二次函数中动点图形的面积值
二次函数动点面积最值问题

二次函数最大面积例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间练习1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。
_ ___________________________________________ 2(1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀t的取值范围。
(2) t为何值时,S最小?并求岀这个最小值。
A开始沿QBB边向点B以A2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。
2求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变量x的取值范围。
C3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。
(1)求点P在BC上的运动的过程中y的最大值。
1(2 )当y= cm时,求x的值。
44如图所示,边长为在线段记CD(1)过ADPBB1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E,连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为t o1当t=丄时,求线段DE3如果梯形CDEB的面积为所在直线的函数表达式S,那么S是否以及此时(2) 存在最大值?若存在,请求出最大值,t的值;若不存在,请说明理由。
2 2(3)当OD DE的算术平方根取最小值时,(4)求点E的坐标。
二次函数最大面积交ABD BE能力提高例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线1cm/s的速度沿直线I向左匀速移动,(1)(2) t秒时梯形I上,且C,Q两点重合,如果等腰△ PQR以2 ABCD与等腰△ PQF重合部分的面积记为Scm当t=4时,求S的值。
二次函数动点的面积最值问题课件

个分支的理解和掌握。
02
掌握解题方法
解决二次函数动点面积最值问题需要掌握一定的解题技巧和方法,包括
数形结合、参数分离、极值法等。通过对这些方法的运用,可以有效地
解决各种复杂的问题。
03
理解问题本质
二次函数动点面积最值问题的本质是寻找函数在某个区间上的最大值或
最小值,以及对应的自变量取值。通过对问题本质的深入理解,可以更
矩形面积的最值
在矩形中找一点,使得该点与矩形顶点的连线将矩形划分为四个面积相等的部分 ,也可以利用二次函数动点面积最值问题求解。
在实际生活中的应用
土地规划
在土地规划中,经常需要确定土地的 分割方式以及各部分的面积,利用二 次函数动点面积最值问题可以找到最 优的分割方案,使得土地的利用率达 到最高。
局。
城市绿化
在城市绿化规划中,通过求解二 次函数动点面积最值问题,可以 确定最佳的绿化区域和分布方式 ,提高城市绿化覆盖率和环境质
量。
06
总结和展望
对二次函数动点面积最值问题的理解和总结
01
理解问题背景
二次函数动点面积最值问题是一个经典的数学问题,涉及到几何、代数
和微积分等多个领域的知识。通过对该问题的研究,可以加深对数学各
要点二
代数解法
通过几何方法(如相似三角形、勾股定理等)来求解动点 面积的最值。
利用代数公式和不等式,通过代数运算求解动点面积的最 值。
二次函数动点面积最值问题的实际应用案例
建筑规划
在建筑规划中,需要考虑土地利 用效率与美观性,动点面积最值 问题可以帮助规划者找到最佳的
建筑布局方案。
农业种植
农业种植中,为了最大化土地利 用率和产量,可以利用二次函数 动点面积最值问题来优化种植布
二次函数综合(动点)问题——四边形面积最值存在问题培优教案(横版)

教学过程一、课堂导入在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),问题:这是在平面直角坐标系那章我们经常遇到的求四边形面积的题目,这类问题相信大家都有不同的解题方法,在二次函数这一章,我们依然要研究四边形的面积,如果我们将二次函数容纳其中,在抛物线(直线、坐标轴等)上求作一点,使得四边形面积最大并求出该点坐标时,又该如何解答呢?二、复习预习(一)二次函数y=ax2+bx+c的图像和性质:(二)相似三角形的性质:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
