2018-2019九年级数学第一次质检试卷

合集下载

【初中市质检试卷】2018—2019学年(上)厦门市九年级质量检测数学试卷及答案

【初中市质检试卷】2018—2019学年(上)厦门市九年级质量检测数学试卷及答案

2018—2019学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)准考证号姓名座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s与时间t的函数关系如图4中的部分抛物线所示(其中P是该抛物线的顶点),则下列说法正确的是A.小球滑行6秒停止B.小球滑行12秒停止C.小球滑行6秒回到起点D.小球滑行12秒回到起点8.在平面直角坐标系xOy中,已知A(2,0),B(1,-1),将线段OA绕点O逆时针旋转,设旋转角为α(0°<α<135°).记点A的对应点为A1,若点A1与点B的距离为6,则α为A.30°B.45°C.60°D.90°9.点C,D在线段AB上,若点C是线段AD的中点,2BD>AD,则下列结论正确的是A.CD<AD-BDB.AB>2BDC.BD>ADD.BC>AD10.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0).当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值为y1,y2,且y1=y2.设该函数图象的对称轴是x=m,则m的取值范围是A.0<m<1B.1<m≤2C.2<m<4D.0<m<4二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为奇数的概率是 .12.已知x=2是方程x2+ax-2=0的根,则a=.13.如图5,已知AB是⊙O的直径,AB=2,C,D是圆周上的点,且∠CDB=30°,则BC的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A:“完全三角形是直角三角形”.若命题B是命题A的逆命题,请写出命题B:;并写出一个例子(该例子能判断命题B是错误的): .15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 .三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O , 交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分)已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P 在对角线AC上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录. (1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且 售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.表一表二24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ ,(1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP +2∠OPN =90°,探究直线.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.图10图112018—2019学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根 x =-b ±b 2-4ac 2a=3±52. ……………………………6分即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1)……………………………5分 =2x +1……………………………6分 当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x=2时,y=2.所以(2−1)2+n=2.解得n=1.所以二次函数的解析式为:y=(x−1)2+1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E即为所求.…………………3分(2)(本小题满分5分)解法一:解:连接EB,EC,由(1)得,EB=EC.∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.∴△ABE≌△DCE. …………………6分E DC BAl∴ AE =ED =12AD =3. …………………7分在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .∵ 四边形ABCD 是矩形, ∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2. ∴ EB =5. …………………8分21.(本题满分8分) 证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2. 设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ n πr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分FEDCBAl即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F , ∵ 点P 到边AD 的距离为m . ∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系.EF则由(1)得P (m ,n ). 若点P 在△DAB 的内部, 点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧. 由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部, 则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .· PEFM即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分 因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60. 所以x ≤54.5. ……………………9分 因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中,∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分 ∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ .PQ又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ . ∴∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分) (1)①(本小题满分3分)解:如图即为所求…………………………3分②(本小题满分4分)解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0). 设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2.可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2,分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ . 由①,②,③可得a =12+p .所以F (0,p +2).又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分 解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2,因为B (p ,q ),C (p +4,q )在抛物线m 上,所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上, 可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2. 当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a . 因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2.可得N (p +2,0),F (0, p +2). …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。

