两种有机磷阻燃剂在真丝织物上的应用比较

合集下载

新型磷系阻燃剂对真丝的微波接枝

新型磷系阻燃剂对真丝的微波接枝

B/ 5454
8 5 纺 织 织物 燃
烧性能 测定 氧 指数 法 标 准, 用氧指 数测 定仪 测定 垂 直燃 烧测 试 按
B / 5455 8 5 纺织 织 物 阻 燃
3,
性能 测 定 垂 直法 标准 , 用 垂直 法 织 物 阻 燃性 能 测 试 � 单 体浓度 6 对织 物重 , 全 文同 ), 对溶 液重 , 全 文同 ) 1% , � � � � 0% ( (
研究与 技术
新型磷系阻燃剂对真丝的微波接枝
于丹 琦 , 陈国 强
� (苏州大学 材料工程学院 江苏 苏州 215012)
摘要 �采用三氯氧磷﹑ � 甲基丙烯酸羟乙酯和甲醇为原料合成了一种新型磷系阻燃剂 通过微波辐照的方法对真丝进行阻 燃 � 改性 � 改性最佳工艺为阻燃剂浓度 � � � (对织物重 � ) K PS ( 对溶液重 ) � 100 � % � � 5% H 值 3 浴比 1 �60 3 3 % 微波 辐照 5 关键词 � 桑蚕丝 阻燃剂 合成 微波 接枝 中图分类号 �TS 19 5. 24 文献标识码 �A 文章编号 �100 1 -7 0 03 (2 00 8) 08-0 02 4 -0 4
, 浴比 1 100 � � � � 5 仪测定
白度及泛黄指数测试 按 品 白 度的 仪器 评定 方法 ,用 织 物力学性能测试 按
B / 8 425
19 87 纺织
图�
微波功率对接枝率的影响
- Ⅲ 白度 仪测定 B/ 39 23. 1 19 9 7 纺织
1
1. 1
实验部分
主 要原 料 脱 胶 真 丝 电力 纺 (市 售 ) 无 水 乙醚 三 氯 氧 磷 甲
基丙 烯 酸 羟乙 酯 三 乙 胺 甲 醇 石 油 醚 乙 酸 乙 酯 过 硫酸钾 司 本-8 0 吐温-8 0 甲酸 氢 氧化 钠 丙 酮

磷系阻燃剂TR-1在纯涤纶织物上的应用

磷系阻燃剂TR-1在纯涤纶织物上的应用
一 皂洗 ( 0 ×1 m n 一 水 洗一烘 干 。 4℃ 5 i)
2 结 果 与 讨 论
2 1 阻燃剂 T . R一1轧 烘工 艺条 件的确 定
1 7 tx 6 de 涤 纶梭 织物 6 de ×1 7 t x 1 1 2 染 化剂 ..
收 稿 日期 :2 0 0 6—0 3—1 7
Che c lFie mia b r& Te tl c oo y x ie Te hn lg
选 用 阻燃 剂 10g L, 0 的氢 氧化 钠 6 / 5 / 1 % 0 g
L 树 脂 4 / , 0 g L作 为 整 理 液 。 以 表 表 ,3 )
阻燃 剂 T —l 广 州 市 纺 织 工 业 研 究 所 ) R ( , 6 MD树脂 , 透剂 , 氧化钠 , 准皂粉 。 渗 氢 标 1 13 实 验设 备 . . M 5 5 型 小轧 车 ,P S一3 u0 t H C型 精 密 p H计 , B2I P 2S型精 密 电子天 平 , H P G一 0 6 9 7 A型 恒温鼓 风干燥 箱 , S—l型焙 烘机 。 F一 0 ML S 3 0型 电脑测
平, 按表 2的排 列顺 序 做 正交 实 验 ,测定 其 织 物 的阻燃 效果 来 确 定 此 阻燃 剂 的轧一 烘 工 艺 条件 。
实 验结果 见表 3 。
表1 ( ’ 正 交 实 验 因 素 水 平 3)
表 3 正 交实 验 结 果 分 析 表
正交 实验 结 果 分 析 : 合 考 虑 选用 A ,B , 综 , c 作 为基 本 参 数 ,即此 阻燃 剂 轧一烘 工 艺 条 件 为轧 余 率 9 % 、焙 烘 温 度 10I、 焙 烘 时 间 0 9c :
1 % 的氢 氧化钠 0 6 MD树脂

