古希腊三个著名问题之一的三等分角
古希腊三个著名问题之一的三等分角

古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢?用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角.在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则EG=GF=GA=BA,从中得到:∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC,并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点.如果与欧几里得的假定相反,允许在我们的直尺上标出一线段E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC 上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the insertion principle)的一种应用.这一原则的其它应用,参看问题研究4.6.为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB 为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.借助于二次曲线可以三等分一个一般的角,早期希腊人还不知道这一方法.对于这种方法的最早证明是帕普斯(Pappus,约公元300年).利用二次曲线三等分角的两种方法在问题研究4.8中可以找到.有一些超越(非代数的)曲线,它们不仅能够对一个给定的角三等分,而且能任意等分.在这这样的曲线中有:伊利斯的希皮阿斯(Hippias,约公元前425年)发明的割圆曲线(quadratrix)和阿基米得螺线(spiral of Archimeds).这两种曲线也能解圆的求积问题.关于割圆曲线在三等分角和化圆为方问题上的应用,见问题研究4.10.多年来,为了解三等分角问题,已经设计出许多机械装置、联动机械和复合圆规.①参看R.C.Yates.The Trisection Prolem.其中有一个有趣的工具叫做战斧,不知道是谁发明的,但是在1835年的一本书中讲述了这种工具.要制做一个战斧,先从被点S和T三等分的线段RU开始,以SU为直径作一半圆,再作SV垂直于RU,如图33所示.用战斧三等分∠ABC时,将这一工具放在该角上,使R 落在BA上,SV通过B点,半圆与BC相切于D.于是证明:△RSB,△TSB,△TDB都全等,所以,BS和BT三等分给定的角.可以用直尺和圆规在描图纸上绘出战斧,然后调整到给定的角上.在这种条件下,我们可以说用直角和圆规三等分一个角(用两个战斧,则可以五等分一个角).欧几里得工具虽然不能精确地三等分任意角,但是用这些工具的作图方法,能作出相当好的近似的三等分.一个卓越的例子是著名的蚀刻师、画家A.丢勒(Albrecht Durer)于1525年给出的作图方法.取给定的∠AOB为一个圆的圆心角(参看图34),设C为弦AB的靠近B 点的三等分点.在C点作AB的垂线交圆于D.以B为圆心,以BD为半径,作弧交AB于E.设令F为EC的靠近E点的三等分点,再以B 为圆心,以BF为半径,作弧交圆于G.那么,OG就是∠AOB的近似的三等分线.我们能够证明:三等分中的误差随着∠AOB的增大而增大;但是,对于60°的角大约只差1〃,对于90°角大约只差18〃.只要放弃「尺规作图」的戒律,三等分角并不是一个很难的问题。
古希腊三大几何难题

古希腊三大作图难题北京化工大学 殷光中概述:尺规作图,即只用直尺和圆规作几何图形,其来源于《几何原本》,以后在一个时期内成为数学中的重要研究课题[1]。
古希腊三大作图难题:1.作一立方体,其体积为所知立方体体积的两倍;2.画圆为方,即作一正方形使其面积为已知圆的面积;3.尺规三等分任意角)之一。
众所周知,二等分任意给定角用尺规很容易就能解决。
而充满探索与挑战精神的人们又会想到用尺规如何三等分任意给定角,此后,许多数学家纷投入这一问题的解决。
