭距地球越来越远,所受的重力也越来越小,B 正确;由作用力与反作用力的关系可知C 正确;卫星进入轨道正常运转后,所受的万有引力充当向心力,此时各卫星均处于完全失重状态,D 正确.4.BC 【解析】 把A 、B 两滑块作为一个整体,设其下滑的加速度为a ,由牛顿第二定律有(M +m)g sin θ-μ1(M +m)g cos θ=(M +m)a 得a =g(sin θ-μ1cos θ).由于a<g sin θ,可见B 随着A 一起下滑过程中,必须受到A 对它沿斜面向上的摩擦力,设摩擦力为F B (如图所示),由牛顿第二定律有mg sin θ-F B =ma ,F B =mg sin θ-mg(sin θ-μ1cos θ)=μ1mg cos θ.第4题图第5题图5.33g 向右加速运动或向左减速运动 233mg 【解析】 设细线拉力刚好为零时,楔形块的加速度为a 0′,对小球受力分析如图所示.由牛顿运动定律得mgtan θ=ma′0,所以a 0′=gtan θ=gtan30°=33g ,即细线拉力刚好为零时,楔形块的加速度大小为33g ,方向水平向右.故楔形块向右加速运动或向左减速运动.小球受到的弹力F N =(mg )2+(ma′0)2=233mg.根据牛顿第三定律得小球对楔形块的压力F′N =F N =233mg. 6.(1)2k -12(k +1)g (2)k -22(k +1)gL(k>2) (3)见解析 【解析】 (1)设细线中的张力为F T ,根据牛顿第二定律Mg -F T =Ma F T -mgsin30°=ma 且M =km ,联立解得a =2k -12(k +1)g (2)设M 落地时的速度大小为v ,m 射出管口时速度大小为v 0,M 落地后m 的加速度大小为a 0,根据牛顿第二定律-mgsin30°=ma 0,由匀变速直线运动规律知v 2=2aLsin30°,v 20-v 2=2a 0L(1-sin30°),联立解得v 0=k -22(k +1)gL(k>2) (3)由平抛运动规律x =v 0t ,Lsin30°=12gt 2,解得x =L k -22(k +1),则x<22L 得证. 7.(1)4N (2)2m/s 2 (3)0.4 【解析】 (1)由v -t 图象可知,物块在6~9s 内做匀速运动,由F -t 图象知,6~9s 的推力F 3=4N ,故F f =F 3=4N ① (2)由v -t 图象可知,3~。

【物理】物理牛顿运动定律练习题及答案及解析

【物理】物理牛顿运动定律练习题及答案及解析

(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
(1)小环的质量 m;
(2)细杆与地面间的倾角 a. 【答案】(1)m=1kg,(2)a=30°. 【解析】 【详解】
由图得:0-2s 内环的加速度 a= v =0.5m/s2 t
前 2s,环受到重力、支持力和拉力,根据牛顿第二定律,有: F1 mg sin ma 2s 后物体做匀速运动,根据共点力平衡条件,有: F2 mg sin
=4m/s2
解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1s
(2)由静止到动摩擦因素发生变化的位移:x1= a1t2=2m
动摩擦因数变化后,由牛顿第二定律得加速度:a2=
=5m/s2
由 vB2-v2=2a2(L-x1) 解得滑雪者到达 B 处时的速度:vB=16m/s (3)设滑雪者速度由 vB=16m/s 减速到 v1=4m/s 期间运动的位移为 x3,则由动能定理有:
;解得 x3=96m
速度由 v1=4m/s 减速到零期间运动的位移为 x4,则由动能定理有:
;解得 x4=3.2m
所以滑雪者在水平雪地上运动的最大距离为 x=x3+x4=96+ 3.2=99.2m
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:

高中物理必修一第四章习题(完整版)

高中物理必修一第四章习题(完整版)