磷酸酯织物阻燃剂应用进展

磷酸酯织物阻燃剂应用进展

磷酸酯织物阻燃剂应用进展马永明,魏文静1 ,张永刚,刘晓晨,蔡永源1.渤海职业技术学校2.天津市合成材料工业研究所摘要:本文阐述磷酸酯类织物阻燃剂品种、性能、阻燃机理及应用进展图书分类号:中文编码:Application Progress of Phosphoric Ester Textile Fabric Flame Retardant MA Yong ming WEI Wen jing ZHANG yong gangLIU xiao chen CAI Yong yuan1.Tianjin bo hai occupation technology institute;2.Tianjin Synthetic Material Research Institute, Tianjin 300220Abstract: Variety, Performance mechanism and application progress of textile flame retardant were reviewed in the paper.Keyword: Flame retardant, Phosphoric Ester, Textile Fabric, Application, progress0.引言改革开放以来,随着我国国民经济飞速发展和人您生活水平的不断提高,各大城市高楼林立,宾馆星级酒店不断增加,许多公共场所内部装饰品:窗帘、床垫、被褥、枕套和沙发等易燃织物由于没经过阻燃处理而发生火灾的情况不少,给人们带来巨大损失。

为其引起了有关部门高度重视。

世界各发达国家早在上世纪60年代,就已经陆续制定了有关阻燃剂标准和消防法。

我国也于1995年10月1日正式由建设部和公安部消防局发布了建筑、内部装修设计防火规范(GB——50222)等一系列法规。

另外航空航天、飞机、汽车、公共建筑、彩电及电子元器件等也都制订了详细的阻燃材料和内部装饰织物的详细阻燃要求。

含羟基有机膦阻燃剂HFPO在真丝织物上的应用

含羟基有机膦阻燃剂HFPO在真丝织物上的应用
释放量大大降低.
关 键 词 : 真丝;阻燃整理;有 机磷阻燃剂;B C TA
中图分类号:T 34 48 文献标识码:B Q 1. 2

文章编号:10— 3( 1) —02 0 04 0 9 00 4 0 — 4 2 0 4 4
Appl c i i at on of hydr oxyl f - unc i t ona o g l r anophos phor f a e us l m r t r nt e a da age HFPO on s l nt ik f abr c i
Ia e rt fte t d sl a r r t de T e rs l h we h tt e HF O/ T e s a e o rae i fb i we e s u id. h e ut s o d ta h P B CA厂 E y t m ra e i k c s r A s s e te td sl k
纺织 品是 引起 火灾 的重要原 因, 界 各 国竞 相 制 世 定法 规 , 求某 些纺 织 品具有 规 定 的阻燃 性 能才 能进 要 人 市场 , 则被 视 为 违法 . 年来 , 纺 织 品 已成 为 否 近 阻燃
发含 磷 乙烯 基 单 体 , 过 与 真 丝 接 枝共 聚 , 备 出 阻 通 制 燃 真 丝纱 线及 阻燃 真 丝织 物, 到 的真丝 织物 氧 指数 得 达 3 %以上 . 美 国佐治亚 大学 C R E 究室 0 HA L SQY研 应用 2 D树 ] (MD U及 三 羟 甲基 三 聚胺 (MM) ] D HE ) # T 分 别 作 为交 联剂 , 含 羟基 有机 膦 阻燃 剂 H P ( 量 将 F O含磷 为 2 .%~ 05 结构 式如 下) 02 2 .%, 应用 于纯 棉 、 棉混 纺 锦/ ( 国军服 面料 ) 织 物 , 得 了较 好 的阻 燃效 果 , 美 取 整理