2018-2019年贵州省遵义市九年级(上)第一次质检数学试卷

2018-2019年贵州省遵义市九年级(上)第一次质检数学试卷

2018-2019学年贵州省遵义市九年级(上)第一次质检数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列给出的方程中,属于一元二次方程的是()A.x(x﹣1)=6B.x2+=0C.(x﹣3)(x﹣2)=x2D.ax2+bx+c=02.(3分)方程x2=1的解为()A.x=0B.x=1C.x=﹣1D.x1=1,x2=﹣13.(3分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m+2018的值等于()A.0B.1C.2018D.20194.(3分)方程x2+1=2x的二次项系数,一次项系数和常数项分别是()A.1,1,2B.1,﹣2,1C.1,﹣2,﹣1D.0,2,15.(3分)已知(m﹣2)x|m|+x=1是关于x的一元二次方程,则m可取的值是()A.2B.﹣2C.±2D.m≠26.(3分)已知x=﹣1是方程x2+mx+n=0的一个根,则代数式m2+n2﹣2mn的值为()A.0B.﹣1C.1D.±17.(3分)方程x2﹣2x﹣b=0的一个根是无理数,则另一个根一定是()A.分数B.有理数C.无理数D.均可以8.(3分)用配方法解一元二次方程,x2+6x+5=0,其中变形正确的是()A.(x+6)2=1B.(x﹣6)2=9C.(x﹣3)2=4D.(x+3)2=49.(3分)一元二次方程x2+mx+1=0有实数根,不等式组有解,则m应满足的条件是()A.m≥2B.m≤﹣2C.m≤﹣2或2≤m≤3D.2≤m<310.(3分)若关于x的一元二次方程(m+1)x2+5x+m2+3m+2=0的常数项为0,则m的值为()A.﹣1B.﹣2C.﹣1或﹣2D.011.(3分)某新能源汽车销售公司,在国家减税政策的支持下,原价25.5万元每辆的纯电动新能源汽车两次下调相同费率后售价为15.98万元,求每次下调的百分率,设百分率为x,则可列方程为()A.15.98(1+x)2=25.5B.15.98(1+x2)=25.5C.25.5(1﹣x)2=15.98D.25.5(1﹣x2)=15.9812.(3分)已知一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax﹣a2+a+2=0的一个根互为相反数,那么(a+1)x2+ax﹣a2+a+2=0的根是()A.0,﹣B.0,C.﹣1,2D.1,﹣2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)方程x2﹣3x=0的根为.14.(4分)已知m、n是方程x2+bx+c=0的两根,m+n=4,m⋅n=﹣3,原方程可写为.15.(4分)已知一元二次方程x2﹣x+c=0的一个根是,那么它的另一个根是.16.(4分)一元二次方程x2﹣4x﹣12=0的两根分别是一次函数y=kx+b在x轴上的横坐标和y轴上的纵坐标,则这个一次函数图象与两坐标轴所围成的三角形的面积是.17.(4分)已知a和它的倒数是一元二次方程x2﹣2x+m=0(m为非零常数)的两个根,则a2+=.18.(4分)已知方程x2﹣3x+m=0与方程x2+(m+3)x﹣6=0有一个共同根,则这个共同根是.三、解答题(本大题9小题,共90分)19.(12分)解下列方程(1)25x2﹣36=0(2)x2﹣4x﹣5=0(3)x2﹣4=5x+10(4)2x2﹣2x+1=020.(6分)如果﹣1是一元二次方程x2﹣px﹣4=0的一个根,求它的另一个根以及p的值.21.(6分)若一个等腰三角形的三边长均满足方程x2﹣9x+18=0,求此三角形的周长.22.(8分)已知x2+2y2=3xy(xy≠0),求x:y的值.23.(10分)已知(x≠y),求的值.24.(10分)如图,在矩形ABCD中,AB=10cm,BC=5cm,点P,点Q分别以2cm/s和1cm/s的速度从A,B沿AB,BC方向运动.设t秒(t≤5)时,△PBQ的面积为y.(1)试写出y与t的函数关系式.(2)当t为何值时,S△PBQ=6cm2?(3)在P、Q运动过程中,四边形APQC的面积是否有最小值?如果有,直接写出S四=.边形APQC25.(12分)细心的小明发现,一元二次方程ax2+bx+c=0(a≠0)根与系数之间的“秘密”关系.(1)当x=1时有a+b+c=0,当x=﹣1时有a﹣b+c=0.若9a+c=3b,求x;(2)若2a+b=0,3a+c=0,写出满足条件的一个一元二次方程,并求另一个根;(3)当老师写出方程2x2﹣3x﹣1=0,要求不解方程判断根的情况时,小明立即回答,有两个不相等的实数根.据此,你能根据一元二次方程系数a、b、c的符号以及相互之间的数量关系,写出一些关于一元二次方程ax2+bx+c=0(a≠0)根与系数之间的规律吗?请写一写(至少两条).26.(12分)近年来,随着城市居民入住率的增加,污水处理问题成为城市的难题.某城市环境保护局协同自来水公司为鼓励居民节约用水,减少污水排放,规定:居民用水量每月不超过a吨时,只需交纳10元水费,如果超过a吨,除按10元收费外,超过部分,另按每吨5a元收取水费(水费+污水处理费).(1)某市区居民2018年3月份用水量为8吨,超过规定水量,用a的代数式表示该用户应交水费多少元;(2)下表是这户居民4月份和5月份的用水量和缴费情况;根据上表数据,求规定用水量a的值.(3)结合当地水资源状况,谈谈如何开展水资源环境保护?如何节约用水?27.(14分)有人说:“数学是思维的体操”,运用和掌握必要的“数学思想”和“数学方法”是取胜数学的重要法宝.阅读下列例题:(1)解方程:x2﹣2|x|﹣3=0.解:①当x≥0时,有x2﹣2x﹣3=0,解得x1=﹣1(舍去),x2=3.②当x<0时,有x2+2x﹣3=0,解得x1=1(舍去),x2=﹣3.所以,原方程的解是x=3或﹣3.(数学的分类讨论思想)试解方程:x2﹣|x﹣1|﹣1=0.(2)设a3+a﹣1=0,求a3+a+2018的值.解:由a3+a﹣1=0得a3+a=1,代入,有a3+a+2018=1+2018=2019(整体代入或换元思想)试一试:当a是一元二次方程x2﹣2018x+1=0的一个根时,求:a2﹣2017a+的值.2018-2019学年贵州省遵义市九年级(上)第一次质检数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:A、符合一元二次方程的定义,故本选项正确;B、变形后未知数最高次数是4,不是一元二次方程,故本选项错误;C、未知数的最高次数是1,不是一元二次方程,故本选项错误;D、当a=0时,不是一元二次方程,故本选项错误;故选:A.2.【解答】解:x2=1,x=±1,即x1=1,x2=﹣1,故选:D.3.【解答】解:把x=m代入方程x2﹣x﹣1=0得:m2﹣m﹣1=0,m2﹣m=1,所以m2﹣m+2018=1+2018=2019.故选:D.4.【解答】解:方程x2+1=2x即为x2﹣2x+1=0,二次项系数、一次项系数、常数项分别是1,﹣2,1,故选:B.5.【解答】解:根据题意知m﹣2≠0且|m|=2,解得:m=﹣2,故选:B.6.【解答】解:把x=﹣1代入方程x2+mx+n=0得:(﹣1)2﹣m+n=0,解得:﹣m+n=﹣1,m2+n2﹣2mn=(﹣m+n)2=(﹣1)2=1,故选:C.7.【解答】解:∵方程x2﹣2x﹣b=0的两根之和为2,且其中一个根是无理数,∴另一个根也是无理数,故选:C.8.【解答】解:x2+6x+5=0,移项得:x2+6x=﹣5,配方得:x2+6x+9=﹣5+9,即(x+3)2=4.故选:D.9.【解答】解:∵一元二次方程x2+mx+1=0有实数根,不等式组有解,∴,解得:m≤﹣2或2≤m≤3.故选:C.10.【解答】解:∵一元二次方程(m+1)x2+5x+m2+3m+2=0的常数项为0,∴m2+3m+2=0,解得,x=﹣1或﹣2,∵(m+1)x2+5x+m2+3m+2=0是一元二次方程,∴m+1≠0,即m≠﹣1,∴m=﹣2,故选:B.11.【解答】解:设平均每次降价的百分率是x,根据题意列方程得,25.5(1﹣x)2=15.98.故选:C.12.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣a﹣2=0的一个根与方程(a+1)x2+ax ﹣a2+a+2=0的一个根互为相反数,∴(a+1)x2﹣ax+a2﹣a﹣2=(a+1)x2+ax﹣a2+a+2,a2﹣a﹣2=0,(a+1)(a﹣2)=0,解得a1=﹣1(舍去),a2=2,把a=2代入(a+1)x2+ax﹣a2+a+2=0得3x2+2x﹣4+2+2=0,解得x1=0,x2=﹣.故选:A.二、填空题(本大题共6小题,每小题4分,共24分)13.【解答】解:因式分解得,x(x﹣3)=0,解得,x1=0,x2=3.故答案为:x1=0,x2=3.14.【解答】解:∵m+n=4,m⋅n=﹣3,∴﹣b=4,c=﹣3,∴b=﹣4,c=﹣3.∴原方程为x2﹣4x﹣3=0.故答案为:x2﹣4x﹣3=0.15.【解答】解:设方程的另一个根为x2,根据题意知+x2=1,解得:x2=1﹣=,故答案为:.16.【解答】解:解方程x2﹣4x﹣12=0得:x=6或﹣2,∵一元二次方程x2﹣4x﹣12=0的两根分别是一次函数y=kx+b在x轴上的横坐标和y轴上的纵坐标,∴这个一次函数图象与两坐标轴所围成的三角形的面积是×6×|﹣2|=6,故答案为:6.17.【解答】解:根据题意知a+=2,a•=m,即m=1,∴a2+=(a+)2﹣2=4﹣2=2,故答案为:2.18.【解答】解:存在.由题意联立两方程可得,解得x=1,故答案是:x=1.三、解答题(本大题9小题,共90分)19.【解答】解:(1)x2=x=±所以x1=,x2=﹣;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(3)x2﹣5x﹣14=0,(x﹣7)(x+2)=0,x﹣7=0或x+2=0,所以x1=7,x2=﹣2;(4)(x﹣1)2=0,x﹣1=0,所以x1=x2=.20.【解答】解:∵x=﹣1是关于x的一元二次方程x2﹣px﹣4=0的一个根,∴(﹣1)2﹣p×(﹣1)﹣4=0,∴p=3,将p=3代入方程得x2﹣3x﹣4=0,解得:x=﹣1或x=4.故它的另一根为x=4,p的值为1.21.【解答】解:解方程x2﹣9x+18=0得:x1=3,x2=6,分为两种情况:①等腰三角形的三边为3,3,6,3+3=6,不符合三角形三边关系定理,此时三角形不存在;②等腰三角形的三边为3,6,6,符合三角形三边关系定理,此时三角形的周长为3+6+6=15;故此三角形的周长为15.22.【解答】解:方程整理得:,解得x:y=﹣1或x:y=﹣223.【解答】解:∵(x≠y),∴x、y可看作方程t2+3t﹣4=0的两根,∴x+y=﹣3,xy=﹣4,∴===﹣.24.【解答】解:(1)∵四边形ABCD是矩形,AB=10cm,BC=5cm,根据题意,AP=2t,BQ=t,∴PB=10﹣2t,∵S△PBQ=PB•QB,∴y=﹣t2+5t,(2)把y=6cm2代入解析式,可得:6=﹣t2+5t,解得:t1=2,t2=3,答:当t为2秒或3秒时,S△PBQ=6cm2;(3)∵y=﹣t2+5t=﹣(t﹣2.5)2+6.25,∴当t=2.5时,y有最大值,最大值为6.25,∴△PBQ的面积的最大值为6.25cm2,所以四边形APQC的面积此时最小,S四边形APQC=cm2,故答案为:18.75cm225.【解答】解:(1)∵9a+c=3b,∴9a﹣3b+c=0,∴x=﹣3,(2)∵,②﹣①得:a﹣b+c=0,∴x=﹣1,符合条件的方程可以为:x2﹣3x﹣4=0,(x﹣4)(x+1)=0,x1=4,x2=﹣1,(3)2x2﹣3x﹣1=0,因为a=2,c=﹣1,可知:ac<0,∴△=b2﹣4ac>0,根据一元二次方程系数a、b、c的符号以及相互之间的数量关系,有:①当a与c异号时,△>0,方程有两个不相等的实根;②设方程ax2+bx+c=0的两根x1、x2,满足x1+x2=﹣,x1x2=.26.【解答】解:(1)3月份应交水费10+5a(8﹣a)=10+40a﹣5a2元;(2)由题意得:5a(7﹣a)+10=70,解得:a=3或a=45a(5﹣a)+10=40解得:a=3或a=2,综上,规定用水量为3元;(3)既然我们的水资源比较缺乏,就要提高节水技术、防治水污染、植树造林.27.【解答】解:(1)当x﹣1≥0,即x≥1时,方程化为x2﹣x=0,即x(x﹣1)=0,2018-2019年贵州省遵义市九年级(上)第一次质检数学试卷解得:x1=0(舍去),x2=1;当x﹣1<0,即x<1时,方程化为x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x1=1(舍去),x2=﹣2,综上,方程的解为x=1或﹣2;(2)解:根据题意可知:a2﹣2018a+1=0,∴a2+1=2018a,a2﹣2017a=a﹣1,∴原式=a2﹣2017a +=a﹣1+=﹣1=2018﹣1=2017.11 / 11。