第四章牛顿运动定律§4.1 牛顿第一定律班级:姓名:1、一切物体总保持_______状态或________状态,除非__________________,这就是牛顿第一定律.牛顿第一定律揭示了运动和力的关系:力不是_________的原因,而是______________的原因.2、物体的这种保持_________或__________的性质叫做惯性,惯性是物体的____性质.3、理想实验是科学研究中的__________方法,它把___________和__________结合起来,可以深刻地揭示________________.[习题一]1、关于伽利略的理想实验,下列说法正确的是()A.只要接触面相当光滑,物体在水平面上就能匀速运动下去B.这个实验实际上是永远无法做到的C.利用气垫导轨,就能使实验成功D.虽然是想象中的实验,但是它建立在可靠的实验基础上2、下列事例中利用物体惯性的是()A.跳远运动员在起跳前的助跑运动 B.跳伞运动员在落地前打开降落伞C.自行车轮胎做成凹凸不平的形状 D.铁饼运动员在掷出铁饼前快速旋转3、下列关于惯性的说法中,正确的是()A.汽车刹车时,乘客的身子会向前倾斜,是因为汽车有惯性B.做匀速直线运动的物体和静止的物体没有惯性C.物体的惯性只有在物体速度改变时才表现出来D.物体都具有惯性,与物体是否运动无关,与物体速度是否变化也无关4、门窗紧闭的火车在平直轨道上匀速行驶,车厢内有一人竖直上跳起后落会原处,这是因为()A.人起跳后,车厢底板仍然对他有向前的推力B.人起跳后,车厢中的空气对他有向前的推力C.人起跳后,在火车运动方向上仍具有与火车相同的速度D.人起跳后,在水平方向上没有受到力的作用5、小孩在向前行驶的轮船的密封船舱内竖直方向上抛出一个小球,结果小球落到了抛出点的后面,这是因为()A.小球离开小孩后,不具备向前的速度 B.轮船正向前加速运动C.轮船正向前减速运动 D.小球在空中运动时失去惯性6、下列情况中,物体运动状态发生改变的有()A.物体在斜面上匀速下滑B.在粗糙水平面上运动的物体逐渐停下来C.物体以大小不变的速度通过圆弧轨道D.物体以恒定的加速度做自由落体运动7、下列关于力和运动关系的说法中,正确的是()A.物体做曲线运动,一定受到了力的作用B.物体做匀速运动,一定没有力作用在物体上C.物体运动状态的改变,一定受到了力的作用D.物体受到摩擦力的作用,运动状态一定会发生变化8、理想实验有时更能深刻地反映自然规律。

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案

高中物理牛顿运动定律的应用计算题专题训练含答案姓名:__________ 班级:__________考号:__________一、计算题(共20题)1、处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F1,作用2秒后,撤去F1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?2、一个质量为m的人站在电梯中,电梯加速上升,加速度大小为g.g为重力加速度,求人对电梯的压力的大小.3、一物块从倾角为θ、长为s的斜面的项端由静止开始下滑,物块与斜面的滑动摩擦系数为μ,求物块滑到斜面底端所需的时间.4、放在水平地面上的一物块,受到方向不变的水平推力F的作用,力F的大小与时间t的关系和物块速度v与时间t的关系如图所示.取重力加速度g=10 m/s2.试利用两图线求出物块的质量及物块与地面间的动摩擦因数.5、如图所示,质量为m=1l kg的物块放在水平地面上,在与水平方向成θ=37°角斜向上、大小为50N的拉力F作用下,以大小为v0=l0m/s的速度向右做匀速直线运动,(取当地的重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)求(1)物块与水平面间的动摩擦因数;(2)若撤去拉力F,物块经过3秒在水平地面上滑行的距离是多少?6、质量为2kg的物体,静止于水平面上,物体与水平面间的动摩擦因数为0.2。

现对物体施加一个大小为6N的水平力,此力作用一段时间后立即改变,改变后的力与原来比较,大小不变、方向相反。

再经过一段时间,物体的速度变为零。

如果这一过程物体的总位移为15m。

求:(1)力改变前后物体加速度的大小a1、a2分别为多少?(2)在这一过程物体的最大速度;(3)全过程的总时间。

(g=10m/s2)7、直升机沿水平方向匀速飞往水源取水灭火,悬挂着m=500kg空箱的悬索与竖直方向的夹角=45°.直升机取水后飞往火场,加速度沿水平方向,大小稳定在a=1.5m/s2时,悬索与竖直方向的夹角=14°.如果空气阻力大小不变,且忽略悬索的质量,试求水箱中水的质量M。

高中物理必修Ⅰ人教版4.7用牛顿运动定律解决问题(二)

高中物理必修Ⅰ人教版4.7用牛顿运动定律解决问题(二)