有机磷阻燃剂在羊毛纺织品中的应用和发展

有机磷阻燃剂在羊毛纺织品中的应用和发展

有机磷阻燃剂在羊毛纺织品中的应用和发展金崇业;贾丽霞【摘要】随着羊毛纺织品需求量的增加和阻燃要求的提高,羊毛织物的阻燃整理也越来越受到重视。

有机磷阻燃剂以其独特的阻燃优势在国内外的研究得到了极大的关注。

本文较系统地综述了磷酸酯类阻燃剂、膦酸酯类阻燃剂和磷杂环类阻燃剂的研究进展,重点介绍了某些新型阻燃剂的合成方法和阻燃应用性能,在此基础上,提出了有机磷阻燃剂在羊毛纺织品中的应用并对未来发展方向进行了展望。

%The flame retardant for wool fabric, in particular the utilization and development of organic phosphorus lfame retardant, has been now attracted great attention all over the world. The research progress of phosphate ester flame retardant, phosphonote ester flame retardant and phosphorus heterocycles flame retardant were systematically reviewed in this article, and the synthesis methods and flame retardant characteristicsof some novel flame retardants were introduced. Furthermore, their application study and development trend were also reviewed and forecasted respectively.【期刊名称】《纺织导报》【年(卷),期】2015(000)004【总页数】4页(P32-35)【关键词】羊毛织物;有机磷;阻燃剂;阻燃整理【作者】金崇业;贾丽霞【作者单位】新疆大学纺织与服装学院;新疆大学纺织与服装学院【正文语种】中文【中图分类】TS190.2羊毛、蚕丝及其他动物毛纤维大分子中含有N和S等阻燃元素,虽然蛋白质纤维相对于纤维素纤维来说不易燃烧,但其燃烧后会产生毒性较大的氢氰酸气体。

含磷反应型阻燃剂阻燃PUF的应用进展

含磷反应型阻燃剂阻燃PUF的应用进展

含磷反应型阻燃剂阻燃PUF的应用进展徐洋;赵新叶;王俊龙;职慧珍;杨锦飞;魏少华【摘要】综述了不同结构的含磷反应型阻燃剂特点以及阻燃机理.不同结构的含磷阻燃剂的阻燃机理有所区别,并且对聚氨酯泡沫(PUF)阻燃性能及力学性能的影响也有差异.概述了不同结构含磷反应型阻燃剂在PUF中的应用进展.最后展望了PUF 阻燃改性的未来方向:高效低毒、相容性好、价廉的含磷反应型阻燃剂是未来PUF 阻燃领域的发展方向.【期刊名称】《合成树脂及塑料》【年(卷),期】2019(036)004【总页数】8页(P77-84)【关键词】聚氨酯;反应型阻燃剂;无卤;阻燃性能;研究进展【作者】徐洋;赵新叶;王俊龙;职慧珍;杨锦飞;魏少华【作者单位】南京师范大学化学与材料科学学院,江苏省南京市210023;南京师范大学化学与材料科学学院,江苏省南京市210023;南京师范大学化学与材料科学学院,江苏省南京市210023;南京师范大学化学与材料科学学院,江苏省南京市210023;南京师范大学化学与材料科学学院,江苏省南京市210023;南京师范大学化学与材料科学学院,江苏省南京市210023【正文语种】中文【中图分类】TQ320.66聚氨酯(PU)是由多元醇(如聚酯多元醇、聚醚多元醇)与异氰酸酯反应合成的含有很多重复氨基甲酸酯基团的一类高分子化合物[1-2]。

聚氨酯泡沫(PUF)是PU制品中的主要产品,PUF具有密度低、压缩强度高、绝缘性好,以及耐化学药品腐蚀性能和降噪性能优良等特点,在许多领域具有传统材料无法比拟的优势。