直到十九世纪,人们才严格证明了三等分任意角仅凭尺规不可能实现。
到此,这一问题才告一段落。
期间,有许多超越了尺规限制的作图方法:比如:希皮阿斯发明的割圆曲线,阿基米德螺线和尼科梅德斯蚌线等[2]。
人们万万也不会想到但他们在潜心研究一些未解决的问题的时候,许多新的发现也会应运而生……1、三等分任意角科学需要大胆的想象,或许引入数学公式可以实现超越尺规而三等分角,于是我想到了倍角的相关公式,引发了以下一系列的思考: 1.1.1 n 倍角的正切值展开通式tan1α=t tan2α=212t t- tan3α=23313t t t --tan4α=4236144tt t t +-- tan5α=42535101105t t t t t +-+-tan6α=64253151516206t t t t t t -+-+- tan7α=64275373521121357t t t t t t t -+--+-tan8α=86427532870281856568t t t t t t t t +-+--+-…… 有如下特征:① 分子分母各项均是“+,-”交替出现,且分子上为t 的奇次幂,分母上为t 的偶次幂。
② 我们将分子分母上相同序项对齐,则分子上的次数比分母上依次高一,且其系数有如下关系: 若tann α=...1......8463422194735231++-+-++-+-t m t m t m t m t n t n t n t n nt ; 则有,tan(n+1) α=...)()(1...)()()1(42121522311-+++--+++-+t m n t m n t m n t m n t n .即:对正相加分别作为下式相应项的分子系数;由下往上左偏相减作为下式相应项的分母系数 。
古希腊三大“不可解”的数学问题,最后一个既简单又复杂

古希腊三大“不可解”的数学问题,最后一个既简单又复杂只用直尺和圆规能解决这三个问题吗今天,超模君想跟大家讲一下有关“古希腊三大几何问题”的故事……“倍立方体”问题Question:如何只用直尺和圆规作出一个立方体,使得该立方体的体积为已知立方体的体积的两倍。
原来这个问题源于古希腊的一次瘟疫。
传说在公元前429年,一场不知名的瘟疫袭击了希腊提洛岛(Delos),岛上四分之一的人都因为瘟疫而丧生。
面对可怕的瘟疫,岛上的居民们推举出一个代表,到神庙里去询问阿波罗的旨意。
太阳神阿波罗结果阿波罗传下旨意:想要遏止瘟疫,就把神殿前的祭坛加大一倍吧!听到阿波罗的旨意,人们便把祭坛的边长都加长了一倍。
但是,当新的祭坛做好时,瘟疫并没有得到控制,反而愈加严重。
此时有人质疑说这样做根本不对,阿波罗说的是把祭坛的体积变成原来的两倍。
于是人们又把祭坛的体积修改为原来的两倍,但是祭坛的形状变成了一个长方体,瘟疫依旧肆虐。
无奈之下,岛民们只好去雅典求助智者柏拉图。
一开始柏拉图和他的学生都认为这个问题很容易,因为他们已经知道如何只用直尺和圆规,来作出一个面积为已知正方形两倍的正方形。
但是他们发现,这个问题远比想象的要复杂,以至于最后柏拉图并没有成功地用尺规作图来解决这个问题。
柏拉图:这回丢脸丢大了……于是这个问题被保留了下来,直到1837年,法国数学家万芝尔成功证明:只用尺规作图,根本无法解决“倍立方体”问题。
万芝尔的大致证明过程是这样的:假设已知的正方体棱长为a,体积为已知正方体的正方体棱长为x,由问题的要求,列式得x^3=2a^3,解出x等于2a^3的三次方根。
由于2的三次方根是无理数,而尺规作图能够作出的线段长度均为有理数,所以“倍立方体”问题无法只用尺规作图解决。
这个证明被数学界普遍认可,可如果抛开尺规作图这个限制,那么要解决“倍立方体”问题其实并不难。
柏拉图当时就有这么一个解法:“倍立方体问题”可以转化为另一个问题:即在a与2a之间,插入x、y两个数,使a、x、y、2a成等比数列。
旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明——古希腊三大几何难题

旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明——古希腊三大几何难题古希腊三大几何难题提出者:智者学派展开雅典有一个智者学派,代表人物有希比阿斯、安提丰、普罗泰格拉等。