浙江省宁波市2018-2019学年第一学期九年级数学教学质量检测一参考答案及评分建议

浙江省宁波市2018-2019学年第一学期九年级数学教学质量检测一参考答案及评分建议
4
又∵MN=3,
1 ∴ m 2 2m 3 . 4
1 当 0<m<8 时,有 m2 2m 3 , 4
解得: m1 2 , m2 6 ∴点 M 的坐标为(2,6)或(6,4);
10 分
12 分
1 当 m<0 或 m>8 时,有 m2 2m 3 , 4
解得: m3 4 2 7 , m4 4 2 7 ∴点 M 的坐标为( 4 2 7 , 7 1 )或( 4 2 7 , 7 1 ). 综上所述: M 点的坐标为( 4 2 7 , 7 1 )、( 4 2 7 , 7 1 )、(2,6)或(6,4). 14 分
1 3 1 2 (2)抛物线解析式为 y x 2 x x 1 2 , 2 2 2
4分
1 将抛物线向右平移 1 个单位,向下平移 2 个单位,解析式变为 y x 2 . 2
8分
1
21. 解:(1)∵二次函数的图象与 x 轴有两个交点, ∴△=22+4m>0 ∴m>﹣1; (2)∵二次函数的图象过点 A(3,0), ∴0=﹣9+6+m ∴m=3, ∴二次函数的解析式为: y x2 2 x 3 , 令 x=0,则 y=3,∴B(0,3),
25.
40k b 300 k 10 解:(1)由题意得: ,解得: . 55k b 150 b 700
故 y 与 x 之间的函数关系式为:y=﹣10x+700, (2)由题意,得﹣10x+700≥240,解得 x≤46, 设利润为 w=(x﹣30)•y=(x﹣30)(﹣10x+700), 4分
10( x 50)2 250 ,