(三)相似三角形模型探究与解题技巧:1、课堂导入题解如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为_________________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB 相似,即∠BOC应该与∠BOA=90°对应,①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(-4,0);②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(-1,0)或者(1,0).故答案可以是:(-1,0);(1,0).解析:分类讨论:①当△AOB∽△COB时,求点C的坐标;②当△AOB∽△BOC时,求点C的坐标;如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。
2、几种常见的相似三角形模型①直角三角形相似的几种常见模型②非直角三角形相似的几种常见模型3、解题技巧函数中因动点产生的相似三角形问题一般有三个解题途径。
二次函数中动点图形的面积最值

求解动点图形面积最值的步骤
1
步骤1
确定最值问题的区间。
2
步骤2
通过求导或综合判断确定极值点或临界点。
3
ቤተ መጻሕፍቲ ባይዱ
步骤3
计算极值点或临界点对应的面积。
案例分析:计算动点图形面积 最大值和最小值
假设二次函数为y = -x^2 + 3x + 2,动点轨迹为一条垂直于x轴的直线,探索动 点图形的面积变化。通过计算可以得到动点图形的最大面积和最小面积。
二次函数中动点图形的面 积最值
二次函数是数学中的一个重要概念,它描述了一种用抛物线表示的函数关系。 本节将探讨如何通过动点图形的面积来寻找二次函数中的最值。
二次函数简介
二次函数是一种具有二次项的代数函数,它的一般形式为y = ax^2 + bx + c。二次函数在数学和物理学中有广泛 的应用,可以用来描述各种实际问题。
问题讨论与思考
除了计算动点图形面积的最值,我们还可以思考以下问题:如何改变函数的系数以改变图形的面积范围?是否 存在其他方法来求解动点图形的最值?这些问题可以帮助我们深入理解二次函数和面积最值概念的应用。
结论和总结
通过寻找二次函数中动点图形的面积最值,我们可以进一步理解函数的性质 和图像的变化规律。这一概念在数学和实际问题中都具有重要的应用价值。
最值的概念和意义
最值是指函数在给定区间内取得的最大值或最小值。在二次函数中,最值的 位置和数值可以提供关于函数图像的重要信息,帮助我们解决实际问题。
动点图形面积的计算方法
步骤1
确定二次函数的表达式,并 绘制函数图像。
步骤2
确定动点的轨迹,通常是垂 直于x轴的直线或水平于y轴 的直线。
步骤3
计算动点图形的面积。
中考二次函数动点中的面积问题

中考中的动点问题一、(2013•烟台)如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,二次函数y=ax 2+bx+c 的图象经过点A ,B ,与x 轴分别交于点E ,F ,且点E 的坐标为(﹣2/3,0),以0C 为直径作半圆,圆心为D . (1)求二次函数的解析式;(2)求证:直线BE 是⊙D 的切线;(3)若直线BE 与抛物线的对称轴交点为P ,M 是线段CB 上的一个动点(点M 与点B ,C 不重合),过点M 作MN∥BE 交x 轴与点N ,连结PM ,PN ,设CM 的长为t ,△PMN 的面积为S ,求S 与t 的函数关系式,并写出自变量t 的取值范围.S 是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.二、如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.三、(2012 荷泽)如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.图1四、如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值. (3)试探究:t 为何值时,MNC △为等腰三角形.动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
