第十章 压杆稳定

合集下载

第10章压杆稳定

第10章压杆稳定
9
这表明用低碳钢Q235制成的压杆,仅在柔度≥100时, 才能应用欧拉公式计算其临界应力或临界力,常用材料柔度
可查表。
第十章
四、中小柔度杆的临界应力
压杆稳定
10.2 临界力的确定
对于不能应用欧拉公式计算临界应力的压杆,即压杆内 的工作应力大于比例极限但小于屈服极限时,可应用在实验 基础上建立的经验公式。常见经验公式有直线公式和抛物线
公式。其中,直线公式为
cr a b a s cr a b s b a s s s p
b
抛物线公式为:
cr a1 b1
2
第十章
压杆稳定
10.3 压杆稳定的计算与校核
前面的讨论表明,对各种柔度的压杆,总可以用欧拉公
稳定安全因素
10.3 压杆稳定的计算与校核
nst
一般要大于强度安全因素。这是因
为一些难以避免的因素,如杆件的初弯曲、压力偏心、材料 不均匀和支座缺陷等,都严重影响压杆的稳定,降低了临界
压力。而同样这些因素,对杆件强度的影响不象对稳定那么
严重。关于稳定安全因素 中查到。
nst
一般可以在设计手册或规范
第十章
F Fcr ,
撤消横向干扰力后杆件能够恢复到 原来的直线平衡状态(图10–2b),
则原有的平衡状态是稳定平衡状态;
第十章
压杆稳定性的概念:
压杆稳定
10.1 压杆的稳定概念
当轴向压力增大到一定值
F Fcr
时,撤消横向干扰力后杆件不能再恢复到 原来的直线平衡状态(图10–2c),则原
有的平衡状态是不稳定平衡状态。 会进一
10.1 压杆的稳定概念
如果小球受到微小干扰而稍微偏离它原有的平衡位置, 当干扰消除以后,它不但不能回到原有的平衡位置,而且 继续离去,那么原有的平衡状态称为不稳定平衡状态, 如图c 所示。

材料力学 第十章 压杆稳定问题

材料力学 第十章 压杆稳定问题

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l

压杆·稳定性

压杆·稳定性

=
2 ,因为 h>b ,则 I y
=
hb3 12
< bh3 12
=
Iz ,由式(10.3)得
Pcr
=
π 2 EI (μl)2
=
π2
× (200 ×103
MPa) × ( 1 × 40 mm × (20 12
(2 ×1000 mm)2
mm)3 ) ≈13200
N
= 13.2
kN
10.2.2 临界应力
当压杆受临界压力作用而维持其不稳定直线平衡时,横截面上的压应力仍然可按轴向压
10.3.2 临界应力经验公式与临界应力总图
在工程实际中,常见压杆的柔度λ 往往小于 λp ,即 λ<λp ,这样的压杆横截面上的应力 已超过材料的比例极限,属于弹塑性稳定问题。这类压杆的临界应力可通过解析方法求得, 但通常采用经验公式进行计算。常见的经验公式有直线公式与抛物线公式等,这里仅介绍直 线公式。把临界应力 σcr 与柔度λ 表示为下列直线关系称为直线公式。
式中,λ 称为压杆的柔度或长细比,为无量纲量,它综合反映了压杆的长度、约束形式及截 面几何性质对临界应力的影响。于是,式(10.4)中的临界应力可以改写为
·219·
材料力学
σ cr
=
π2E λ2
式(10.6)是欧拉公式(10.3)的另一种表达形式,两者并无实质性差别。
(10.6)
10.3 欧拉公式的适用范围·临界应力总图·直线公式
2
≤σ
p

λ≥π E σp
(10.7)

于是条件式(10.7),可以写成
λP = π
E σp
(10.8)
λ ≥ λp
(10.9)

