材料力学第二章

合集下载

材料力学第二章

材料力学第二章

钢拉杆
8.5m
解: ① 整体平衡求支反力 q
HA
RA
钢拉杆
8.5m
RB
X 0 HA 0 mB 0 RA 19.5kN
② 局部平衡求 轴力: q HC ③应力: RC
mC 0 N 26.3kN
HA
RA ④强度校核与结论: N

max
N 4P A d2
max 0 /2127.4/263.7MPa
127 .4 a (1cos 2a ) (1cos 60)95.5MPa 2 2
127 .4 a sin 2a sin6055.2MPa 2 2
0
0
§2-4 材料在拉伸和压缩时的力学性能 力学性能:材料在外力作用下表现的有关强度、变形方面的特性。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(及其缓慢地加载); 标准试件。
由杆2的强度条件得
FN 2 A2 P A2 co sa P 8 8.6kN
(c) 确定许可载荷。 杆系的许可载荷必须同时满足1、2杆的强度要求,所以 应取上述计算中小的值,即许可载荷为[P]=88.6kN
L x A B
分析:
V ABDLBD;
P C
ABD N B / ; LBD h / sin 。

h
D
L x
XA
A
B
YA

NB
P
C
解: BD杆内力N( ): 取AC为研究对象,如图
mA 0 , (NBDsin ) (hctg ) Px
PL NBD hcos
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。

材料力学第二章 拉伸

材料力学第二章 拉伸

跟踪训练
40KN
55KN 25KN
20KN
A 600
B 300 C 500
D
E
400
FN
50
10
+
20
+
x
5
例2.1作图示杆件的轴力图,并指出|FN|max
50kN
FN
I
I 50kN
+
II
150kN
II
100kN
当内力大到一定程 度后,哪段先断裂?
-
100kN
应力的概念:截面上某点的内力集度。 应力必须明确截面及点的位置
+
0.5m
0.5m
_ 4
解: 1)内力分析,作轴力图
P1
B 2)变形分析,求各段 的变形
3)位移分析,根据约束 x 和各段的变形求B点的位

2)变形分析,求各段的变形
lDB
N l DB DB EA1
- 4103 0.5 21011 210-4
-0.0510-3m( 缩短)
lCD
N l CD CD EA2
跟踪训练
三种材料的应力-应变曲线分别为如图a,b,c所示, 其中材料 强度最高的是: a 刚度最大的是: b 塑性最好的是: c
五、铸铁拉伸时的力学性能
对于脆性材料(铸铁),拉伸时的应力应 变曲线为微弯的曲线,没有屈服和径缩现象, 试件突然拉断。断后伸长率约为0.5%。为典 型的脆性材料。
铸铁拉断时的应力即为
N1
N2
y Ax
Fy 0 N1 sin - F 0
N1 F / sin 2F N2 N1 cos 3F 2、根据斜杆的强度,求许可载荷
F

《材料力学第二章

《材料力学第二章



2.屈服阶段:bc段




当应力超过b点增加到某一数值时,应变有非常明显的增加, 而应力先是下降,然后在很小的范围内波动,在ζ-ε曲线上 出现接近水平线的小锯齿形线段。这种现象称为屈服或流动。 在这个阶段产生严重的塑性变形。 在屈服阶段内的最高应力和最低应力分别称为上屈服极限和 下屈服极限。 流动极限(屈服极限)ζs—下屈服极限(载荷第一次回退时的最 小值) 强度指标通常用拉伸时的屈服极限ζs来表示。 若试件表面光滑,可以看到在应力达到屈服极限后,表面将 出现与轴线大致成450倾角的条纹。这是因为在450的斜截面上 作用着最大切应力,所以这是材料沿最大切应力作用面发生 滑移的结果,这些条纹称为滑移线。
38 . 7 10 N
3

FN A


4
123 MPa
2
20 mm

§2.3
直杆轴向拉伸或压缩时斜截面上的应力
设直杆的轴向拉力为F(图a),横截面 面积为A,则横截面上的正应力σ为

FN A F A
设与横截面成α角斜截面k-k的面积为Aα
A A cos
若沿斜截面k-k假想地把杆件分成两部分, 以Fα表示斜截面k-k上的内力 由于斜截面上的应力也是均匀分布的。若以pα表示斜截面k-k上的 应力 F F
F max sin AC W AC 0 F max W sin
sin
BC AB

0 .8 m
0 . 8 m
2
1 . 9 m
0 . 388
2
F max
W sin

1 kN
(2)运用截面法求轴力;