二次函数双动点面积最值

二次函数双动点面积最值一、问题描述在平面直角坐标系内,给定二次函数 $y=ax^2+bx+c$,且 $a<0$。
定义该二次函数的双动点为其图像上两个不同的点 $(x_1,y_1)$ 和$(x_2,y_2)$,满足 $y=ax^2+bx+c$ 在区间 $(x_1,x_2)$ 内单调递减或单调递增。
现在要求求出所有可能的双动点,并计算出其对应的面积最大值。
二、解题思路本题需要分别考虑二次函数的凸性和双动点的性质。
具体来说,我们可以通过求导数来判断二次函数的凸性,并通过判别式来计算二次方程的根以确定双动点。
然后,我们可以利用双动点的性质,结合微积分知识求出面积最大值。
三、解题步骤1. 求解二次函数的凸性由于$a<0$,因此该二次函数开口向下。
此时,当且仅当$a>0$ 时,该二次函数在整个定义域内为凸函数;当且仅当 $a<0$ 时,该二次函数在整个定义域内为下凸函数。
因此,在本题中,我们可以通过判断 $a$ 的符号来确定该二次函数的凸性。
2. 计算二次方程的根由于$a<0$,因此该二次函数的图像是一个开口向下的抛物线。
此时,该二次函数的双动点必然是两个不同的零点,即 $ax^2+bx+c=0$ 的两个根。
根据二次方程求根公式可得:$$x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$由于 $a<0$,因此 $\sqrt{b^2-4ac}$ 为实数。
因此,当 $b^2-4ac>0$ 时,该二次方程有两个不同的实根;当 $b^2-4ac=0$ 时,该二次方程有一个重根;当$b^2-4ac<0$ 时,该二次方程无实数解。
在本题中,我们需要计算出所有可能的双动点。
因此,在计算完根之后,我们需要对其进行判断:若两个根均在定义域内,则它们为一个双动点;若其中一个根在定义域内而另一个不在,则不存在双动点;若两个根均不在定义域内,则也不存在双动点。
二次函数动点与面积问题
二次函数动点与面积问题二次函数动点与面积问题在高中数学的二次函数学习中,常常会碰到一类问题,即如何确定二次函数图像与坐标系的位置关系。
在这类问题中,最常见的方法就是利用动点法和面积法来解决问题。
动点法主要用于确定二次函数的顶点和对称轴的位置,而面积法则则主要用于确定二次函数与坐标轴之间的相互位置关系,下面我们来详细讨论一下这两种方法的具体应用。
一、二次函数的顶点和对称轴的确定考虑如何确定一个二次函数的顶点和对称轴,最常见的方法就是采用动点法。
动点法的基本思想就是将二次函数拆分成一元二次函数 f(x) = ax^2+bx+c,并通过对f(x) 的导数求零点来确定顶点的位置。
具体来说,我们可以通过以下步骤来进行顶点和对称轴的确定:第一步,分离 y = ax^2+bx+c 函数中的常数项:y - c = ax^2+bx ----->f(x) = ax^2+bx第二步,求解导数f’(x) = 2ax+b 的根(也就是切线的斜率),令其等于0,解出 x = -b/2a,这个值就是二次函数的对称轴的位置;第三步,将求得的对称轴的位置带入一元二次函数f(x) = ax^2+bx+c 中,即可求出二次函数的顶点位置,也就是 (x, y) = (-b/2a, f(-b/2a)+c)。
可以说,这个动点法是二次函数解题中的一个基本应用,学习二次函数的选手一定要掌握。
二、二次函数与坐标轴的相对位置的确定二次函数的另一个常见问题是如何确定它与坐标轴之间的相对位置关系。
为此,我们可以采用面积法,基本思想是利用图形所围成的面积,从而确定二次函数与坐标轴之间的相对位置。