智者学派以诡辩著称,当时流行几何,哲学家、数学家常常看口闭口都是几何。
于是三大几何难题就诞生了。
(1)化圆为方:作一个正方形,使其面积与已知圆面积相等。
(2)倍立方:作一个正方体,使其体积是已知正方体的2倍(3)三等分角:三等分任意角于是呢,有一堆数学家就开始做。
题目规则是尺规作图。
可他们没做出来,于是就做,做呀做呀,他们殚精竭虑、千方百计,就是没做出来,一个都没有,但是一直有人做,于是阿基米德螺线诞生了,于是圆锥曲线诞生了……但是这么多几何线诞生,也没把题目做出来,于是两千年过去了。
19世纪有一个人叫旺策尔,证明了这个题目光用尺规是作不出来的。
证明这个几何题目的方法,竟然是代数。
推理方法很值得借鉴。
简单说一下---------------------------------------------------------------------------------推理第一步:尺规作图可以怎么折腾归纳只有5点:①做连接两点的直线段,或延长此线段;②作两直线的交点;③以已知点为圆心;④作圆与直线交点;⑤作两圆交点;第二步:只用尺规可以作出什么样的线段设a1、a2、a3、a4、…… an是已知线段,同时用ai表示它们的长度,并设a1=1. 则光用尺规只能将之进行+、一、×、÷、√(根号),即进行加、减、乘、除、开偶次方根。
ai+aj没问题,ai -aj没问题,若x=ai× aj,则有1/ai=aj/x ,作一个相似三角形即可。
同样,若x=ai÷aj则1/x=ai/aj,若x=√(ai),则x^2=ai/×a1,x 是ai/与a1的比例中项,仿照射影定理的模型可以作出。
古希腊三大几何作图问题

古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规,这种作图工具的限制使得三大几何作图问题成为数学史上的难解之题.三等分角问题即将任意一个角进行三等分.1837年,法国数学家旺策尔第一个证明了三等分角问题是古希腊那种尺规作图不可能的问题.但如果放宽作图工具的限制,该问题还是可以解决的.阿基米德创立的方法被誉为最简单的方法,他仅利用只有一点标记的直尺和圆规就巧妙地解决了这个问题.三等分角问题的深入研究导致了许多作图方法的发现及作图工具的发明.倍立方体问题即求作一个立方体,使其体积是已知一立方体的两倍,该问题起源于两千年希腊神话传说:一个说鼠疫袭击提洛岛(爱琴海上的小岛),一个预言者宣称己得到神的谕示,须将立方体的阿波罗祭坛的体积加倍,瘟疫方能停息;另一个说克里特旺米诺斯为儿子修坟,要体积加倍,但仍保持立方体的形状.这两个传说都表明倍立方体的问题起源于建筑的需要.1837年,洁国数学家旺策尔证明了倍立方体问题是古希腊那种尺规作图不可能的问题.倍立方体问题的研究促进了圆锥曲线理论的建立和发展.化圆为方问题即求作一正方形,使其面积等于一已知圆的面积.这是历史上最能引起人们强烈兴趣的问题之一,早在公元前5世纪就有许许多多的人研究它.希腊语中甚至有一个专门名词表示“献身于化圆为方问题”.1882年,德国数学家林德曼证明了化圆为方问题是古希腊那种尺规作图不可能的问题,从而解决了2000多年的悬案.如果放宽作图工具的限制,则开始有多种方法解决这个问题,其中较为巧妙的是文艺复兴时期的著名学者达·芬奇设计的:用一个底与己知圆相等,高为己知圆半径一半的圆柱在平面上滚动一周;所得矩形的面积等于已知圆面积,再将矩形化为等面积的正方形即化圆为方问题的研究促使人们开始用科学的方法计算圆周率的值,对穷竭法等科学方法的建立产生了直接影响.。
几何三大难题的初探