材料力学第二章

材料力学第二章

§2-7 拉、压超静定问题
静定结构:
约束反 力(轴力) 可由静力平 衡方程求得
§2-8
超静定结构:结构的强度和刚度均得到提高
约束反力不能 由平衡方程求得
超静定度(次)数:
约束反力多于 独立平衡方程的数 独立平衡方程数: 平面任意力系:
3个平衡方程 平面共点力系:
2个平衡方程 平面平行力系:2个平衡方程
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
d g
o
f h
1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
目录
三、其他材料的拉伸试验
灰口铸铁在拉伸时的 — 曲线
典型的脆性材料
特点:
1、 — 曲线从很低应力水平
开始就是曲线;采用割线弹性模 量
2、没有屈服、强化、局部变形
阶段,只有唯一拉伸强度指标b
胡克定律 EA :拉抗(压)刚度
当拉(压)杆有两个以上的外力作用时,需要先画出轴力图,然后 分段计算各段的变形,各段变形的代数和即为杆的总伸长量。
EA L L
L
i
FNi Li
EAi
FN EA L E
A AL
在计算ΔL的L长度内,FN,E,A均 为常数。
在材料的线弹性范围内,正应力与线应变呈正比关系。
载P。
d=80
解:取节点A为受力体,受力图如图(a)
B
30
A
FNAB 3 P FNAC 2 P
木杆设计:
P
FNAB A1σ 60.3kN
P1 34.8kN
C
钢杆设计:
FN AB
A
FN AC P
(a)
FNAC A2σ 1.459104 160106 23.3kN

材料力学第二章

材料力学第二章
圣维南原理Saint-Venaes
拉压杆横截面上的应力Stresses over the cross section 1.试验观察 Experimental observation
变形后横线仍为直线,仍垂直于杆件轴线,只是间距增大. Transversal line after deformation : straight; perpendicular to the axis.
E= tanα -elastic modulus 弹性模量
1.等直杆或小锥度杆Straight bar(or stepped bar) with uniform section, or with small taper ; 2.外力过轴线 The applied force P acts through the centroid of the cross section; 3.当外力均匀地加在截面上,此式对整个杆件都 适用,否则仅适用于离开外力作用处稍远的截面 The normal stress distribution in an axially loaded member is uniform, except in the near vicinity of the applied load (known as Saint-Venant's Principle) .
§4~5 Mechanical Properties of Materials
材料的力学性能 拉伸试验与应力-应变图Tensile Tests and Stress-Strain Diagram 低碳钢拉伸应力-应变曲线Tensile Stress-Strain Curve for Mild Steel 卸载与再加载路径Unloading and Reloading Path 名义屈服极限Conditional Yield Limit 脆性材料拉伸应力-应变曲线Stress-Strain Curves for Brittle Materials 复合与高分子材料的力学性能Strength Properties of Composite Materials

《材料力学》第二章

《材料力学》第二章

F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee

材料力学-第二章

第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。

力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。

规定拉力为正,压力为负。

变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。

杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。

局部力系的等效代换只影响局部。

它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。

这是固体力学中一颗难以采撷的明珠。

三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。

例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。

拉伸试验是最基本、最常用的试验。

)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。

材料力学第2章


2-2截面,即BC段:
BC
FN 2 30 103 N 100MPa 6 2 A2 300 10 m
FN 4 20 103 N 100MPa 6 2 A3 200 10 m
(压应力)
3-3截面,即DE段:
DE
(压应力)
23
材料力学
出版社
科技分社
2.3.3 拉压杆斜截面上的应力
4
材料力学
出版社
科技分社
由上可知苹果把中的内力和外力(重力)是有关 系的,它随外力作用而产生,是由于外力的作用而 引起的“附加内力”,有别于物体中微观粒子间的 作用力,这就是材料力学中的内力。 2.2.2 轴力、截面法、轴力图 当直杆轴向拉伸或压缩时,所产生的内力是沿杆 件轴线的,故称为轴力。由于内力是受力物体内相邻 部分的相互作用力,可用截面法来分析内力 。
32
材料力学
出版社
科技分社
例题 2.5
解: 由于杆的轴力FN沿杆长是变化的,材料有两种 ,截面为变截面,所以在运用式(2-10)计算 杆长度改变量时,应按FN 、E、A的变化情况, 分别计算每段长度的改变量,最后的代数和即 为杆纵向总变形量Δl 。
先画出杆的轴力图, 见(b)图。各段的纵向 伸长或缩短量分别为:
5
材料力学
出版社
科技分社
截面法的基本步骤如下:
1)截开: 2)代替: 3)平衡:
F
x
0 : FN F 0, FN F
轴力的正负号规定: a.拉杆的变形是沿纵向伸长, 其轴力规定为正,称为拉力; b.压杆的变形是沿纵向缩短,其轴力规定为负,称 为压力。
6
材料力学
出版社
科技分社
为了表示轴力随横截面位臵而变化的情况,可选 取一定的比例,用平行于杆轴线的坐标表示横截面 的位臵,用垂直于杆轴线的坐标表示横截面上轴力 的数值,从而绘出表示轴力与截面位臵关系的图线 ,称为轴力图。习惯上将正值的轴力画在坐标轴的 上侧,负值的轴力画在下侧。轴力图上可以确定最 大轴力的数值及其所在横截面的位臵。