具体来说,我们可以通过以下步骤来确定二次函数与坐标轴之间的相对位置:第一步,确定二次函数的顶点位置和二次函数的开口方向(向上还是向下);第二步,利用顶点和坐标轴的交点,将整个坐标系分成不同的部分;第三步,分别计算出不同部分围成的面积,具体的计算方式以二次函数与 x 轴的相对位置情况为准,例如:情形1:当二次函数与 x 轴没有任何交点时,可以直接计算出二次函数的面积,此时,图形所围成的面积就是函数的定积分的绝对值:S = ∫_{x1}^{x2}|f(x)|dx情形2:当二次函数与 x 轴只有一个交点时,此时,图形所围成的面积就是上下两个三角形的面积之和:S = [f(x)-0] × (x-x1)÷2 + [0-f(x)] × (x2-x)÷2情形3:当二次函数与 x 轴有两个交点时,此时,图形所围成的面积就是上下两个三角形面积和与中间小矩形部分的面积之和:S = [f(x)-0] × (x-x1)÷2 + [0-g(x)] × (x2-x)÷2 + g(x)×(x2-x1)其中,g(x)就是与原函数相对称的一条直线的函数表达式。
二次函数动点问题中面积最值的解法策略
二次函数动点问题中面积最值的解法策略摘要:我国正在实施新的基础教育课程改革,《义务教育数学课程标准(2022年版)》指出要培养学生的数学核心素养,而二次函数和几何图形的综合应用题,能充分的考查学生的数学抽象,逻辑推理,数学运算以及数学建模等综合能力。
这种类型的综合题,通常出现在中考的压轴题中,综合性强,计算强度大,具有较大的难度,在二次函数与几何图形的综合题中,求二次函数面积的最值问题比较常见,本文就此问题解法进行探讨。
关键词:二次函数与几何图形;函数动点问题;二次函数面积最值二次函数动点问题就是通过点的运动生成一种函数关系及函数图象,抛物线上点的运动与直线相结合而产生的三角形面积问题,就是将几何图形与函数图象有机地融合在一起,解决的关键是结合图形通过点坐标衔接函数、方程找到函数关系。
本文就求解二次函数面积最值的问题,浅谈几种解决此类问题的方法策略。
一、割补法在解决二次函数面积最值问题时,不规则多边形的面积往往可以通过割补法把多边形分为几个三角形或者是规则的四边形的面积来求解,当三角形中有一边是在坐标轴上,或者在以坐标轴平行的直线上,那么就可以把这一条边当作三角形的底边,第三个点到这一条边的距离,作为三角形的高,直接利用三角形的面积公式求解,或者过图形的各端点作两坐标轴的平行线,构造与轴平行的最小矩形对所要求面积的图形进行覆盖,然后所求图形的面积即为矩形面积减去多余的几个直角三角形的面积。
最终把多边形面积的最值问题,转化为求三角形面积的最值问题,这也体现了一种“化归”的思想方法。
题目1、(2019枣庄)已知抛物线y=ax2+x+4的对称轴是直线x=3,与x轴相交于A,B两点(点B在点A右侧),与y轴交于点C.(1)求抛物线的解析式和A,B两点的坐标;(2)如图①,若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),是否存在点P,使四边形PBOC的面积最大?若存在,求点P的坐标及四边形PBOC面积的最大值;若不存在,请说明理由.[思路分析](1)由抛物线的对称轴是直线x=3,解出a的值,即可求得抛物线的表达式,再令其y值为0,解一元二次方程即可求出A和B的坐标。
二次函数动点中求面积全解 (1)
=27/8
三角函数法
解 如图 8,作 PE⊥x 轴交于点 E,交 BC 于点 F,作 PM⊥BC 于点 M.
设P点(x,-x2-2x+3),则F(x,x+3).
• 从以上四种解法可以看到,本题解题思路都是过 点P作辅助线,然后利用相关性质找出各元素之间 的关系进行求解。
解答: (1)抛物线解析式为y=-x2-2x+3; (2)Q(-1,2);
下面着重探讨求第(3)小题中面积最大值的几种方法.
解法1 补形、割形法
几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积 进行适当的补或割,变成有利于表示面积的图形。
方法一 如图3,设P点(x,-x2-2x+3)
如图,在平面直角坐标系中,二次函数
于点
,在 轴上有一点
,连接 .
交 轴于点
、
,交 轴
(1)求二次函数的表达式; (2)若点 为抛物线在 轴负半轴上方的一个动点,求 面积的最大值; (3)抛物线对称轴上是否存在点 ,使 为等腰三角形,若存在,请直接写出所有 点 的坐标,若不存在请说明理由.
(2)当点 P 运动到什么位置时,△PAB 的面积最大?
图1
(2)当点 P 运动到什么位置时,△PAB 的面积最大?
解:过点 P 作 PH⊥x 轴于点 H,交 AB 于点 F,如解图 1 所示.
∵x=0 时,y=-x2-2x+3=3,
∴A(0,3).
∴直线 AB 的解析式为 y=x+3.