压杆稳定PPT课件

压杆稳定PPT课件
E20G0P , a设计要求的强度安全系数 n2,
稳定安全系数 nst3。试求容许荷载 P 的值。
A 2m
C 3m
P
B
h3.5m
D
35
解:1)由平衡条件可得
A
P NCD
2.5
2m
C 3m
D
2)按强度条件确定 [P]
P
B
h3.5m
N CD σ A σ n sπ 4 (D 2 d 2) 3K 40 N
Q
解:一、分析受力
1500
500
取CBD横梁研究
A
N Cr
A
Cr
A 2E 2
2m
46K9N
D
C 3m
P
B
h3.5m
稳定条件
Pcr P
nst
[N]NCr15K6 N nst
[N] [P] 62.5KN
2.5
38Leabharlann 2mC 3mPB
h3.5m
D
[P] = 62.5KN
39
例:托架,AB杆是圆管,外径D=50mm,内径d=40mm, 两端为球铰,材料为A3钢,E=206GPa,p=100。若规定 nst=3,试确定许可荷载Q。
4
实际上,当压力不到 40N 时,钢尺就被压弯。可见, 钢尺的承载能力并不取决轴向压缩的抗压刚度, 而是与 受压时变弯 有关。
5
稳定平衡与不稳定平衡的概念 当 P小于某一临界值Pcr,撤去横向力后,杆的轴线将 恢复其原来的直线平衡形态,压杆在直线形态下的
平衡是 稳定平衡。
6
P Q
PPcr
P
PPcr
2E cr 2 2. 中 长 杆 ( s p ), 用 经 验 公 式

第十章压杆稳定ppt课件

第十章压杆稳定ppt课件

2E 0.56 S
②s < 时: cr s
临界应力的特点
•它的实质: 象强度中的比例极限、屈服极限类似,除以 安全因数就是稳定中的应力极限
•同作为常数的比例极限、屈服极限不同,变化 的临界应力依赖压杆自身因素而变
例102 截面为 120mm200mm 的矩形 木柱,长l=7m,材料的弹性模量E = 10GPa,
Fcr
2 EImin
l2
此公式的应用条件:
•理想压杆
•线弹性范围内
•两端为球铰支座
§10-3 不同杆端约束下细长压杆 临界力的欧拉公式
其它端约束情况,分析思路与两端铰支的相同, 并得出了临界力公式
Fcr
2 EImin (l)2
即压杆临界力欧拉公式的一般形式
—长度系数(或约束系数) l—相当长度
•求临界力有两种途径:实验测定及理论计算。
•实验以及理论计算表明:压杆的临界力,与压杆 两端的支承情况有关,与压杆材料性质有关,与 压杆横截面的几何尺寸形状有关,也与压杆的长 度有关。
压杆一般称为柱,压杆的稳定也称为柱的稳 定,压杆的失稳现象是在纵向力作用下,使 杆产生突然弯曲的,在纵向力作用下的弯曲, 称为纵弯曲。
AB杆 l
1
i
l
1.5 cos30
1.732m
i
I A
D4 d4 4 64 D2 d2
D2 d 2 16mm 4

1 1.7 3 2 1 03
16
108 P
AB为大柔度杆
Fcr
2EI
l 2
118kN
n
Fcr FN
118 26.6
4.42 nst
3
AB杆满足稳定性要求

材料力学第十章 压杆稳定性问题2

材料力学第十章 压杆稳定性问题2
在求Pcr 及 cr的基础上,进行稳定性校核。 的基础上 进行稳定性校核
Pcr P Pcr nst
nst 为稳定安全系数, 为稳定安全系数 一般大于强度安全系数 般大于强度安全系数。 由于初曲率、载荷偏差、材料不均匀、有钉子孔 等 都会降低 Pcr 。而且柔度越大,影响越大。 等,都会降低 而且柔度越大 影响越大
S
cr
max
若 P ,图中CD段选欧拉公式 若 S P ,图中 图中BC段选经验公式 若 S ,图中AB段按强度计算,即 cr
何斌
s
Page 13
Q235钢制成的矩形截面杆,两端约束以及所承受的载 荷如图示 荷如图示((a)为正视图(b)为俯视图),在AB两处为销钉 为 视图 为俯视图 在 两处为销钉 连接。若已知L=2300mm,b=40mm,h=60mm。材料的弹性模 量E=205GPa。试求此杆的临界载荷。 正视图平面弯曲截面z绕轴 正视图平面弯曲截面z 转动;俯视图平面弯曲截 面绕y 面绕 y轴转动。 轴转动 正视图:
2 对中长杆由于 cr与 P , s b 有关 2. 强度越高, cr也越高 3 对短粗杆:强度问题 3. 对短粗杆 强度问题
何斌
P