材料力学第二章-轴向拉伸与压缩

FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n

材料力学第二章 轴向拉伸和压缩

伸长 l2 0.24mm 缩短
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

σ——横截面上的正应力;
σα——斜截面上的正应力;τα——斜截面上的切应力
27
F


p

2、符号规定 ⑴、a:斜截面外法线与 x 轴(横截面的外法线)的夹角。

x
轴逆时针转到斜截面外法线——“a” 为正值;
由 x 轴顺时针转到斜截面外法线——“a”为负值
⑵、σa:同“σ”的符号规定
⑶、τa:在保留段内任取一点,如果“τa”对该点之矩 为顺时针方向,则规定为正值,反之为负值。
28
讨论: 1、 00
cos
2
1 sin 2 2
铸铁的拉伸试验
max
0
轴向拉压杆件的最大正应力发生在横截面上。
2、 45 max
450
F
2.轴向拉压杆件 1 的最大切应力发 min 生在与杆轴线成 2 450 45 450截面上。 45 1.切应力互等定理 450
2
§2 内力、截面法、轴力及轴力图
1、内力的概念
F1 外力(自重、支座反力、工作荷载等)的分类: 1.静荷载 vs 动荷载 2. 恒载 vs 活载 F2
3.集中荷载 vs 分布荷载
固有内力:分子内力 它是由构成物体的材料的物理性质所决定的.(物体在 F. 3 受到外力之前,内部就存在着内力,eg.分子凝聚力) Fn 附加内力:由外力引起的质点间相互作用力的改变量---材料力学研究的内力
等直杆: max
FN max A
变直杆: max
危险截面,最大工作应力 正应力的符号规定——同内力 拉应力为正值,方向背离所在截面。 压应力为负值,方向指向所在截面。 公式的使用条件 (1) 轴向拉压杆
FN A
max
(2) 除外力作用点附近以外其它各点处。(圣维南原理) (范围:不超过杆的横向尺寸)------注意观察试验中试件的夹持方式
0
0
1 2
铸铁 压缩 试验
3、 900
90 0
0
90 0
0
在平行于杆轴线的截面上σ、τ 均为零。(单轴应力状态)
29
§4
拉(压)杆的变形.胡克定律
杆件轴向拉压时:
沿轴线方向产生伸长或缩短——纵向变形
横向尺寸也相应地发生改变——横向变形
30
1、纵向变形的两个指标 a.绝对变形ΔL
DL
FL
FNi Li DL i EAi
32
a. 等直杆受图 示载荷作用,计算总变形。(各段 EA均相同)
N i li 1 n Dl N i li n 3 EA i 1 i 1 EA
n
33
b. 阶梯杆,各段 EA 不同,计算总变形。
FNi Li DL DL1 DL2 DL3 Ei Ai
与截面相切的应力称为“ 切应力” F2
平均应力pm DF DA
DFS dFS lim DA0 DA dA
应力的国际单位为N/m2 (帕斯卡) 1N/m2=1Pa 1MPa=106Pa=1N/mm2
极限的定义(平均—一点) DF dF 总应力p lim DA0 DA dA
1GPa=109Pa
17
4.应力的计算公式:
c.实验结论:纵向等变形---正应力沿横截面均匀分布 a.应力性质
C
FN dFN
A
F