(完整word版)2018-2019学年度福州市九年级第一学期质量调研数学试卷

(完整word版)2018-2019学年度福州市九年级第一学期质量调研数学试卷

准考证号: 姓名:(在此卷上答题无效)2018-2019学年度福州市九年级第一学期质量调研数 学 试 卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,完卷时间120分钟,满分150分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1A C 2.气象台预报“本市明天降水概率是83%”.对此信息,下列说法正确的是 A .本市明天将有83%的时间降水B .本市明天将有83%的地区降水C .本市明天肯定下雨D .本市明天降水的可能性比较大 3.在平面直角坐标系中,点(2,6)关于原点对称的点的坐标是 A .(2-,6-) B .(2-,6)C .(6-,2)D .(6,2)4.如图,测得120BD =m ,60DC =m ,50EC =m ,则小河宽AB 的长是 A .180 m B .150 mC .144 mD .100 m5.若两个正方形的边长比是3∶2,其中较大的正方形的面积是18,则较小的正方形的面积是 A .4 B .8C .12D .166.如图,O 的半径OC 垂直于弦AB ,D 是优弧AB 上的一点(不与点A , B 重合),若50BOC ∠=︒,则ADC ∠等于 A .40° B .30° C .25° D .20° 7.下列抛物线平移后可得到抛物线2(1)y x =--的是B A DOA .2y x =-B .21y x =-C .2(1)1y x =-+D .2(1)y x =-8.已知关于x 的方程20x ax b ++=有一个非零根b ,则a b +的值是 A .2- B .1-C .0D .19.如图,矩形ABCD 的对角线BD 过原点O点C 在反比例函数31k y x+=的图象上.若点A 的坐标是(2-,2-),则k 的值是A .-1B .0C .1D .410.已知二次函数22y ax ax c =-+,当3-<x <2-时,y >0;当3<x <4时,y <0.则a 与c 满足的关系式是 A .15c a =- B .8c a =- C .3c a =- D .c a =第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 二、填空题(本题共6小题,每小题4分,共24分)11是 .12.二次函数2(2)3y x =---的最大值是 . 13.在半径为4的圆中,120°的圆心角所对的弧长是 . 14.已知2350x x +-=,则(1)(2)(3)x x x x +++的值是 .15.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池.丈量田地待耕犁,恰好三分在记.池面至周有数,每边三步无疑.内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池.测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形边长和圆的直径,那么你的计算水平就是第一了.设正方形的边长是x 步,则列出的方程是 .16.如图,等边三角形ABC 中,D 是边BC 上一点,过点C 作AD 的垂线段,垂足为点E ,连接BE ,若2AB =,则BE 的最小值是 .三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分) 解方程:2420x x ++=. 18.(本小题满分8分)已知函数2(21)y mx m x m =+++(m 为常数)的图象与x 轴只有一个公共点,求m 的值. 19.(本小题满分8分)AE小明和小武两人玩猜想数字游戏.先由小武在心中任意想一个数记为x ,再由小明猜小武刚才想的数字.把小明猜的数字记为y ,且他们想和猜的数字只能在1,2,3,4这四个数字中. (1)用列表法或画树状图法表示出他们想和猜的所有情况;(2)如果他们想和猜的数字相同,则称他们“心灵相通”,求他们“心灵相通”的概率. 20.(本小题满分8分)如图,直线AB 经过⊙O 上的点C ,并且OA OB =,CA CB =.求证:直线AB 是⊙O 的切线.21.(本小题满分8分)如图,ABC △,将ABC △绕点A 逆时针旋转120°得到ADE △,其中点B 与点D 对应,点C 与点E 对应.(1)画出ADE △;(2)求直线BC 与直线DE 相交所成的锐角的度数.22.(本小题满分10分)如图,点E 是正方形ABCD 边BC 上的一点(不与点B ,C 重合),点F 在CD边的延长线上.连接EF 交AC ,AD 于点G ,H .(1)请写出2对相似三角形(不添加任何辅助线);(2)当DF BE =时,求证:2AF AG AC =⋅.23.(本小题满分10分)如图,在平面直角坐标系中,点A (6,m )是直线13y x =与双曲线k y x=的一个交点.(1)求k 的值;(2)求点A 关于直线y x =的对称点B 的坐标,并说明点B 在双曲线上.A DF H GB A24.(本小题满分12分)如图,AB ,AC 是⊙O 的弦,过点C 作CE AB ⊥于点D ,交⊙O 于点E ,过点B 作BF AC ⊥于点F ,交CE 于点G ,连接BE . (1)求证:BE BG =;(2)过点B 作BH AB ⊥交⊙O 于点H ,若BE 的长等于半径,4BH =,AC =,求CE 的长.25.(本小题满分14分)已知二次函数2y ax bx c =++图象的对称轴为y 轴,且过点(1,2),(2,5). (1)求二次函数的解析式;(2)如图,过点E (0,2)的一次函数图象与二次函数的图象交于A ,B 两点(A 点在B 点的左侧),过点A ,B 分别作AC x ⊥轴于点C ,BD x ⊥轴于点D . ①当3CD =时,求该一次函数的解析式;②分别用1S ,2S ,3S 表示ACE △,ECD △,EDB △的面积,问是否存在实数t ,使得2213S t S S =都成立?若存在,求出t 的值;若不存在,说明理由.2018-2019学年度福州市九年级第一学期质量调研数学试题答案及评分标准评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.2.对于计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题(共10小题,每小题4分,满分40分;在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡的相应位置填涂) 1.D 2.D 3.A 4.D 5.B 6.C 7.A 8.B 9.C 10.B二、填空题(共6小题,每小题4分,满分24分,请在答题卡的相应位置作答) 11.1412.3- 13.83π14.35 15.22(3)722x x π+-= 161三、解答题(共9小题,满分86分,请在答题卡的相应位置作答) 17.(本小题满分8分)解法一:x 2+4x =-2, ················································································································· 1x 2+4x +22=-2+22, (3)(x +2)2=2. (4)x +2x =-2 (6)即x 1=-2x 2=-2. ······················································································ 8解法二:a =1,b =4,c =2. ········································································································ 1Δ=b 2-4ac =42-4×1×2=8>0. ···················································································· 3方程有两个不等的实数根x (4)= -2, (6)即x 1=-2x 2=-2. ······················································································ 8【注:学生未判断Δ,直接用求根公式计算,并获得正确可得满分.】18.(本小题满分8分)证明:①当m=0时,函数y=x是一次函数,与x轴只有一个公共点. (1)②当m≠0时,函数y=mx2+(2m+1)x+m是二次函数.∵函数图象与x轴只有一个公共点,∴关于x的方程mx2+(2m+1)x+m=0有两个相等的实数根,∴Δ=0. (3)又Δ=(2m+1)2-4×m×m (4)=4m2+4m+1-4m2=4m+1, (6)∴4m+1=0, (7)m=14-, (8)综上所述,当m=0或14-时,函数图象与x轴只有一个公共点.19.(本小题满分8分)解:(1 (4)方法二(画树状图法):根据题意,可以画出如下的树状图: (4)(2)由(1)知,所有可能出现的结果共有16种,且这些结果出现的可能性相等. (6)其中他们“心灵相通”的结果有4种. (7)∴P(心灵相通)=416=14. (8)∴他们“心灵相通”的概率是14.