视重:物体对 悬挂物的拉力 或者对支持物 的压力
F1
G 实重:物 体实际的 重力
【视察与思考】
把物体挂在弹簧测力计下,用手带动弹簧秤和物体
一起:
1.静止 2.向上加速运动 3.向下加速运动
——根据二力平衡拉力等于重力 ——拉力大于重力(视重大于实重)
视察弹簧测力计的示—数如—何拉变力化小?于重力(视重小于实重)
A → B →C 全过程综合考虑,匀减速运动,
s= v0 t -
1gt2=20×5-
2
1×10×25
2
=-25m
v0 A A1
负号表示5s末物体的位置C在A点下方25m
vt= v0 -gt=20-10×5=-30m/s
负号表示方向向下。
C
vt
一、共点力的平衡条件:物体所受协力为0。 二、超重和失重: 物体具有竖直向上的加速度时为超重状态。 物体具有竖直向下的加速度时为失重状态 。 超重还是失重由加速度方向决定,与速度方向无关。 三、从动力学看自由落体运动
一、共点力的平衡条件 1.平衡状态:如果一个物体在力的作用下,保持静 止或匀速直线运动状态,我们就说这个物体处于平 衡状态。 2.共点力作用下物体的平衡条件是协力为0。
3.平衡条件的四个推论 (1)若物体在两个力同时作用下处于平衡状态,则这 两个力大小相等、方向相反,且作用在同一直线上, 其协力为零,这就是初中学过的二力平衡。 (2)物体在三个共点力作用下处于平衡状态,任意两 个力的协力与第三个力等大、反向。
二、超重现象
以一个站在升降机里的体重计上的人为例分析:
设人的质量为m,升降机以加速度a加速上升。
分析:对人和升降机受力分析如图
F合 = N - G F合 = N - G = m a 故:N = G + m a

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。

如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。

B 、C 分别是传送带与两轮的切点,相距L =6.4m 。

倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。

一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。

用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。

g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。

【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。

【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析

高中物理牛顿运动定律解题技巧(超强)及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1. 在机场可以看到用于传送行李的传送带,行李随传送带一起前进运动。

如图所示,水平传送带匀速运行速度为v=2m/s,传送带两端AB间距离为S o=lOm,传送带与行李箱间的动摩擦因数卩=0.2当质量为m=5kg的行李箱无初速度地放上传送带A端后,传送到B端,重力加速度g取10m/2;求:(1) 行李箱开始运动时的加速度大小a;(2) 行李箱从A端传送到B端所用时间t;(3) 整个过程行李对传送带的摩擦力做功W。