几何三大难题的初探希腊古典时期数学发展的路线希腊前300年的数学沿着三条不同的路线发展着.第一条是总结在欧几里得得《几何原本》中的材料.第二条路线是有关无穷小、极限以及求和过程的各种概念的发展,这些概念一直到近代,微积分诞生后才得以澄清.第三条路线是高等几何的发展,即园和直线以外的曲线以及球和平面以外的曲面的发展.令人惊奇的是,这种高等几何的大部分起源于解几何作图三大问题.几何作图三大问题古希腊人在几何学上提出著名的三大作图问题,它们是:(1)三等分任意角.(2)化园为方:求作一正方形,使其面积等于一已知园的面积.(3)立方倍积:求作一立方体,使其体积是已知立方体体积的两倍.解决这三大问题的限制是,只许使用没有刻度的直尺和圆规,并在有限次内完成.这三个问题是如何提出来的呢?由于年代久远,已无文献可查.据说,立方倍积问题起源于两个神话.厄拉多赛(EratoheneofCyrene,约公元前27―约前194)是古希腊著名的科学家、天文学家、数学家和诗人.他是测量过地球周长的第一人.在他的《柏拉图》一书里,记述了一个神话故事.说是鼠疫袭击了爱琴海南部的一个小岛,叫提洛岛.一个预言者说,他得到了神的谕示:须将立方形的阿波罗祭坛体积加倍,瘟疫方能停息.建筑是很为难,不知道怎样才能使体积加倍.于是去请教哲学家柏拉图.柏拉图说,神的真正意图不在于神坛的加倍,而是想使希腊人因忽视几何学而羞愧.另一个故事也是厄多拉塞记述的.说古代一位悲剧诗人描述克里特国王米诺斯为他的儿子克劳科斯修坟的事.他嫌坟修造得太小,命令有关人必须把坟的体积加倍,但要保持立方的形状.接着又说,“赶快将每边的长都加倍.”厄拉多塞指出,这是错误的,因为边长加倍,体积就变成原来的8倍.这两个传说都表明,立方倍积问题起源于建筑的需要.三等分任意角的问题来自正多边形作图.用直尺和圆规二等分一个角是轻而易举的.由此可以容易地作出正4边形、正8边形,以及正2n次方边形,其中n≥2是自然数.很自然地,人们会提出三等分一个角的问题.但这却是一个不可能用尺规解决的问题.圆和正方形都是最基本的几何图形,怎样做一个正方形和一个已知圆有相同的面积呢?这就是化园为方的问题.历史上恐怕没有一个几何问题像这个问题那样强烈地吸引人们的兴趣.早在公元前5世纪,就有很多人研究这个问题了,都想在这个问题上大显身手.化园为方的问题相当于用直尺和圆规作出√π的值.这个问题的最早研究者是安那克萨哥拉,可惜他的关于化圆为方的问题的研究没有流传下来,以后的研究者有希波克拉茨(HippocrateofChio,公元前约460年).他在化圆为方的研究中求出了某些月牙形的面积.此外.还有安提丰,他提出了一种穷竭法,具有划时代的意义,是近代极限论的先声.“规”和“矩”的规矩在欧几里得几何学中,几何作图的特定工具是直尺和圆规,而且直尺上没有刻度.直尺、在欧几里得几何学中,几何作图的特定工具是直尺和圆规,而且直尺上没有刻度.直尺、圆规的用场是直尺:(1)已知两点作一直线;(2)无限延长一已知直线.圆规:已知点O,A,以O为心,以OA为半径作圆.希腊人强调,几何作图只能用直尺和圆规,其理由是:(1)希腊几何的基本精神是,从极少数的基本假定——定义、公理、公设——出发,推导出尽可能多的命题.对作图工具也相应地限制到不能再少的程度.(2)受柏拉图哲学思想的深刻影响.柏拉图特别重视数学在智力训练方面的作用,他主张通过几何学习达到训练逻辑思维的目的,因此对工具必须进行限制,正像体育竞赛对运动器械有限制一样.(3)毕达哥拉斯学派认为圆是最完美的平面图形,圆和直线是几何学最基本的研究对象,因此规定只使用这两种工具.问题的解决用直尺和圆规能不能解决三大问题呢?答案是否定的,三大问题都是几何作图不能解决的.证明三大问题不可解决的工具本质上不是几何的而是代数的,再带舒缓没有发展到一定水平时是不能解决这些问题的.1637年迪卡儿创立了解析几何,沟通了几何学和代数学这两大数学分支,从而为解决尺规作图问题奠定了基础.1837年法国数学家旺策尔(PierreL.W Antzel)证明了,三等分任意角和立方倍积问题都是几何作图不能解决的问题,化圆为方问题相当于用尺规作出的值.1882年法国数学家林得曼证明了∏是超越数,不是任何整系数代数方程的根,从而证明了化圆为方的不可能性.但是,正是在研究这些问题的过程中促进了数学的发展.两千多年来.三大几何难题起了许多数学家的兴趣,对它们的深入研究不但给予希腊几何学以巨大影响,而且引出了大量的新发现.例如,许多二次曲线、三次曲线以及几种超越曲线的发现,后来又有关于有理数域、代数数与超越数、群论等的发展在化圆为方的研究中几乎从一开始就促进了穷竭法的发展,二穷竭法正是微积分的先导.放弃“规矩”之后问题的难处在于限制用直尺和圆规.两千多年来,数学家为解决三大问题投入了热大量精力.如果解除这一限制,问题很容易解决.。