【注:第二问的考查在于“可能性相等”,“共有结果数”,“满足条件的结果数”,题中能体现即可得3分】20.(本小题满分8分)证明:连接O C. ····································································· 1分∵OA=OB,CA=CB, ···················································· 3分∴OC⊥AB, ·································································· 6分又AB经过⊙O半径的外端点C, ······································· 7分∴直线AB是⊙O的切线. ················································ 8分【7分点提及“OC是半径”,“点C在⊙O上”即可得分】21.(本小题满分8分)解:(1)4321小武(x)小明(y)···························· 2分则△ADE 为所画的三角形. ··································· 3分(2)延长ED ,BC 交于点F .∵△ABC 绕点A 旋转得到△ADE ,∴△ABC ≌△ADE , ·············································· 4分∴∠ACB =∠AED ,∠CAE =120°, ························· 5分 ∵∠ACB +∠ACF =180°, ∴∠AEF +∠ACF =180°. ····································· 6分 在四边形ACFE 中, ∠AEF +∠CFE +∠ACF +∠CAE =360°, ∴∠CAE +∠CFE =180°, ···················································································· 7∴∠CFE =60°,∴直线BC 与直线DE 相交所成的锐角是60°. (8)22.(本小题满分10分)解:(1)答案不唯一:△CEF ∽△DHF ,△AHG ∽△CEG ,△ABC ∽△ADC . ····························· 4(2)连接AE .∵四边形ABCD 是正方形, ∴AB =AD ,∠ABE =∠ADC =∠BCD =∠BAD =90︒, ∴∠ADF =90︒=∠ABE . ················································· 5分 ∵DF =BE ,∴△ABE ≌△ADF ,∴AE =AF ,∠BAE =∠DAF , ·········································· 7分∴∠EAF =∠EAD +∠DAF =∠EAD +∠BAE =∠BAD =90︒, ∴∠AFE =45︒. ···························································· 8分∵AC 是对角线,∴∠ACD =45︒=∠AFE , ∴ △AFG ∽△ACF , ··························································································· 9∴AF AC = AG AF , ∴AF 2=AG .A C . (10)【注:(1)中写出正确的一对相似三角形得2分,两对即得4分.】 23.(本小题满分10分)解:(1)将点A (6,m )代入y =13x ,得m =13×6=2, (1)∴A (6,2). (2)BAEDA D F HGB A E D将点A(6,2)代入y=kx ,得2=6k,解得k=12. (4)(2)解法一:过点A作关于直线y=x的对称点B,过点A作AC⊥x轴于点C,交直线y=x于点D,连接OB,AB,过点B作BE⊥y轴于点E,∴∠ACO=∠BEO=90°.∵A(6,2),∴C(6,0),AC=2,OC=6.将x=6代入y=x,得y=6,∴D(6,6),∴OC=DC=6,∴∠COD=45°, (5)∵∠COE=90°,∴∠EOD=45°=∠COD.∵点A,B关于直线y=x对称,∴OD垂直平分AB,∴OB=OA,∴∠BOD=∠AOD,∴∠EOB=∠COA, (6)∴△OAC≌△OBE(AAS), (7)∴BE=AC=2,OE=OC=6,∴B(2,6). (8)∵2×6=12=k, (9)∴点B在双曲线y=12x上. (10)解法二:过点A作关于直线y=x的对称点B,过点A作AC⊥x轴于点C,交直线y=x于点D,连接DB并延长交y轴于点E,连接AB,∴∠ACO=90°.∵A(6,2),∴C(6,0),AC=2.将x=6代入y=x,得y=6,∴D(6,6),∴OC=DC=6,∴DA=DC-AC=4,∠CDO=45°. (5)∵点A,B关于直线y=x对称,∴OD垂直平分AB,∴DB=DA=4,∴∠BDO=∠ADO=45°, (6)∴∠ADB=90°.∵∠OCD=∠COE=90°,∴四边形COED是矩形, (7)∴∠BEO=90°,OE=CD=6,ED=OC=6,∴BE⊥x轴,BE=ED-DB=2,∴B(2,6). (8)由(1)得双曲线的解析式是y=12x ,把x=2代入,得y=122=6, (9)∴点B在双曲线y=12x上. (10)【注:该B点坐标求解过程满分为4分,若只是直接由点A关于直线y=x对称得到点B的坐标是(2,6),只给该过程的结论分1分.】24.(本小题满分12分)(1)证明:∵BC=BC,∴∠BAC=∠BEC. (1)∵BF⊥AC于点F,CE⊥AB于点D,∴∠BF A=∠BDG=∠BDE=90°. (2)∴∠ABF=∠ABE, (3)∴∠BGD=∠BEC,(等角的余角相等) (4)∴BE=BG. (5)(2)解:连接OB,OE,AE,CH.∵BH⊥AB,∴∠ABH=90°=∠BDE,∴BH∥CD. ··············································· 6分∵四边形ABHC内接于⊙O,∴∠ACH+∠ABH=180°,∴∠ACH=90°=∠AFB,∴BF∥CH,∴四边形BGCH是平行四边形, (7)∴CG=BH=4.∵BE=OB=OE,∴△OBE是等边三角形,∴∠BOE=60°. (8)∵BE=BE,∴∠BAE=12∠BOE=30°.∵∠ADE=90°,∴DE=12AE. (9)设DE=x,则AE=2x,∵BE=BG,AB⊥CD,∴DG=DE=x,∴CD=x+4,在Rt△ADE中,AD. (10)在Rt△ADC中,AD2+CD=AC,即)2+(x+4)2=()2,解得x1=1,x2=-3<0(舍去),∴DG=1, (11)∴CE=CG+GD+DE=6.············································································ 12分25.(本小题满分14分)解:(1)依题意,得022425b a a b c a b c ⎧-=⎪⎪++=⎨⎪++=⎪⎩,,,解得101a b c =⎧⎪=⎨⎪=⎩,,, (3)∴二次函数的解析式为21y x =+. (4)【注:a ,b ,c 求对一个得1分,若a ,b ,c 未求全对,所列方程对两个以上(含两个)可再加1分.】(2)设过点E (0,2)的一次函数的解析式为y kx m =+(0k ≠),则20k m =⋅+, ∴m =2,即该一次函数的解析式为2y kx =+(0k ≠). (5)设A (1x ,1y ),B (2x ,2y )(1x <2x ),则C (1x ,0),D (2x将2y kx =+代入21y x =+,得221kx x +=+, 即210x kx --=,解得x =, ∴1x =2x =.①依题意,得CD =21x x -= ················································· 6∵CD =3, ∴24k +=9, ·································································································· 7解得k =±,∴该一次函数的解析式是2y =+或2y =+. (9)②依题意,得112S AC OC =⋅111111||22y x x y =⋅=-, (10)212S CD OE =⋅21211()22x x x x =-⋅=-,3221122S BD OD x y =⋅=, (11)∴222221()4S x x k =-=+,1311221212111(2)(2)224S S x y x y x x kx kx =-⋅=-++21212121[2()4]4x x k x x k x x =-+++. (12)∵1x =2x =∴12x x k +=,121x x =-,∴2131(1)[(1)24]4S S k k k =-⨯-⨯⨯-+⋅+2114k =+21(4)4k =+, (13)∴22134S S S =, (14)九年级数学 — 11 — (共 4页) 故存在实数4t =,使得2213S tS S =成立.。