但PUF结构中含有可燃的碳氢分子链段,泡沫塑料密度小、比表面积大,容易燃烧,其极限氧指数(LOI)为16%~18%,属于易燃材料,燃烧时会释放出CO,HCN等有毒气体以及烟雾,又由于这种材料具有多孔状的特点,容易发生无火焰的缓慢燃烧现象,对人体健康以及环境安全带来极大的负面影响,限制了PUF的应用范围[3-4]。

乙烯基含磷阻燃剂对真丝织物的接枝阻燃整理工艺研究

乙烯基含磷阻燃剂对真丝织物的接枝阻燃整理工艺研究
Fl a me Re t a r d a nt
HUANG Qi n g .SHEN Yi f e n g 一 .W ANG Zi y i n g
( a . K e y L a b o r a t o r y o f A d v a n c e d T e x t i l e Ma t e r i a l s a n d M a n u f a c t u r i n g T e c h n o l o g y , Mi n i s t y r o f E d u c a t i o n ; b . E n g i n e e r i n g R e s e a r c h C e n t e r f o r E c o — D y e i n g& F i n i s h i n g o f T e x t i l e s ,Mi n i s t y r o f E d u c a t i o n , Z h e j i a n g S c i — T e c h U n i v e r s i t y , H a n g z h o u 3 1 0 0 1 8 , C h i n a )
r a d i c a l po l y me r i z a t i o n . Fl a me r e t a r d a nc y pr o g r e s s f o r g r a f t e d s i l k f a br i c wi t h v i n y l p h o s ph o r u s la f me r e t a r d a n t wa s s t u di e d.Th e r e s ul t s s h o w t ha t :h o me — ma de v i n y l p ho s p h o r us la f me r e t a r d a n t P 2 c o u l d be u s e d or f la f me r e t a r d a n c y p r o g r e s s or f g r a te f d s i l k f a b r i c.Th e o p t i ma l la f me r e t a r d a n c y pr o g r e s s wa s:ma s s f r a c t i o n o f la f me r e t a r d a n t P 2:a bo u t 8 0% ;APS 2% ;pH 4. 5;t e mp e r a t u r e 8 5 o C ;t i me 1 h a n d Twe e n 一 8 0 0. 2 g /L. W h e n t h e g r a ti f n g r a t i o wa s u p t o 2 0% ,LOI v a l u e o f t he s i l k f a b r i c c o u l d r e a c h 3 0% a n d t h e s i l k f a b r i c h a d n o p he n o me n a o f a f t e r — la f me a n d a te f r — g l o w ;a te f r t h e t r e a t me n t ,o t h e r p r o p e r t i e s o f t h e s i l k we r e s t i l l g o o d. Be s i de s,t h e la f me — r e t a r d a nt s i l k f a b r i c c o u l d

阻燃剂在织物中的应用

阻燃剂在织物中的应用

阻燃剂在织物中的应用1、棉织物的阻燃整理棉织物的阻燃整理发展很快,目前国内比较成熟,阻燃剂基本可以工业化生产纯棉耐久性阻燃整理,大体有下列三种方法﹕A﹒Proban/氨熏工艺,Proban法是英国Wilson公司首先用于工业化生产,传统的Proban法是阻燃剂THPC(四羟甲基氯化氨)浸轧后焙烘工艺,改良的方法是Proban/氨熏工艺,工艺流程为﹕浸轧阻燃整理→烘干→氨熏→氧化→水洗→烘干。