三等分已知角

三等分已知角
古希腊著名的尺规作图问题有三个,除了前面介绍过的化圆为方和立方倍积问题之外,还有一个三等分已知角问题。
这里所说的已知角不光可是特殊角,如90°,135°,180°,等等,还可以是一个任意度数的角。
所谓把已知角三等分,是指按尺规作图的一般要求,即只使用直尺(无刻度,只能用来画直线)和圆规,依靠画直线和画圆弧,并仅用图中的已知点和画出的直线或弧线的交点。
通过有限的步聚,把已知角分成相等的三份。
1837年,P•L。
旺策尔既给出了立方倍积不能用尺规作图的证明,又给出了三等分已知角不能用尺规作图的证明,于是人们知道了,三等分已知角和立方倍积都是尺规作图的不可能问题,这也就宣告了三等分已知角和立方倍积问题的终结。
在人们知道古希腊三大几何问题都是尺规作图的不可能问题之前,千千万万人的试图正面解决这些问题的努力当然都不能成功,但也不是毫无收获。
正如中国大百科全书上所说的,正因为这些问题不能用尺规作图来解决,常常使人闯入新的领域中去。
例如激发了圆锥曲线,割圆曲线,以及三、四次代数曲线的发现。
古希腊三大作图问题

作数对;
扩域“列”与扩域“树”
❖ “列”: 有理数域 ❖ “树”:
r1 r2 2(r1, r2 Q)
Q
2∈Q
3∈Q
5 ∈Q ......
F1={a+b 2 |a,b∈Q} F'1={a+b 3 |a,b∈Q} F''1={a+b 5 |a,b∈Q} ......
扩域“列”与扩域“树”
扩域“树”的基本特征: ❖ 每一支都是一个扩域“列”; ❖ 在这些扩域“列”中,每一个扩域中的数都
可以用尺规作出; ❖ 某一个扩域可能出现在不同的扩域“列”中.
只能作图
❖ 对尺规作图而言, 从单位1出发, 利用尺规作图, 可以 作出有理数域中的每一个数。然后, 我们可以选择 有理数域中的一个数, 作它的算术平方根(这里要求), 进而作出所有形如的数,其中是数域中的任意数。从 而,用尺规可以作出一个新的数域.重复这样的过程, 我们就可以作出数域“树”。
❖ 数域“树”中每一个数都可以用尺规作出,而且, 尺规所能作出数的范围仅限于数域“树”中的数。
❖ 我们可以把它写成一个定理: 尺规能且仅能作出的数的范围为数域“树”。
❖ 没有针对一个问题,去寻找解决这类问题的 方法。
不可作图问题是如何解决的呢?
思路:我们对尺规作图一类问题进行考虑。 ❖ 确定尺规作图的范围; ❖ 判断我们要求作的具体问题是否在这个范围
内。
不可作图问题证明的基本步骤
❖ 1)尺规作图代数化——几何问题代数化; ❖ 2)范围界定,与数域建立联系——数域与扩
尺规作图
❖ 古时候人们约定,所谓圆规直尺作图是指: 使用直尺,我们能过任何给定的不同两点, 作一条直线;使用圆规,我们能以给定点为 圆心,任意长为半径作一个圆. 在作图中,使 用的直尺是没有刻度标记的直尺;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古希腊三个著名问题之一的三等分角,现在美国就连许多没学过数学的人也都知道.美国的数学杂志社和以教书为职业的数学会员,每年总要收到许多“角的三等分者”的来信;并且,在报纸上常见到:某人已经最终地“解决了”这个不可捉摸的问题.这个问题确实是三个著名的问题中最容易理解的一个,因为二等分角是那么容易,这就自然会使人们想到三等分角为什么不同样的容易呢?
用欧几里得工具,将一线段任意等分是件简单的事;也许古希腊人在求解类似的任意等分角的问题时,提出了三等分角问题;也许(更有可能)这问题是在作正九边形时产生的,在那里,要三等分一个60°角.
在研究三等分角问题时,看来希腊人首先把它们归结成所谓斜向(verging problem)问题.任何锐角ABC(参看图31)可被取作矩形BCAD的对角线BA和边BC的夹角.考虑过B点的一条线,它交CA于E,交DA之延长线于F,且使得EF=2(BA).令G为EF之中点,则
EG=GF=GA=BA,
从中得到:
∠ABG=∠AGB=∠GAF+∠GFA=2∠GFA=2∠GBC,
并且BEF三等分∠ABC.因此,这个问题被归结为在DA的延长线和AC之间,作一给定长度2(BA)的线段EF,使得EF斜向B点.