2018-2019初三数学第一次月考试卷

2018-2019初三数学第一次月考试卷

2018~2019学年度第一学期第一次质量调研测试初 三 数 学 试 卷( 时间:120分钟 分值:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上........) 1.下列方程中是关于x 的一元二次方程的是••••••••••••••••••••••••••••••••••( ▲ )A .2210x x+= B.20ax bx c ++= C .(1)(2)1x x -+= D .223250x xy y --=2.下列说法正确的是••••••••••••••••••••••••••••••••••••••••••••••••••••••( ▲ )A .相等的圆心角所对的弧相等B .平分弦的直径垂直于弦C .等弧所对的圆心角相等D .三角形的外心到三角形三边的距离相等3.判断关于x 的方程20(0)ax bx c a ++=≠的一个解x 的范围是••••••••••••••••••( ▲ )A.x <3.24B.3.24<x <3.25C.3.25<x <3.26D.3.25<x <3.284.在同圆中,若则AB 与2CD 的大小关系是•••••••••••••••••••••••••••( ▲ )A .AB >2CD B .AB=2CDC . AB <2CD D .不能确定 5.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛 程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为••••( ▲ ) A.x (x +1)=28B .x (x ﹣1)=28C .x (x +1)=28D .x (x ﹣1)=28学校 班级 姓名 考试号 考场……………………………装………………………………………订………………………………线……………………………………………………6.如图,CD 是⊙O 的直径,∠EOD=84°,AE 交⊙O 于点B,且AB=OC,则∠A 的度数为••••( ▲ )A .28°B . 42°C .21°D .20°(第6题) (第8题) 7.关于x 的一元二次方程22(1)0x a x a +-+=的两个实数根互为倒数,则a 的值为( ▲ )A .1B .-1C .1或-1D .-1或28.如图, 在⊙O 中,直径AB =8,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .当点P 在BC 上移动时,则PQ 长的最大值是••••••••••••( ▲ )A .2B .4C .D .2二、填空题(本大题共有10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸的相应位置....上) 9. 写出一个以-2, 1为解的一元二次方程 ▲ .10.⊙O 的半径为R ,圆心O 到点A 的距离为d ,且R 、d 分别是方程x 2﹣4x+4=0的两根,则点A 与⊙O 的位置关系是 ▲ .11.关于x 的方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的最小整数值为 ▲ 12.已知直角三角形两直角边分别为3和4,则这个直角三角形的外接圆半径为 ▲ . 13.如图,邻边不相等.....的矩形花圃ABCD.它的一边AD 利用已有的围墙,围成另外三边的栅栏的总长是6m 若矩形的面积为42m ,则AB 的长是 ▲ m .(可利用的围墙长度超过6m )14已知关于x 的方程26+0x x k +=的两个根分别是1x 、2x ,且12113x x +=,则k 的值 ▲ . 15. 如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则所列的方程为 ▲(第13题) (第15题) (第16题) 16.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是▲ .17. 关于x 的方程2()0a x m b ++=的解是13x =-,25x =,(a ,m ,b 均为常数,a ≠0),则方程2(2)0a x m b +++=的解是 ▲ .18.对于实数p ,q ,我们用符号{}max ,p q 表示p ,q 两数中较大的数,如{}max 1,22=,若{}22max (1),9x x -=,则x = ▲ .三 、 解答题(本大题共有10小题,共72分.请在答题纸的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分12分)解方程:2(1)870x x -+= 2(2)13(1)x x -=+ 2(2)341x x -=-20. (本题满分10分)已知关于x 的方程(1)求证:无论k 取何实数,方程总有实数根.(2)若等腰三角形的一边长a=1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长.2(2)20x k x k -++=CAB21. (本题满分10分)如图,在半径为5的四分之一圆中,∠AOB=90°,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E . (1)当BC=6时,求线段OD 的长; (2)连接AB ,求DE 的长.22.(本题满分10分)如图,直线y =﹣x +5与双曲线y =k x(x >0)相交于A ,B 两点,与x 轴相交于C 点,△BOC 的面积是52 .(1)求双曲线的函数关系式.(2)若将直线y =﹣x +5向下平移1个单位,则平移后的直线与双曲线y=k x(x >0)是否有公共点?若没有请说明理由,若有请求出公共点坐标.23. (本题满分10分)今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动.现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.(1)求2015年到2017年该品牌足球单价平均每年降低的百分率; (2)选购期间发现该品牌足球在两个文体用品商店有不同的促销方案:试问去哪个商场购买足球更优惠?24.(本题满分10分)有一个面积为30平方米的长方形ABCD 的鸡场,鸡场的一边靠墙(墙长8米),墙的对面有一个1米宽的门,另三边用竹篱笆围成,篱笆总长15米,求鸡场的宽AB 是多少米?25. (本题满分10分) 阅读下面的例题: 解方程022=--m m 的过程如下:解:①当0≥m 时,原方程化为022=--m m .解得:1m =2 , 2m = -1 (舍去). ②当0<m 时,原方程化为022=-+m m .解得:1m =-2 ,2m = 1 (舍去). 综合得,原方程的解:1m =2,2m =-2. 请参照例题解方程:2330m m ---=.26. (本题满分12分)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为16元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?27. (本题满分12分)如图:在矩形ABCD 中,AB=6cm, BC=12cm,点P 从点A 出发沿AB 以1cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2cm/s 的速度向点C 移动.(1).如图1,几秒后△DPQ 的面积等于28cm 2? (2).如图1,求证:四边形PBQD 的面积是定值.(3).如图2,以Q 为圆心,PQ 为半径作⊙Q .在运动过程中,是否存在这样的t 值,使⊙Q 正好经过点D ?若存在,求出t 值;若不存在,请说明理由;2018~2019学年度第一学期第一次质量调研测试初 三 数 学 答 题 纸考试时间:120分钟 试卷分值:150分考场………………………………………ABC23.(本题10分)24.(本题10分)25.(本题10分)初三数学参考答案27.(本题12分)26.(本题12分)二、填空题9. 220x x +-= 10. 点A 在⊙O 上 11. 1 12. 2.513. 1 14. -2 15. (322)(20)570x x --= 16.150017. 13x =,25x =- 18. -2或3三、解答题19. 【解答】解方程:(每小题4分,共12分)(1)11x =,27x = ••••••••••••••••••••••••••••(4分)(2)11x =-,24x = ••••••••••••••••••••••••••••(4分)(3)11x =,213x = ••••••••••••••••••••••••••••(4分) 20. 【解答】解:(1)证明:因为224(2)0b ac k -=-≥无论k 取何实数,方程总有实数根.••••••••••••••••••(5分)(2) 由题意的1x k =,22x = ,因为1,1,2或1,2,2,当1,1,2构不成三角形,1,2,2构成三角形的周长为2+2+1=5 ••••••••••••••••••••••••••••(10分)21. 【解答】解:(1)4 •••••••••••••••••••••••••••(5分)(2)•••••••••••••••••••••••••••(10分) . 22. 【解答】解:(1) 4y x= •••••••••••••••••••••••••••(5分) (2) 有。

2018——2019 学年度第二学期九年级第一次诊断考试数学试题

2018——2019 学年度第二学期九年级第一次诊断考试数学试题

26.(12 分)如图 1,抛物线 y=﹣x2+bx+c 经过 A(-1,0),B(4,0)两点,与 y 轴相交于 点 C,连结 BC,点 P 为抛物线上一动点,过点 P 作 x 轴的垂线 l,交直线 BC 于点 G,交 x 轴于点 E. ⑴求抛物线的表达式; ⑵当 P 在位于 y 轴右边的抛物线上运动时,过点 C 作 CF⊥直线 l,F 为垂足,当点 P 运动 到何处时,以 P,C,F 为顶点的三角形与△OBC 相似?并求出此时点 P 的坐标; ⑶如图 2,当点 P 在位于直线 BC 上方的抛物线上运动时,连结 PC,PB,请问△PBC 的面 积 S 能否取得最大值?若能,请求出最大面积 S,并求出此时点 P 的坐标,若不能,请说 明理由.
密封线内不要答题
22.(8 分)某电视台的一档娱乐性节目中,在游戏 PK 环节,为了随机分选游戏双方的组员, 主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳 AA1、BB1、CC1, 只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并 拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员. ⑴甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳 AA1 的概率; ⑵请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
Hale Waihona Puke A. 1 cm 6B. 1 cm 3
C. 1 cm 2
D.1cm
10.二次函数 y = ax 2 + bx + c(a ≠ 0)的图象如图,下列结论正确( )
① abc > 0 ② 4ac − b 2 < 0 ③ 3b + 2c < 0 ④a-b+c>0
A.1 个