【答案】⑴,(2)薜耳⑶="-纠【解析】【分析】行李在传送带上先做匀加速直线运动,当速度达到传送带的速度,和传送带一起做匀速直线运动,根据牛顿第二定律及运动学基本公式即可解题行李箱开始运动时的加速度大小和行李箱从A端传送到B 端所用时间;根据做功公式求解整个过程行李对传送带的摩擦力做功;【详解】解:(1)行李在传送带上加速,设加速度大小为aI__7(2)行李在传送带上做匀加速直线运动,加速的时间为t1V 2灯== Is1所以匀加速运动的位移为:s\=尹甘=lrnSo-Si 10-1行李随传送带匀速前进的时间:(2 = ---------- = —-一=4.5$v 2行李箱从A传送到B所需时间::3 --气出⑶t1传送带的的位移为:怜一叽“ -根据牛顿第三定律可得传送带受到行李摩擦力为:『◎『整个过程行李对传送带的摩擦力做功:w =7比=-吓阿=-20/2. 如图甲所示,质量为m的A放在足够高的平台上,平台表面光滑•质量也为m的物块B放在水平地面上,物块B与劲度系数为k的轻质弹簧相连,弹簧与物块A用绕过定滑轮的轻绳相连,轻绳刚好绷紧•现给物块A施加水平向右的拉力F (未知),使物块A做初速度为零的匀加速直线运动,加速度为a,重力加速度为g,A、B均可视为质点.根据v 2 2ax 解得:v . 2ax 对物体A:F T ma ; 对物体B:T=mg , 解得 F=ma+mg ; (2)设某时刻弹簧的伸长量为x .对物体C ,水平方向:F cosT | m C a ,其中T | kx mg ;竖直方向:F sin m C g ;联立解得m e3mg4g 3a3.如图所示,水平面上AB 间有一长度x=4m 的凹槽,长度为L=2m 、质量M=1kg 的木板静止 于凹槽右侧,木板厚度与凹槽深度相同,水平面左侧有一半径R=0.4m 的竖直半圆轨道,右侧有一个足够长的圆弧轨道,A 点右侧静止一质量 m1=0.98kg 的小木块.射钉枪以速度v °=ioom/s 射出一颗质量m0=0.02kg 的铁钉,铁钉嵌在木块中并滑上木板,木板与木块间动摩擦因数 卩=0.05其它摩擦不计.若木板每次与 A 、B 相碰后速度立即减为 0,且与A 、B 不粘连,重力加 速度 g=10m/s 2.求:(1) 当物块B 刚好要离开地面时,拉力 F 的大小及物块 A 的速度大小分别为多少;(2)若将物块 A 换成物块C ,拉力F 的方向与水平方向成 37°角,如图乙所示,开始时轻绳也刚好要绷紧,要使物块B 离开地面前,物块C 一直以大小为a 的加速度做匀加速度运动,则物块 C 的质量应满足什么条件? ( sin37°0.6,cos37° 0.8)【答案】(1) F ma mg;v 【解析】 【分析】 【详解】(1)当物块B 刚好要离开地面时, B 受力分析有mg kx ,得:x2嘗(2) m C设弹簧的伸长量为mg k3mg 4g 3ax ,物块A 的速度大小为v ,对物块2amg k(3)木块最终停止时离 A 点的距离s.【答案】(1) v 2m/s (2) F N 12.5N (3) L 1.25m 【解析】(1) 设铁钉与木块的共同速度为 v ,取向左为正方向,根据动量守恒定律得:m °V 0 (m ° mjv解得:v 2叹;⑵木块滑上薄板后,木块的加速度 印 g 0.5,且方向向右设经过时间t ,木块与木板共同速度 v 运动 则:va 2t此时木块与木板一起运动的距离等于木板的长度.1 .2 1 2x vt a 1ta 2t L2 2故共速时,恰好在最左侧 B 点,此时木块的速度 v v a 1t 1^S 木块过C 点时对其产生的支持力与重力的合力提供向心力,则:'2vF N mg m R代入相关数据解得:F N =12.5N. 由牛顿第三定律知,木块过圆弧C 点时对C 点压力为12.5N ;1 2⑶木块还能上升的高度为 h ,由机械能守恒有:(m ° mjv (m 0 m^gh2h 0.05m 0.4m木块不脱离圆弧轨道,返回时以 1m/s 的速度再由B 处滑上木板,设经过 t 1共速,此时木 板的加速度方向向右,大小仍为a 2,木块的加速度仍为 a 1,板产生的加速度a 2 mg M, 且方向向左则:v2 a1t1 a2t1,解得:t1 1s1 2 1 2此时x v t1a-i t-i a2t| 0.5m2 2v3v2 at10.5叹碰撞后,v薄板=0,木块以速度V3=0.5m/s的速度向右做减速运动v3设经过t2时间速度为0,则t2a;1s| 2x v3t2a2t2 0.25m2故△L=b △x' - x=1.25m即木块停止运动时离A点1.25m远.4. 如图,光滑固定斜面上有一楔形物体A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理牛顿运动定律解题技巧及练习题一、高中物理精讲专题测试牛顿运动定律1.如图甲所示,一长木板静止在水平地面上,在0t =时刻,一小物块以一定速度从左端滑上长木板,以后长木板运动v t -图象如图所示.已知小物块与长木板的质量均为1m kg =,小物块与长木板间及长木板与地面间均有摩擦,经1s 后小物块与长木板相对静止()210/g m s=,求:()1小物块与长木板间动摩擦因数的值; ()2在整个运动过程中,系统所产生的热量.【答案】(1)0.7(2)40.5J 【解析】 【分析】()1小物块滑上长木板后,由乙图知,长木板先做匀加速直线运动,后做匀减速直线运动,根据牛顿第二定律求出长木板加速运动过程的加速度,木板与物块相对静止时后木板与物块一起匀减速运动,由牛顿第二定律和速度公式求物块与长木板间动摩擦因数的值.()2对于小物块减速运动的过程,由牛顿第二定律和速度公式求得物块的初速度,再由能量守恒求热量. 