FN
b.应力定义
dFN dA
A
思考为何没有切向力、切应力?
FN dA dA A
A
FN A
各个符号代表的意义?
20
拉压杆内最大的正应力:
21
图示支架,AB杆为圆截面杆,d=30mm,BC杆为正方形截面 杆, 其边长a=60mm,F=10KN,试求AB杆和BC杆横截面上的正应 力。
FNAB sin 300 F
A
d
FNAB cos 300 FNBC
FNAB
300
C
B
AB
FNAB 28.3MPa AAB
a
FNBC
1)截:欲求某一截面(横or斜)的内力,沿该截面将构件假想地截成两部分
2)取:取其中任意部分为研究对象,而弃去另一部分(1,2也可合起来称“截取” 3)代:用作用于截面上的内力,代替弃去部分对留下部分的作用力 4)平:建立留下部分的平衡条件,确定未知的内力(整体平衡---局部平衡)
?试分 析轴向 拉压杆 的截面 上内力 分量 结 论: 1.轴向拉压杆横截面上的内力定义为轴力,用FN 表示) 2.特征:作用线与杆的轴线重合
16
轴向拉压杆横截面上应力的计算 推导思路:实验→变形规律→应力的分布规律→应力的计算公式
1、实验:
变形前
受力后
F F
2、变形规律: 横向线——仍为平行的直线,且间距增大。
纵向线——仍为平行的直线,且间距减小。
3、平面假设:变形前的横截面,变形后仍为平面且各横截
面沿杆轴线作相对平移(横截面上应力均匀分布)
π
p
FR d Fsin
0
π
(2MPa)(200mm ) 40MPa 2(5mm)
26
拉(压)杆斜截面上的应力
n
FN
F

F
A cos
F
FS
α
F
X
FN
FS
F cos A A A
cos2

1 cos sin sin 2 A 2
DL L L
b.线应变ε : 受力物体变形时,一点处沿某一方向微小线段 的相对变形 每单位长度的伸长(或缩短)strain
当杆沿长度非均匀变形时
y
当杆沿长度均匀变形时(积分式)
C
O x
C A △x B
△δx

*纵向线应变
DL L
(无量纲)
A
z △x
B
D x d x x lim Dx0 Dx dx
34
例:图示直杆,其抗拉刚度为EA,试求杆件的轴向变 形△L,B点的位移δB和C点的位移δC
F A
F
B DLAB
C
FL EA
B
L
L
FL C B EA
36
L FN EA DL E A AL
DL
应力应变关系
在材料的线弹性范围内,正应力与线应变呈正比关系。(本构关系)
① 直观反映轴力与截面位置变化关系;
② 确定出最大轴力的数值及其所在位置,即确定危险截面位置,为 强度计算提供依据。
5、轴力图的要素:图名单位、坐标、数值大小、 标示正负
9

图示杆的A、B、C、D点分别作用着大小为FA = 5 F、 FB = 8
F、 FC = 4 F、 FD= F 的力,方向如图,试求各段内力并画出杆
的轴力图。
O A FA FN1 A FA B FB B FB C FC C FC D FD D FD
解: 求OA段轴力FN1:设截面如图
F
X
0
FD FC FB FA FN1 0
FN1 2F
10
F 4F 8F 5F FN1 0
O
A
FA
B
FB B FB FN3
Hooke„s law 的另一种表示, 2、横向变形的计算指标
b1 b

Db b
△b=b1-b
横向线应变
横向总伸长
(横向变形系数)泊松比

37
图示结构,横梁AB是刚性杆,吊杆CD是等截面直杆,B点受荷 载P作用,试在下面两种情况下分别计算B点的位移δB。1、已经 测出CD杆的轴向应变ε;2、已知CD杆的抗拉刚度EA. 1. 已知ε D
§1 轴向拉伸与压缩概念与实例
一、轴向拉压的工程实例:
工程桁架 及其组合 结构 P53,2-4
1
二、轴向拉压的概念:
外力合力作用线与杆轴线重合。 (1)受力特点:
(2)变形特点:杆沿轴线方向(纵向)伸长或缩 F 短。(ps.注意横向的变形)
B
A C
F F F F
以轴向拉压为主要变形的杆件,称为拉压杆或轴向承载杆。
F
BC
FNBC 4.8MPa ABC
22
试求图示结构AB杆横截面上的正应力。已知F=30KN,A=400mm2
F 2a FN AB a 0
A
FNAB 2 F
FNAB 150MPa A
a
F D
FNAB B C
a
a
23
试求薄壁圆环在内压力作用下径向截面上的拉应力。已知:
C
FC C FC C FC FN4
D
FD D FD D FD D FD
11
求AB 段轴力:
FX 0
FN2
FN 2 FB FC FD 0
FN2= –3F,
F
F
求BC段轴力:
X
0 FN 3 FC FD 0
FN3= 5F,
求CD段轴力:
X
0
FN 4 FD 0
ቤተ መጻሕፍቲ ባይዱFN 1
FN 2
FN 1 0
1
FN 2 40kN
8
3、轴力图: 轴力沿轴线变化的图形(imp.内力图) 横坐标:横截面的位置 F 纵坐标:该截面上轴力的值
Y值是否需要每个截面都求算? 技巧:截面变化时若选取部分外 力无变化,该部分轴力为常数 FN 思考一般途径:建立内力的函数 F
相关文档
最新文档