新课标人教版2018-2019学年初三中考一模数学试卷附答案

新课标人教版2018-2019学年初三中考一模数学试卷附答案

2018-2019学年初三中考一模数学试卷一.选择题(共10小题,满分30分,每小题3分)1.|﹣2|=()A.0B.﹣2C.2D.12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10134.已知y=0是关于y的一元二次方程(m﹣1)y2+my+4m2﹣4=0的一个根,那么m的值是()A.0B.1C.﹣1D.±15.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75°B.90°C.105°D.115°7.如图是根据某班40 名同学一周的体育锻炼情况绘制的统计图,该班40 名同学一周参加体育锻炼时间的中位数,众数分别是()A.10.5,16B.8.5,16C.8.5,8D.9,88.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()A.(﹣a,﹣2b)B.(﹣2a,﹣b)C.(﹣2a,﹣2b)D.(﹣b,﹣2a)9.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A.B.C.D.10.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD 是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A.①②③B.①③④C.①②④D.①②③④二.填空题(共6小题,满分24分,每小题4分)11.分解因式:m3﹣m=.12.将直线y=2x+4沿y轴向下平移3个单位,则得到的新直线所对应的函数表达式为.13.已知x﹣=3,则x2+=.14.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.15.如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.16.如图,抛物线y=﹣2x2+2与x轴交于点A、B,其顶点为E.把这条抛物线在x轴及其上方的部分记为C1,将C1向右平移得到C2,C2与x轴交于点B、D,C2的顶点为F,连结EF.则图中阴影部分图形的面积为.三.解答题(共3小题,满分18分,每小题6分)17.计算:||+2﹣1﹣cos60°﹣(1﹣)0.18.先化简代数式1﹣÷,并从﹣1,0,1,3中选取一个合适的代入求值.19.作图题:如图,已知点A,点B,直线l及l上一点M.(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.四.解答题(共3小题,满分21分,每小题7分)20.如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC(结果取整数).参考数据:tan48°≈l.ll,tan58°≈1.60.21.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”某中学为了解学生对四大名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,求他们恰好选中同一名著的概率.22.如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.五.解答题(共3小题,满分27分,每小题9分)23.如图,在平面直角坐标系中A点的坐标为(8,m),AB⊥x轴于点B,sin∠OAB=,反比例函数y=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)求四边形OCDB的面积.24.如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.(1)求证:△PFA∽△ABE;(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件:.25.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.参考答案一.选择题(共10小题,满分30分,每小题3分)CBBCD CDCDB11 m (m +1)(m ﹣1).12.y =2x +1.13.11.14.解:连接BD ,过点B 作BN ⊥AD 于点N ,∵将半径为4,圆心角为90°的扇形BAC 绕A 点逆时针旋转60°,∴∠BAD =60°,AB =AD ,∴△ABD 是等边三角形,∴∠ABD =60°,则∠ABN =30°,故AN =2,BN =2,S 阴影=S 扇形ADE ﹣S 弓形AD =S 扇形ABC ﹣S 弓形AD=﹣(﹣×4×)=. 15.(,)解:如图,过点A ′作A ′D ⊥x 轴与点D ;设A ′D =λ,OD =μ;∵四边形ABCO 为矩形,∴∠OAB =∠OCB =90°;四边形ABA ′D 为梯形;设AB =OC =γ,BC =AO =ρ;∵OB =,tan ∠BOC =,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.16.4.17.解:原式=2﹣+﹣﹣1=1﹣.18.解:原式=1﹣×=1﹣=﹣=﹣,由题意得,x≠﹣1,0,1,当x=3时,原式=﹣19.解:(1)作图如图1所示:(2)作图如图2所示:作图依据是:两点之间线段最短.20.解:如图作AE⊥CD交CD的延长线于E.则四边形ABCE是矩形,∴AE=BC=78,AB=CE,在Rt△ACE中,EC=AE•tan58°≈125(m)在Rt△AED中,DE=AE•tan48°,∴CD=EC﹣DE=AE•tan58°﹣AE•tan48°=78×1.6﹣78×1.11≈38(m),答:甲、乙建筑物的高度AB为125m,DC为38m.21.解:(1)∵调查的总人数为:10÷25%=40,∴1部对应的人数为40﹣2﹣10﹣8﹣6=14,∴本次调查所得数据的众数是1部,∵2+14+10=26>21,2+14<20,∴中位数为2部,(2)扇形统计图中“4部”所在扇形的圆心角为:×360°=54°;(3)条形统计图如图所示,(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作A,B,C,D,画树状图可得:共有16种等可能的结果,其中选中同一名著的有4种,故P(两人选中同一名著)==.22.证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.23.解:(1)∵A点的坐标为(8,y),AB⊥x轴,∴OB=8,∵Rt△OBA中,sin∠OAB=,∴OA=8×=10,AB==6,∵C是OA的中点,且在第一象限,∴C(4,3),∴反比例函数的解析式为y=;(2)连接BC,∵D在双曲线y=上,且D点横坐标为8,∴D(8,),即BD=,又∵C(4,3),∴S四边形OCDB =S△BOC+S△BDC=×8×3+××4=15.24.(1)证明:∵矩形ABCD,∴∠ABE=90°,AD∥BC,∴∠PAF=∠AEB,又∵PF⊥AE,∴∠PFA=90°=∠ABE,∴△PFA∽△ABE.…(2)解:分二种情况:①若△EFP∽△ABE,如图1,则∠PEF=∠EAB,∴PE∥AB,∴四边形ABEP为矩形,∴PA=EB=3,即x=3.…②若△PFE∽△ABE,则∠PEF=∠AEB,∵AD∥BC∴∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点,Rt△ABE中,AB=4,BE=3,∴AE=5,∴EF=AE=,∵△PFE∽△ABE,∴,∴,∴PE=,即x=.∴满足条件的x的值为3或.…(3)如图3,当⊙D与AE相切时,设切点为G,连接DG,∵AP=x,∴PD═DG=6﹣x,∵∠DAG=∠AEB,∠AGD=∠B=90°,∴△AGD∽△EBA,∴,∴=,x=,当⊙D过点E时,如图4,⊙D与线段有两个公共点,连接DE,此时PD=DE=5,∴AP=x=6﹣5=1,∴当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,x满足的条件:x=或0≤x<1;25.解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M (1,0),N (﹣2,﹣6),设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H (1,﹣2),设直线GH 平移后的解析式为:y =﹣2x +t ,﹣x 2﹣x +2=﹣2x +t ,x 2﹣x ﹣2+t =0,△=1﹣4(t ﹣2)=0,t =,当点H 平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y =﹣2x +t ,t =2,∴当线段GH 与抛物线有两个不同的公共点,t 的取值范围是2≤t <.。