【详解】()1长木板加速过程中,由牛顿第二定律,得1212mg mg ma μμ-=; 11m v a t =;木板和物块相对静止,共同减速过程中,由牛顿第二定律得 2222mg ma μ⋅=; 220m v a t =-;由图象可知,2/m v m s =,11t s =,20.8t s = 联立解得10.7μ=()2小物块减速过程中,有:13mg ma μ=; 031m v v a t =-;在整个过程中,由系统的能量守恒得2012Q mv = 联立解得40.5Q J =【点睛】本题考查了两体多过程问题,分析清楚物体的运动过程是正确解题的关键,也是本题的易错点,分析清楚运动过程后,应用加速度公式、牛顿第二定律、运动学公式即可正确解题.2.我国的动车技术已达世界先进水平,“高铁出海”将在我国“一带一路”战略构想中占据重要一席.所谓的动车组,就是把带动力的动力车与非动力车按照预定的参数组合在一起.某中学兴趣小组在模拟实验中用4节小动车和4节小拖车组成动车组,总质量为m=2kg ,每节动车可以提供P 0=3W 的额定功率,开始时动车组先以恒定加速度21/a m s =启动做匀加速直线运动,达到额定功率后保持功率不变再做变加速直线运动,直至动车组达到最大速度v m =6m/s 并开始匀速行驶,行驶过程中所受阻力恒定,求: (1)动车组所受阻力大小和匀加速运动的时间;(2)动车组变加速运动过程中的时间为10s ,求变加速运动的位移. 【答案】(1)2N 3s (2)46.5m 【解析】(1)动车组先匀加速、再变加速、最后匀速;动车组匀速运动时,根据P=Fv 和平衡条件求解摩擦力,再利用P=Fv 求出动车组恰好达到额定功率的速度,即匀加速的末速度,再利用匀变速直线运动的规律即可求出求匀加速运动的时间;(2)对变加速过程运用动能定理,即可求出求变加速运动的位移.(1)设动车组在运动中所受阻力为f ,动车组的牵引力为F ,动车组以最大速度匀速运动时:F=动车组总功率:m P Fv =,因为有4节小动车,故04P P = 联立解得:f=2N设动车组在匀加速阶段所提供的牵引力为Fʹ,匀加速运动的末速度为v ' 由牛顿第二定律有:F f ma '-=动车组总功率:P F v ='',运动学公式:1v at '= 解得匀加速运动的时间:13t s =(2)设动车组变加速运动的位移为x ,根据动能定理:221122m Pt fx mv mv =-'- 解得:x=46.5m3.如图所示,在光滑水平面上有一段质量不计,长为6m 的绸带,在绸带的中点放有两个紧靠着可视为质点的小滑块A 、B ,现同时对A 、B 两滑块施加方向相反,大小均为F=12N 的水平拉力,并开始计时.已知A 滑块的质量mA=2kg ,B 滑块的质量mB=4kg ,A 、B 滑块与绸带之间的动摩擦因素均为μ=0.5,A 、B 两滑块与绸带之间的最大静摩擦力等于滑动摩擦力,不计绸带的伸长,求:(1)t=0时刻,A 、B 两滑块加速度的大小; (2)0到3s 时间内,滑块与绸带摩擦产生的热量.【答案】(1)22121,0.5m ma a ss ==;(2)30J【解析】 【详解】(1)A 滑块在绸带上水平向右滑动,受到的滑动摩擦力为A f ,水平运动,则竖直方向平衡:A N mg =,A A f N =;解得:A f mg μ= ——① A 滑块在绸带上水平向右滑动,0时刻的加速度为1a , 由牛顿第二定律得:1A A F f m a -=——② B 滑块和绸带一起向左滑动,0时刻的加速度为2a 由牛顿第二定律得:2B B F f m a -=——③;联立①②③解得:211m /s a =,220.5m /s a =;(2)A 滑块经t 滑离绸带,此时A B 、滑块发生的位移分别为1x 和2x1221122221212L x x x a t x a t ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩代入数据解得:12m x =,21m x =,2s t =2秒时A 滑块离开绸带,离开绸带后A 在光滑水平面上运动,B 和绸带也在光滑水平面上运动,不产生热量,3秒时间内因摩擦产生的热量为:()12A Q f x x =+ 代入数据解得:30J Q =.4.如图所示,一段平直的马路上,一辆校车从一个红绿灯口由静止开始做匀加速直线运动,经36 m 速度达到43.2 km/h ;随后保持这一速度做匀速直线运动,经过20 s ,行驶到下一个路口时,司机发现前方信号灯为红灯便立即刹车,校车匀减速直线行驶36 m 后恰好停止.(1)求校车匀加速运动的加速度大小a 1;(2)若校车总质量为4 500 kg ,求校车刹车时所受的阻力大小; (3)若校车内坐有一质量为30 kg 的学生,求该学生在校车加速过程中座椅对学生的作用力F 的大小.(取g =10 m/s 2,结果可用根式表示)【答案】(1)22/m s (2)9000N (3)6026N 【解析】 【分析】(1)根据匀加速运动的速度位移关系可求加速度;(2)根据匀减速运动的速度位移关系可求加速度;根据牛顿第二定律可求阻力; (3)座椅对学生的作用力的水平分力等于mg ,F 的竖直分力的竖直分力等于重力,水平分力提供加速度.根据力的合成可求. 【详解】(1)由匀加速直线运动公式可知v 2=2a 1x 1, 得加速度a 1=2 m/s 2(2)由匀减速直线运动公式得:0-v 2=-2a 2x 3 解得a 2=2 m/s 2 F 阻=Ma 2=9000 N.(3)匀加速运动过程中,座椅对学生的作用力为F ,F 的竖直分力等于mg ,F 的水平分力由牛顿第二定律可得F 水平=ma 1 F =()()221mg ma +得F =6026 N.5.如图,光滑固定斜面上有一楔形物体A 。