时才适用
2E P 2
2E P
E
P
P
欧拉公式适用于 P
Page 6
材料力学
第十章 压杆稳定问题
10.4 临界应力和长细比 细长杆 中长杆和短粗杆 细长杆、中长杆和短粗杆
1.细长杆: ① P 的压杆称为细长杆。 的压杆称为细长杆 ② 此类压杆只发生了弹性失稳 ③ 稳定计算:欧拉公式 稳定计算 欧拉公式
何斌

材料力学第十章压杆稳定

材料力学第十章压杆稳定


π2

200 103 108 (2 2500 )2
10 4
N

85187N
85.19kN
10-3 欧拉公式的适用范围及经验公式
1、临界应力与柔度
将临界压力除以压杆的横截面面积A,就可以得到与临界压力
对应的应力为
cr

Fcr A

π2EI
(l)2 A
cr即为临界应力。
利用惯性半径 i 和惯性矩 I 的关系:
但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l 2l
F
F 一端固定,一端自由,
长为l 的的压杆的挠曲线
和两端铰支,长为2l的
压杆的挠曲线的上半部
分相同。则临界压力:
Fcr

π 2 EI (2l)2
2、其它支承情况下细长压杆的临界力
利用同样的方法得到: 两端固定的压杆的临界压力为:
F
Fcr

π 2 EI
( l ) 2
π2 200 103 48 10 4 N (2 2500 )2
b z
l h
37860N 37.86kN
y
若 h b 60mm
Iy

Iz

bh3 12

60 4 12
mm
108 10 4 mm
Fcr

π 2 EI
( l ) 2
1、计算s, p
p
π2E
p
π2 210109 280106
86
查表优质碳钢的 a、b
s
a s
b

材料力学课件 第十章压杆稳定

材料力学课件 第十章压杆稳定

sinkL0
kn P
L EI
临界力 Pcr 是微弯下的最小压力,故,只能取n=1 ;且 杆将绕惯性矩最小的轴弯曲。
Pcr
2
EImin L2
14
Pcr
2
EImin L2
二、此公式的应用条件:
两端铰支压杆临界力的欧拉公式
1.理想压杆; 2.线弹性范围内; 3.两端为球铰支座。
三、其它支承情况下,压杆临界力的欧拉公式
29
我国钢结构柱子曲线
二、 受压构件的稳定公式
利用最大强度准则确定出轴心受压构件的临界应力 cr ,引入抗力分项系数 R ,则轴心受压构件的稳定计算公式如下:
N cr cr f y f A R R fy
f :钢材的强度设计值
(10.24)
30
例6
如图所示,两端简支,长度l 5m 的压杆由两根槽钢组成,若限定两个槽钢腹板
Iy [73.3 (51.8)2 21.95]2 2176.5cm4
33
若失稳将仍会在 xoy平面内,有
imin iz
Iz A
1732.4 6.28cm 43.9
max
l imin
500 79.6 6.28
查表得2 0.733
此时3 与3 已经很接近,按两个 16a 槽钢计算压杆的许可压力,有
20
[例3] 求下列细长压杆的临界力。
y y
x
z
z
h
L1
L2
解:①绕
y 轴,两端铰支:
=1.0,
I
y
b3h 12
,
②绕 z 轴,左端固定,右端铰支:
b
Pcry
2EI L22
y
=0.7,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 压杆稳定
学时分配:共6学时
主要内容:两端铰支细长压杆的临界压力,杆端约束的影响,压杆的长度系数μ,临界应力欧拉公式的适用范围;临界应力总图、直线型经验公式λσb a cr -=,使用安全系数
法进行压杆稳定校核。

$10.1压杆稳定的概念
1.压杆稳定
若处于平衡的构件,当受到一微小的干扰力后,构件偏离原平衡位置,而干扰力解除以后,又能恢复到原平衡状态时,这种平衡称为稳定平衡。