徐州市2018-2019第二学期九年级中考数学一检试卷真题及参考答案

徐州市2018-2019第二学期九年级中考数学一检试卷真题及参考答案

2019年九年级第一次质量检测数学试题参考答案一.选择题:题号12345678答案D C C B B C D C 二.填空题:9.)1)(1(-+a a a ;10.3;11.1;12.-4;13.-4;14.35;15.22+=x y ;16.32;17.π18;18.6三.解答题:19.(1)解:原式=4213-++···········································(4分)=2·····················································(5分)(2)x x x x 222+÷+=解:原式··········································(2分)=222+∙+x x x x ·········································(4分)=x1····················································(5分)20.(1)解:322=+x x ··············································(1分)1312+=++x x ············································(2分)4)1(2=+x ···············································(3分)21±=+x ················································(4分)11=x ;32-=x ············································(5分)(其他解法参照给分)(2)解:解不等式①,得1>x ········································(2分)解不等式①,得2<x ·········································(4分)则该不等式组的解集为:21<<x ·····························(5分)21.解:设云龙湖景点用字母A 表示,龟山景点用字母B 表示,列树状图如下:······································································(5分)则:81(=三人恰好到云龙湖)P ·················································(7分)22.(1)200·····························································(2分)(2)条形统计图补全如下:·································(补全一个给1分;4分)144························································(5分)(3)一周内使用A 种支付方式购买人数约有1200403000=⨯%(人)一周内使用B 种支付方式购买人数约有900303000=⨯%(人)······(7分)23.证明:在ABCD 中BO =DO ,OA =OC∵AF =CE∴AF -OA =CE -OC即OF =OE ···············································(3分)在△DOF 与△BOE 中⎪⎩⎪⎨⎧=∠=∠=OE OF BOE DOF OB OD ∴△DOF ≅△BOE (SAS )···································(7分)∴BE =DF ···············································(8分)本题解法不唯一,其他解法参照给分.24.解:设购买甲种书柜x 个,乙种书柜y 个,依据题意得:··············(1分)⎩⎨⎧=+=+10802498032y x y x ··············································(5分)解得:⎩⎨⎧==220160y x ··············································(7分)答:购买甲种书柜160个,乙种书柜220个.·························(8分)25.解:依题知∠ACD =60°,∠BCD =45°···························(1分)在Rt △ACD 中∵tan ∠ACD=CDAD ∴320020060tan tan =⨯︒=∙∠=CD ACD AD ·············(3分)在Rt △BCD 中∵tan ∠BCD=CDBD∴20020045tan tan =⨯︒=∙∠=CD BCD BD ·············(5分)则1462003200≈-=AB ··································(6分)该车的行驶速度=6.1410146=(m/s )·····························(7分)∵14.6<16∴该车没有超过限制速度.·····································(8分)26.(1)240;390·············································(2分)(2)设PM 表达式为1501+=x k y 点M (2.5,0)在该函数图像上,则01505.21=+k 解得:601-=k 即PM 表达式为150601+-=x y (5.20≤≤x )····················(4分)设MN 表达式为bx k y +=2点M (2.5,0),N (6.5,240)在该函数图像上,则⎩⎨⎧=+=+2405.605.222b k b k 解得:⎩⎨⎧-==150602b k 即MN 表达式为150602-=x y (5.65.2≤≤x )····················(6分)(3)在函数150601+-=x y 中令601=y ,则6015060=+-x ,解得5.1=x 在函数150602-=x y 中令601=y ,则6015060=+-x ,解得5.3=x 结合题意得:5.35.1≤≤x 即行驶时间在1.5小时和3.5小时间小汽车离车站C 的路程不超过60千米.(8分)27.(1)5·······················································(2分)(2)过点P 作EH ⊥AD 垂足为点F ,则∠EHP =90°在Rt △EHP 中,∠HPE +∠PEH =90°∵PE ⊥PF∴∠FPE =90°则∠HPE +∠APF =90°∴∠PEH =∠APF在矩形ABCD 中∠A =90°即∠A =∠EHP∴△HEP ∽△APF 则34==AP HE PF EP ∵在Rt △PFE 中34tan ==∠PF EP PFE ∴∠PFE 的大小不改变.························(5分,步骤有增减酌情给分)(3)①在Rt △AFP 中,当AF =1时,PF =10312222=+=+AP AF 在Rt △PFE 中∵34tan =∠PFE ∴53cos =∠PFE 则31055310cos ==∠=PFE PF EF ∵P 、Q 分别为MF 、ME 的中点∴105=PQ ························(8分,步骤有增减酌情给分)②310····················································(10分)28.(1)2;3·························································(2分)(2)①∵二次函数表达式为322++-=x x y ∴点C 坐标为(0,3)设直线BC 表达式为3+=kx y 点B (3,0)在该函数图像上,则1-=k 即3+-=x y 设点E 横坐标为a ,则点E 坐标为()32,2++-a a a ,点F 坐标为()3,+-a a 则EF =()a a a a a 333222+-=+--++-设EF 的长为Q ,则a a Q 32+-=配方得:4923(2+--=a Q 即当93最大值为时,Q a =此时点E 坐标为),(41523△EFR 周长为4129)(+························(5分,步骤有增减酌情给分)②169653+····································(7分)(3)如图,过点E 作EK ⊥y 轴,垂足为点K ,过点B 作BL 垂直于x 轴,交EK 于点L ∵△ERC ∽△BRE∴∠CEB =90°∵∠EKC =∠BLE =90°∴易得△EKC ∽△BLE 则KC EK =设点E 横坐标为a ,则点E 坐标为)32(2++-a a a ,结合其所在象限可确定:a a KC a a BL a HL a EK 232322+-=++-=-==,,,即a a a a a a -+-=++-323222则()a a a a a a -∙-=+∙-23113化简得:a a -=+211则012=--a a 解得:2511+=a ,(不合题意,舍去)2512-=a 经检验以51+=a ,为原方程的解则点E 坐标为)255251(++,以上步骤均可逆.···························(10分,答案不唯一,根据答题情况给分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年度广福中学初三数学第一次质检试题
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑
1.四个实数0、、﹣3.14、2中,最小的数是()
A.0B.C.﹣3.14D.2
2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()
A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108
3.如图,由5个相同正方体组合而成的几何体,它的主视图是()
A.B.C.D.
4.数据1、5、7、4、8的中位数是()
A.4B.5C.6D.7
5.下列所述图形中,是轴对称图形但不是中心对称图形的是()
A.圆B.菱形C.平行四边形D.等腰三角形
6.不等式3x﹣1≥x+3的解集是()
A.x≤4B.x≥4 C.x≤2 D.x≥2
7.如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()
A.30°B.40°C.50° D.60°
8.顺次连结对角线相等的四边形的四边中点所得图形是()
A.正方形 B.矩形 C.菱形 D.以上都不对
9.已知直角三角形的两条直角边分别是3和4,则它斜边上的中线长为()
A .2.4
B .2.5
C .3
D .5
10.如图,在平面直角坐标系中,点A 1,A 2,A 3…都在x 轴上,点B 1,B 2,B 3…都
在直线x y =上,△OA 1B 1,△B 1A 1A 2,△B 2B 1A 2,△B 2A 2A 3,△B 3B 2A 3…都是等腰直角
三角形,且OA 1=1,则点B 2015的坐标是( )
A .(22014,22014)
B .(22015,22015)
C .(22014,22015)
D .(22015,22014)

二、填空题(共6小题,每小题4分,满分24分)
11.方程21x 2x =+的解是 . 12.分解因式:x 2﹣2x +1= .
13.如果菱形的两条对角线的长为6和8,那么此菱形的面积等于
此菱形的周长等于 .
14.已知+|b ﹣1|=0,则a +1= .
15如图,要使平行四边形ABCD 变为矩形,应添加的条件是 .(只填一个)
16. 如图,已知△ABC 是腰长为1的等腰直角三形,以Rt △ABC 的斜边AC 为直角边,
画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,
依此类推,则第2018个等腰直角三角形的斜边长是 .
17.解下列方程(每小题4分,共8分)
(1)x 2-4x+1=0(用配方法) (2)2x 2+5x -1=0
三、解答题(一)(本大题 3 小题,每小题 6 分,共 18 分)
18.(6分)计算:|﹣2|﹣20180+()-1
19.(6分)先化简,再求值:•,其中a=.
20.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,
(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF,求∠DBF的度数.
四、解答题(二)(本大题2 小题,每小题7 分,共14 分)
21. 某公司购买了一批A、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9 元,已知该公司用3120 元购买 A 型芯片的条数与用4200 元购买B 型芯片的条数相等.
(1)求该公司购买的A、B 型芯片的单价各是多少元?
(2)若两种芯片共购买了200 条,且购买的总费用为6280 元,求购买了多少条A 型芯片?
22.安全教育,警钟长鸣”,为此,某校随机抽取了九年级(1)班的学生对安全知识的了解情况进行了一次调查统计.图①和图②是通过数据收集后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)九年级(1
)班共有名学生;
(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是;(3)把条形统计图补充完整;
(4)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有

23(8分).如图,在一块长为8m,宽4m的矩形地面上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分栽种花草,要使剩余部分的面积为21m2,道路宽应为多少?
4
m
第23题
8m
24.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)DF∥AB,DF=1
2 AB
(3)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.
25.(9分)如图10,正方形ABCD边长为1,G为CD边上的一个动点(点G与C、D不重合),以CG为一边向正方形ABCD外作正方形GCEF,连接DE交BG 的延长线于点H.
(1)求证:①△BCG≌△DCE;②B H⊥DE.
(2)当点G运动到什么位置时,BH垂直平分DE?请说明理由.
2018-2019学年度广福中学初三数学第一次质检试题
19.解:
20.解:
21.解:
22解:(1)九年级(1)班共有名学生;
(2)在扇形统计图中,对安全知识的了解情况为“较差”部分所对应的圆心角的度数是;(3)把条形统计图补充完整;
(4)若全校有1500名学生,估计对安全知识的了解情况为“较差”、“一般”的学生共有名
23.解:
24.解:
25.解
21、解:。

相关文档
最新文档