∵点 P 在线段 AB 上方的抛物线上,
根据上述方法,本题解答如下:
解 如图6,作PE⊥x轴于点E,交BC于
中考数学狙击重难点系列专题19----二次函数的最值之与动点有关的面积最小值问题(含答案)
二次函数的最值之与动点有关的面积最小值问题1. 如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF 并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)当点E在什么位置时,四边形EDFG的面积最小?并求四边形EDFG面积的最小值.2. 如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.3. 如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°【操作】将三角板DEF的直角顶点E放置于三角板ABC的斜边AC上,再将三角板DEF绕点E旋转,并使边DE与边AB交于点P,边EF与边BC于点Q(1)【探究一】在旋转过程中,①如图2,当时,EP与EQ满足怎样的数量关系?并给出证明.________ ②如图3,当时EP与EQ满足怎样的数量关系?,并说明理由.________③根据你对(1)、(2)的探究结果,试写出当时,EP与EQ满足的数量关系式为________,其中的取值范围是________(直接写出结论,不必证明)(2)【探究二】若且AC=30cm,连续PQ,设△EPQ的面积为S(cm2),在旋转过程中:①S是否存在最大值或最小值?若存在,求出最大值或最小值,若不存在,说明理由.②随着S取不同的值,对应△EPQ的个数有哪些变化?不出相应S值的取值范围.4. 如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)当t为何值时,四边形ACNM的面积最小?并求出最小值.5. 如图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A、C 重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.(1)填空:点B的坐标为________;(2)①求证:;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值6. 已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,),直线y=kx+2与y轴相交于点P,与二次函数图象交于不同的两点A(x1,y1),B(x2,y2).(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax2+bx+c=0的两根为x1,x2,则:x1+x2=﹣,x1•x2=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x2﹣3x=15两根的和与积.解:原方程变为:x2﹣3x﹣15=0∵一元二次方程的根与系数有关系:x1+x2=﹣,x1•x2=∴原方程两根之和=﹣=3,两根之积= =﹣15.(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x取值范围在﹣1<x<3时,请写出其函数值y的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y轴上,必存在定点G,使△ABG的内切圆的圆心落在y轴上,并求△GAB面积的最小值.7. 如图所示,将矩形OABC置于平面直角坐标系中,点A,C分别在x,y轴的正半轴上,已知点B(4,2),将矩形OABC翻折,使得点C的对应点P恰好落在线段OA(包括端点O,A)上,折痕所在直线分别交BC、OA于点D、E;若点P在线段OA上运动时,过点P作OA的垂线交折痕所在直线于点Q.(1)求证:CQ=QP(2)设点Q的坐标为(x,y),求y关于x的函数关系式及自变量x的取值范围;(3)如图2,连结OQ,OB,当点P在线段OA上运动时,设三角形OBQ的面积为S,当x取何值时,S取得最小值,并求出最小值;8. 如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A 出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;9. 如图,⊙M的圆心M(﹣1,2),⊙M经过坐标原点O,与y轴交于点A,经过点A的一条直线l解析式为:y=﹣x+4与x轴交于点B,以M为顶点的抛物线经过x轴上点D(2,0)和点C(﹣4,0).(1)求抛物线的解析式;(2)求证:直线l是⊙M的切线;(3)点P为抛物线上一动点,且PE与直线l垂直,垂足为E,PF∥y轴,交直线l于点F,是否存在这样的点P,使△PEF的面积最小?若存在,请求出此时点P的坐标及△PEF面积的最小值;若不存在,请说明理由.10. 如图1,正方形ABCD的顶点A在原点O处,点B在x轴上,点C的坐标为(6,6),点D在y轴上,动点P,Q各从点A,D同时出发,分别沿AD,DC方向运动,且速度均为每秒1个单位长度.(1)探索AQ与BP有什么样的关系?并说明理由;(2)如图2,当点P运动到线段AD的中点处时,AQ与BP交于点E,求线段CE的长.(3)如图3,设运动t秒后,点P仍在线段AD上,AQ交BD于F,且△BPQ 的面积为S,试求S的最小值,及当S取最小值时∠DPF的正切值.11. 已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2(1)求抛物线的解析式;(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.12. 