2.临界压力
当轴向压力大于一定数值时,杆件有一微小弯曲,一侧加一微小干扰且有一变形。

任一微小挠力去除后,杆件不能恢复到原直线平衡位置,则称原平衡位置是不稳定的,此压力的极限值为临界压力。

由稳定平衡过渡到不稳定平衡的压力 的临界值称为临界压力(或临界力),用
τ
c P 表示。

3.曲屈
受压杆在某一平衡位置受任意微小挠动,转变到其它平衡位置的过程叫屈曲或失稳。

$10.2细长压杆临界压力的欧拉公式
1.两端铰支压杆的临界力
选取如图所示坐标系xOy 。

距原点为x 的任意截面的挠度为v 。

于是有
Pv M -=
2.挠曲线近似微分方程:
将其代入弹性挠曲线近似微分方程,则得
()Pv x M EIv -==''
令 EI P k =
2
则有
0'2''=+v k v
该微分方程的通解为
kx B kx A v cos sin +=
c r c r
式中A 、B ——积分常数,可由边界条件确定 压杆为球铰支座提供的边界条件为
0=x 和l x =时,0=v
将其代入通解式,可解得
0=B ,0sin =kl A
上式中,若A=0,则0=v ;即压杆各处挠度均为零,杆仍然保持直线状态,这与压杆处于微小弯曲的前提相矛盾。

因此,只有
0sin =kl
满足条件的kl 值为
πn kl =),2,1,0(Λ=n
则有
l n k π=
于是,压力P 为
2222
l EI
n EI k P π=
=
1=n 得到杆件保持微小弯曲压力-临界压力τc P 于是可得临界压力为
2
2l EI P c πτ= 此式是由瑞士科学家欧拉(L. Euler )于1744年提出的,故也称为两端铰支细长压杆的
欧拉公式。

此公式的应用条件:理想压杆;线弹性范围内;两端为球铰支座。

$10.3其他条件下压杆的临界压力
欧拉公式的普遍形式为
22)(l EI P cr μπ=
式中μ称为长度系数,它表示杆端约束对临界压力影响,随杆端约束而异。

l μ表示把压杆折算成相当于两端铰支压杆时的长度,称为相当长度。

两端铰支,1=μ;一端固定另一端自由2=μ;两端固定,2
1=μ;一端固定令一
端铰支,7.0=μ。

例:试由一端固定,一端简支的细长压杆的挠曲线的微分方程,导出临界压力。

解:
由挠曲线的微分方程可得
EI x l R v EI P EI
M dx v d )
(22-+-==
方程的通解为
()x l EIk R
kx C kx C v -+
+=2
21sin cos 固定支座的边界条件是
0=x 时,0=v ,
0=dx dv
l x =时,0=v ,
0=dx
dv
边界条件带入上面各式得
0,0sin cos ,02
22121=-=+=+
EIk
R kC kl C kl C l EIk R C 解得
kl kl =tan
作出正切曲线,与从坐标画出的45º斜直线相交,交点的横坐标为
()22
/493.4l EI P cr =
弯矩为零的C 点的横坐标l k
x c 3.0352
.1≈=
$10.4 压杆的稳定校核
1.压杆的许用压力
[]st
cr n P P =
[]P 为许可压力;st n 为工作安全系数。

2.压杆的稳定条件
[]P P ≤
例 平面磨床液压传动装置示意图。

活塞直径mm D 65=,油压MPa p 2.1=。

活塞杆长度mm l 1250=,材料为35钢,MPa P 220=σ,GPa E 210=,6=τs n 。

试确定活塞杆的直径。

解:
(1)轴向压力
()N p D P 3980102.110654
4
62
32=⨯⨯⨯=
=

π
(2)临界压力
N P n P st cr 2390039806=⨯==
(3)确定活塞杆直径
由()
N l EI
P cr 239002
2==μπ得出m d 025.0≈ (4)计算活塞杆柔度
2004
025
.025
.11=⨯=
=
i
l
μλ
对35号钢,9710220102106
9
221=⨯⨯⨯==
πσπλP E 因为1λλ〉,满足欧拉公式的条件。

活塞杆。

相关文档
最新文档