A 的上表面水平,A 上放置一物块B 。

已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<),最大静擦力等于滑动摩擦力,重力加速度为g 。

现对A 施加一水平推力。

求:(1)物体A 、B 保持静止时,水平推力的大小F 1;(2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ;(3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。

【答案】(1)(2)(3)【解析】 【分析】先以AB 组成的整体为研究的对象,得出共同的加速度,然后以B 为研究的对象,结合牛顿第二定律和运动学公式联合求解,知道加速度是联系力学和运动学的桥梁。

【详解】(1) A 和B 整体处于平衡状态,则解得:; (2) A 和B 整体上滑过程由动能定理有解得:;(3) A 和B 间恰好不滑动时,设推力为F 0,上滑的加速度为a ,A 对B 的弹力为N 对A 和B 整体有对B 有:解得:则为使A 、B 在推力作用下能一起沿斜面上滑,推力应满足的条件6.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.7.如图甲所示,一质量为m 的带电小球,用绝缘细线悬挂在水平向右的匀强电场中,静止时悬线与竖直方向成θ角.小球位于A 点,某时刻突然将细线剪断,经过时间t 小球运动到B 点(图中未画出)已知电场强度大小为E ,重力加速度为g ,求:(1)小球所带的电荷量q ; (2)A 、B 两点间的电势差U . 【答案】(1)tan mg E θ;(2)12Egt 2tanθ. 【解析】试题分析:(1)小球处于静止状态,分析受力,作出受力图,根据平衡条件和电场力公式求解电荷量q ;(2)将细线突然剪断小球将沿细线方向做匀加速直线运动,根据牛顿第二定律求解加速度a ,再根据匀变速直线运动求解位移,再计算A 、B 两点间的电势差U . ①静止时有tan qE mg θ=,解得 tan mg q Eθ=②将细线剪断后,根据牛顿第二定律可得cos mgF ma θ==合,解得 故221tan sin 2cos 2ABg Egt U E t θθθ=-⋅=-8.如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B 端的切线沿水平方向.质量m=1.0kg 的滑块(可视为质点)在水平恒力F=10.0N 的作用下,从A 点由静止开始运动,当滑块运动的位移x=0.50m 时撤去力F .已知A 、B 之间的距离x 0=1.0m ,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s 2.求:(1)在撤去力F 时,滑块的速度大小; (2)滑块通过B 点时的动能;(3)滑块通过B 点后,能沿圆弧轨道上升的最大高度h=0.35m ,求滑块沿圆弧轨道上升过程中克服摩擦力做的功.【答案】(1)3.0m/s ;(2)4.0J ;(3)0.50J . 【解析】试题分析:(1)滑动摩擦力f mg μ=(1分) 设滑块的加速度为a 1,根据牛顿第二定律1F mg ma μ-=(1分)解得219.0/a m s =(1分)设滑块运动位移为 0.50m 时的速度大小为v ,根据运动学公式212v a x =(2分)解得 3.0/v m s =(1分)(2)设滑块通过B 点时的动能为kB E从A 到B 运动过程中,依据动能定理有 k W E =∆合 0 kB F x fx E -=, (4分)解得 4.0kB E J =(2分)(3)设滑块沿圆弧轨道上升过程中克服摩擦力做功为f W ,根据动能定理0f kB mgh W E --=-(3分)解得0.50f W J =(1分) 考点:牛顿运动定律 功能关系9.质量为5.0kg 的物体,从离地面36m 高处,由静止开始匀加速下落,经3s 落地,g 取10m/s 2,求:(1)物体下落的加速度的大小; (2)下落过程中物体所受阻力的大小。

相关文档
最新文档