在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m,拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).(1)如图1,若BC=4m,则S=________m2.(2)如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其他条件不变,则在BC 的变化过程中,当S取得最小值时,边BC的长为________m.13. 如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M 是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;14. 已知正方形OABC的边OC、OA分别在x、y轴的正半轴上,点B坐标为(10,10),点P从O出发沿O→C→B运动,速度为1个单位每秒,连接AP.设运动时间为t.(1)若抛物线y=﹣(x﹣h)2+k经过A,B两点,求抛物线函数关系式;(2)当0≤t≤10时,如图1,过点O作OH⊥AP于点H,直线OH交边BC于点D,连接AD,PD,设△APD的面积为S,求S的最小值;15. 如图,在△ABC中,AB=5,AC=9,S△ABC= ,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tanA的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;16. 已知:在平面直角坐标系中,抛物线交x轴于A、B两点,交y轴于点C,且对称轴为x=﹣2,点P(0,t)是y轴上的一个动点.(1)求抛物线的解析式及顶点D的坐标.(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.17. 如图,平行四边形ABCD中,D点在抛物线y= x2+bx+c上,且OB=OC,AB=5,tan∠ACB= ,M是抛物线与y轴的交点.(1)求直线AC和抛物线的解析式;(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动.问:当P运动到何处时,△APQ是直角三角形?(3)在(2)中当P运动到某处时,四边形PDCQ的面积最小,求此时△CMQ 的面积.18. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P 从点B出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S 的最小值;若不存在,请说明理由.2019中考数学狙击重难点系列专题19. 如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.(1)当t≠1时,求证:△PEQ≌△NFM;(2)顺次连接P、M、Q、N,设四边形PMQN的面积为S,求出S与自变量t 之间的函数关系式,并求S的最小值.20. 如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0).C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD 的面积为S,试判断S有最大值或最小值?并说明理由;答案解析部分一、综合题1.【答案】(1)证明:连接CD,如图1所示.∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD.在△ADE和△CDF中,,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF.∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△EDF为等腰直角三角形.∵O为EF的中点,GO=OD,∴GD⊥EF,且GD=2OD=EF,∴四边形EDFG是正方形(2)解:过点D作DE′⊥AC于E′,如图2所示.∵△ABC为等腰直角三角形,∠ACB=90°,AC=BC=4,∴DE′= BC=2,AB=4 ,点E′为AC的中点,∴2≤DE<2 (点E与点E′重合时取等号).∴4≤S四边形EDFG=DE2<8.∴当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4.【解析】【分析】(1)连接CD,根据等腰直角三角形的性质可得出∠A=∠DCF=45°、AD=CD,结合AE=CF可证出△ADE≌△CDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=∠CDF,通过角的计算可得出∠EDF=90°,再根据O为EF的中点、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DE′⊥AC 于E′,根据等腰直角三角形的性质可得出DE′的长度,从而得出2≤DE<2 ,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值.2.【答案】(1)证明:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH﹣∠EPB=∠EBC﹣∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH(2)△PHD的周长不变为定值8.证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH.∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8 (3)如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,∴△EFM≌△PBA(ASA).∴EM=AP=x.∴在Rt△APE中,(4﹣BE)2+x2=BE2.解得,.∴.又∵折叠的性质得出四边形EFGP与四边形BEFC全等,∴.即:.配方得,,∴当x=2时,S有最小值6.【解析】【分析】(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)利用已知得出△EFM≌△BPA,进而利用在Rt△APE中,(4﹣BE)2+x2=BE2,利用二次函数的最值求出即可.3.【答案】(1)解:当时,PE=QE.即E为AC中点,理由如下:连接BE,∵△ABC是等腰直角三角形,∴BE=CE,∠PBE=∠C=45°,又∵∠PEB+∠BEQ=90°,∠CEQ+∠BEQ=90°,∴∠PEB=∠CEQ,在△PEB和△QEC中,∵,∴△PEB≌△QEC(ASA),∴PE=QE.;EP:EQ=EA:EC=1:2;理由如下:作EM⊥AB,EN⊥BC,∴∠EMP=∠ENQ=90°,又∵∠PEN+∠MEP=∠PEN+∠NEQ=90°,∴∠MEP=∠NEQ,∴△MEP∽△NEQ,∴EP:EQ=ME:NE,又∵∠EMA=∠ENC=90°,∠A=∠C,∴△MEA∽△NEC,∴ME:NE=EA:EC,∵,∴EP:EQ=EA:EC=1:2.;EP:EQ=1:m;0<m≤2+(2)解:①存在.由【探究一】中(2)知当时,EP:EQ=EA:EC=1:2;设EQ=x,则EP= x,∴S= ·EP·EQ= ·x·x= x2,当EQ⊥BC时,EQ与EN重合时,面积取最小,∵AC=30,△ABC是等腰直角三角形,∴AB=BC=15 ,∵,AC=30,∴AE=10,CE=20,在等腰Rt△CNE中,∴NE=10 ,∴当x=10 时,S min=50(cm2);当EQ=EF时,S取得最大,∵AC=DE=30,∠DEF=90°,∠EDF=30°,在Rt△DEF中,∴tan30°= ,∴EF=30× =10 ,此时△EPQ面积最大,∴S max=75(cm2);②由(1)知CN=NE=5 ,BC=15 ,∴BN=10 ,在Rt△BNE中,∴BE=5 ,∴当x=BE=5 时,S=62.5cm2,∴当50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有1个.【解析】【解答】(1)③作EM⊥AB,EN⊥BC,∵∠B=∠PEQ=90°,∴∠EPB+∠EQB=180°,又∵∠EPB+∠EPM=180°,∴∠EQB=∠EPM,∴△MEP∽△NEQ,∴EP:EQ=ME:NE,又∵∠EMA=∠ENC=90°,∠A=∠C,∴△MEA∽△NEC,∴ME:NE=EA:EC,∵,∴EP:EQ=EA:EC=1:m,∴EP与EQ满足的数量关系式为EP:EQ=1:m,∴0<m≤2+ (当m>2+ 时,EF与BC不会相交).【分析】【探究一】①根据已知条件得E为AC中点,连接BE,根据等腰直角三角形的性质可BE=CE,∠PBE=∠C=45°,由同角的余角相等得∠PEB=∠CEQ,由全等三角形的判定ASA可得△PEB≌△QEC,再由全等三角形的性质得PE=QE.②作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案. ③作EM⊥AB,EN⊥BC,由相似三角形的判定分别证△MEP∽△NEQ,△MEA∽△NEC,再由相似三角形的性质得EP:EQ=ME:NE=EA:EC,从而求得答案.【探究二】①设EQ=x,根据【探究一】(2)中的结论可知则EP= x,根据三角形面积公式得出S的函数关系式,再根据当EQ⊥BC时,EQ与EN重合时,面积取最小;当EQ=EF时,S取得最大;代入数值计算即可得出答案.②根据(1)中数据求得当EQ与BE重合时,△EPQ的面积,再来分情况讨论即可.4.【答案】(1)解:∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,BC=5 .由题意知:BM=2t,CN= t,∴BN=5 - t,∵BM=BN,∴2t=5 - t解得:.(2)解:过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即,解得:MD=t.设四边形ACNM的面积为y,∴y= = =.∴根据二次函数的性质可知,当t= 时,y的值最小.此时,.【解析】【分析】(1)由已知条件得出AB=10,BC=5 .由题意知:BM=2t,CN= t,BN=5 - t,由BM=BN得出方程2t=5 - t,解方程即可;(2)过M作MD⊥BC于点D,则MD∥AC,证出△BMD∽△BAC,得出比例式求出MD=t.四边形ACNM的面积y=△ABC的面积﹣△BMN的面积,得出y是t的二次函数,由二次函数的性质即可得出结果.5.【答案】(1)(2)①如图,过点D作MN⊥AB于点M,交OC于点N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点B的坐标.
SABC SABD SCBD
F
C
1 BD AE 1 BD CF
2
2
1 BD(AE CF) 2
D
铅垂高 导弹公式:AΒιβλιοθήκη EBSABC
1 2
ah
水平宽a
二、试题解析
导弹公式:SABC Y轴 (0,6)
1 2
ah 的简单应用
如图,在平面直角坐标系中,图1、2、3
选择坐标轴上的边作为底边
一、学前准备
观察下列图形,指出如何求出阴影部分的面积
三边均不在坐标轴上的三角形及不规则多边形需把图形分解
二、试题解析
例题:如图二次函数
y 1 x2 4 x 4 33
与x轴交于点C,与y轴交于
点A,过点A作一条直线与x轴平行,与抛物线交于点B.