如果与欧几里得的假定相反,允许在我们的直尺上标出一线段
E’F’=2(BA),然后调整直尺的位置,使得它过B点,并且,E’在AC 上,F’在DA的延长线上;则∠ABC被三等分.对直尺的这种不按规定的使用,也可以看作是:插入原则(the insertion principle)的一种应用.这一原则的其它应用,参看问题研究4.6.
为了解三等分角归结成的斜向问题,有许多高次平面曲线已被发现.这些高次平面曲线中最古老的一个是尼科梅德斯(约公元前240年)发现的蚌线.设c为一条直线,而O为c外任何一点,P为c上任何一点,在PO的延长线上截PQ等于给定的固定长度k.于是,当P沿着c移动时,Q的轨迹是c对于极点O和常数k的蚌线(conchoid)(实际上,只是该蚌线的一支).设计个画蚌线的工具并不难①,用这样一个工具,就可以很容易地三等分角.这样,令∠AOB 为任何给定的锐角,作直线MN垂直于OA,截OA于D,截OB于L(如图32所示).然后,对极点O和常数2(OL),作MN的蚌线.在L点作OA的平行线,交蚌线于C.则OC三等分∠AOB.
借助于二次曲线可以三等分一个一般的角,早期希腊人还不知道这一方法.对于这种方法的最早证明是帕普斯(Pappus,约公元300年).利用二次曲线三等分角的两种方法在问题研究4.8中可以找到.
有一些超越(非代数的)曲线,它们不仅能够对一个给定的角三等分,而且能任意等分.在这这样的曲线中有:伊利斯的希皮阿斯(Hippias,约公元前425年)发明的割圆曲线(quadratrix)和阿基米得螺线(spiral of Archimeds).这两种曲线也能解圆的求积问题.关于割圆曲线在三等分角和化圆为方问题上的应用,见问题研究4.10.
多年来,为了解三等分角问题,已经设计出许多机械装置、联动机械和复合圆规.①参看R.C.Yates.The Trisection Prolem.其中有一个有趣的工具叫做战斧,不知道是谁发明的,但是在1835年的一本书中讲述了这种工具.要制做一个战斧,先从被点S和T三等分的线段RU开始,以SU为直径作一半圆,再作SV垂直于RU,如图33所示.用战斧三等分∠ABC时,将这一工具放在该角上,使R 落在BA上,SV通过B点,半圆与BC相切于D.于是证明:△RSB,△TSB,△TDB都全等,所以,BS和BT三等分给定的角.可以用直尺和圆规在描图纸上绘出战斧,然后调整到给定的角上.在这种条件下,我们可以说用直角和圆规三等分一个角(用两个战斧,则可以五等分一个角).
欧几里得工具虽然不能精确地三等分任意角,但是用这些工具的作图方法,能作出相当好的近似的三等分.一个卓越的例子是著名的蚀刻师、画家A.丢勒(Albrecht Durer)于1525年给出的作图方法.取给定的∠AOB为一个圆的圆心角(参看图34),设C为弦AB的靠近B 点的三等分点.在C点作AB的垂线交圆于D.以B为圆心,以BD为半径,作弧交AB于E.设令F为EC的靠近E点的三等分点,再以B 为圆心,以BF为半径,作弧交圆于G.那么,OG就是∠AOB的近似的三等分线.我们能够证明:三等分中的误差随着∠AOB的增大而增大;但是,对于60°的角大约只差1〃,对于90°角大约只差18〃.
只要放弃「尺规作图」的戒律,三等分角并不是一个很难的问题。
古希腊数学家阿基米得(前287-前212)发现只要在直尺上固定一点,问题就可解决了。
现简介其法如下:在直尺边缘上添加一点P,命尺端为O。
设所要三等分的角是∠ACB,以C为圆心,OP为半径作半圆交角边于A,B;使O点在CA延在线移动,P点在圆周上移动,当尺通过B时,连OPB。
由于OP=PC=CB,所以∠COB=∠AC B/3。