(1)求直线AC的解析式;
直线AC:y 2 x 4
设点B(x,
1
3
x2
4
x
4),则点D(x,
2
x
4)
33
3
BD ( 2 x 4) (1 x2 4 x 4)
3
33
1 x2 2x 3
SABC
1 2
6 (
1 3
x2
2x)
(x 3)2 9
0 x 6
图1
是由同一个三角形ABC平移得到的,请计
算三角形ABC的面积.
(-3,3) 图2 (-3,-1)
(0,2.5) (0,2)
O (0,-1.5) (0,-2)
图1:铅垂高CD为:6-2.5=3.5
(4,2)
图2:铅垂高CD为:2-(-1.5)=3.5
X轴
(4,-2) 图3:铅垂高CD为:-2-(-5.5)=3.5
x2
1 2
x
3与x轴交于A、B两点,顶点为C,
2
则△ABC的面积为
.
三、自我检测
3. 已知抛物线 y x 2 2x 3 与x轴交于A(-3,0),B(1,0)两点, 与y轴交于点C,直线y=x+1与抛物线交于E,F两点.点P是直线EF 下方抛物线上的动点,求△PEF 面积的最大值及点P的坐标.
(2)连接BC,求ΔABC的面积.
SABC
1 2
AB CD
1 2
44
8
D
二、试题解析
变式1: 若抛物线的顶点为B,求ΔABC的面积.
SABC SOAB SOBC SOAC
二、试题解析
变式2
若点B是线段AC下方的抛物线上的动点,那么,ΔABC
的面积有最大值吗?如果有,请求出最大面积和此时
图3 (-3,-5)
(0,-5.5)
水平宽:4-(-3)=7
(4,-6)
二、试题解析
变式2
A
C
D
B 水平宽a=6
若点B是线段AC下方的抛物线 y 1 x2 4 x 4 上的动点,如果三角形ABC有最大3面积,3 请
求出最大面积和此时点B的坐标;如果没有,
请说明理由.
由例题可知:点A(0,-4),点C(6,0)
学后反思
函数中动点 图形与面积
静态
以 静 代 动
动态
规则:用公式
转
化
(
割
补
不规则
法
)
规则 不规则
关 用含x的代数式表示 键 相关线段的长度
三、自我检测
1.若抛物线 y x 2 x 6 与x轴交于A、B两点,则AB= ,
与y轴交于点C,则C点的坐标为
则,△ABC的面积为
.
2.已知二次函数y
二次函数中动点图形的面积问题
一、学前准备
1、如图,抛物线 y=-x2 +2x+3 与x 轴交于点A和点B ,与y轴交于点C.
则点A坐标为
,
点B坐标为
,
点C坐标为
,
ΔABC的面积为
,
顶点坐标为
,对称轴为_______,
直线AC的解析式为
.
一、学前准备
2、观察下列图形,指出如何求出阴影部分的面积
交点三角形 顶点三角形
当x 3时,Smax 9
二、试题解析
变式3 如图,抛物线中的点A、B、C与例题中的点A、B、C一样, 点P是直线AC上方抛物线上的动点,是否存在点P,使 SPAC 2SABC ,若存在,求出点P的坐标.
二、试题解析
变式4 若B、C是抛物线与x轴的交点,A是抛物线与y轴的交 点,点D是线段AC上的动点,过点D作x轴的垂线与抛 物线相交于点E,当点D运动到什么位置时,四边形 ABCE的面积最大?求四边形ABCD面积的最大值及此 时点D的坐标.
三、自我检测
4.抛物线
y
4 x2 5
24 x 4 在平面直角坐标系中的位置如图,直线
5
y 4 x 4 与x轴交于点A(-5,0),与y轴交于点B.在抛物线上是否
5
存在一点P, 使得△PAB的面积最小?若存在,求△PAB面积的最小值;
若不存在,请说明理由.