国内已有北京光华、江阴印染厂、鞍山棉纺印染厂等引进国外的助剂和设备进行生产。

这是目前公认的阻燃效果好、织物降强小、手感影响少的工艺。

但由于设备问题限制了其推广。

B﹒PyrovatexCP整理工艺。

国内已有上海农药厂、常州化工研究所、天津合材所、华东理工大学、青岛纺织服装学院等单位生产该助剂。

产品的阻燃性能较好,耐久性好,可耐家庭洗涤50次甚至200次以上,手感良好,但强力降低稍大。

国内使用该类阻燃剂的厂家有二、三十家。

C﹒纯棉暂时性、半耐久性阻燃整理——电热毯、墙布、沙发布等织物的阻燃耐洗次数要求不是很高,这类产品做暂时性或半耐久性阻燃整理即可。

即能耐1~15次温水洗涤,但不耐皂洗。

主要有硼砂~硼酸工艺、磷酸氢二铵工艺、磷胺工艺、双氰胺工艺等。

上述工艺应用在纯棉织物上工业化生产的不多。

青岛大学纺织服装学院的SFR-203属半耐久性阻燃整理剂。

2、毛织物的阻燃整理羊毛具有较高的回潮率和含氨量,故有较好的天然阻燃性,但若要求更高的标准,则需进行阻燃整理。

最早的羊毛阻燃整理是采用硼砂、硼酸溶液浸渍法,产品用于飞机上的装饰用布。

这种方法阻燃效果良好,但不耐水洗。

60年代后采用THPC处理,耐洗性较好,但工序繁复,手感粗糙,失去了毛织物的品格。

国际羊毛局研究的方法是采用钛、锆和羟基酸的络合物对羊毛织物整理,获得满意的阻燃效果,且不影响羊毛的手感,故得到普遍采用。

主要有钛、锆、钨等金属络合整理剂。

80年代后期以来,国内有几个单位研究开发毛用阻燃剂及整理工艺,获得了满意的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Comparison of two Organophosphorus Flame Retardant for Silk FabricsGUAN Jinping CHEN GuoqiangSchool of Material Engineering, Soochow University, Suzhou (215021)E-mail:helengjp@AbstractFlame resistance finishing of silk fabrics is still challenging.N-Methylol dimethylphosphonopropionamide(MDPA),known as “Pyrovatex CP” commercially, was applied onto silk fabrics in our previous research, but it has some shortcomings ,such as causing yellowish, degradation of breaking strength etc. In this research, we applied a self-prepared novel reactive organophosphorus flame retardant named diethyl-2-(methacryloyloxyethyl) phosphate (DEMEP) onto silk fabrics. We explored the process of the two flame retardants onto silk fabrics. After flame resistance treatment, we compared the flame resistance effect of the two retardants by LOI, char length, laundry cycles. The toxicity was investigated by measuring the release of formaldehyde. We also explored the physical and chemical properties of the two flame resistance samples, such as whiteness, strength, permeability and hygroscopy.Key words: Silk; Flame resistance; Flame retardant; Pyrovatex CPINTRODUCTIONAccording to fire statistics, about 50 % of fires are caused by textiles in the world [1]. Silk fabric is widely used as pajamas, domestic decoration materials for its luster, soft handle, wearing comfort and aesthetic appearance. So it is vital to be endowed flame resistance property. Silk has low flammability with LOI value about 23 %, which can be attributed to itshigh nitrogen content (about 15~18%) [2]. But it still needs added flame resistance finish tofulfill some commercial requirements.Flame resistance finishing on silk fabrics can be traced back to 200 years ago, when silk fabrics were immersed in the mixture of borax and boric acid in solution. But this mixture iseasily removed by water [3]. In the mid 1980s W.B.Achwal et al. reported that silk fabrics treated with a urea phosphoric acid salt, U4P, by a pad-dry process had high flame resistancewith an LOI value higher than 28% and the flame resistance finish was fast to dry cleaningwhile not fast to washing [4].To this day, there is still no suitable flame retardant for silk fabrics. The well-known flame retardant N-Methylol dimethylphosphonopropionamide(MDPA),known as “Pyrovatex CP”, is effective for cotton,in our previous research , we applied it onto silk fabrics and gained good flame resistance property but at the loss of some physical properties of silk fabrics, such as whiteness ,strengthetc. Recently, we prepared a new reactive flame retardant for silk fabrics named diethyl-2-(methacryloyloxyethyl) phosphate (DEMEP). In this paper, we fully compared the process method and effect on physical, chemical properties of silk fabrics of the two flame retardants.EXPERIMENTALMaterialsDegummed and bleached silk fabric (plain weave, 36g/m2) was kindly supplied by Zhejiang Haoyunlai Group. N-Methylol dimethylphosphonopropionamide(MDPA,PyrovatexCP)and the cross-linking agent hexakis (methoxymethyl) melamine (HMM) were kindly provided by Ciba Specialty Chemicals (China) Ltd. Shanghai Branch, diethyl-2-(methacryloyloxyethyl)phosphate (DEMEP) was prepared in our laboratory and its purity was 95%. Other reagents were reagent grade commercial products.Synthesis of vinyl phosphate DEMEPThe mixture of 13.1 g (0.1 mol) of 2-hydroxyethyl methacrylate (HEMA) and 10.1 g (0.1 mol) triethylamine was added dropwise to 15.3 g (0.1 mol) phosphorus oxychloride in 150 ml dichloromethane at 0 °C, under nitrogen. After the addition, the mixture of 12.0 g (0.25 mol) absolute ethyl alcohol and 20.2 g(0.2 mol) triethylamine was added dropwise at the same condition as above. After completion of the addition, keep stirring at 0~5 °C for 1 h, then warming the mixture to room temperature and stirred overnight. The precipitated triethylamine hydrochloride was removed by vaccum filter.The combined filtrates were washed with an aqueous solution of 2 % NaOH, the solvent was evaporated and the residue was distilled under vacuum after adding a small amount of hydroquinone. The product is pale yellow viscous oil named diethyl-2-(methacryloyloxyethyl) phosphate (DEMEP), and the yield is 56 %, its boiling point is 104 °C (0.5 mmHg).The molecular scheme of DEMEP is as follows:C O1H NMR(CDCl,ppm)δ 6.17(s, 1H, =CH),δ 5.61(s, 1H, =CH),34.37-4.11(m,8H,-OCH2),1.96(s,3H,=C-CH3),1.37(t,6H,-CH3).13C NMR(1H,CDCl3,ppm)δ 170.2(-C=O),139.5(H2C=C-),128.7(=CH2),68.2-66.7(OCH2),18.8-16.9(CH3)IR(cm-1)1721(C=O),1637(C=C),1297(P=O),1032 and 988(P-O-C)Fabric treatmentMDPA treated process:Fabric samples (30×20cm) were dipped in finishing solution (containing 250g/l of MDPA,50 g/l of HMM, 7.5 g/l of phosphoric acid (85%) and 0.1 g/l of JFC)for one minute and thenpadded on a two roll padding mangle at a fixed pressure; wet pickup was about 95% after twodips, two nips. Then the fabric was dried in a heat-setting stenter at 90 °C for 3 minutes, andthen cured at 170 °C for 3 minutes. Then, the cured silk fabrics were soaked in water (liquorratio 1:50) containing neutral soap flakes 2g/L at 60 °C for 20min,then rinsed with tap waterand then dried at 105 °C for 2h. Samples were placed in a desiccator over silica gel before measurements. Weight gains were calculated with the following formula: Weight gain (%)=(w2-w1)/w1×100,Where w2 and w1 are the weight of treated silk fabric and original fabric respectively.DEMEP treated process:Silk fibers were immersed in a finish solution containing 100 % DEMEP (on the weight offibers [o.w.f.]), 0.9 % potassium persulfate (on the weight of monomer [o.w.m.]), 2% emulsifier(o.w.m., the emulsifier is the mixture of Tween 80 and Span 80 mixed at weightratio 64:36),The reaction pH value was adjusted with formic acid or sodium hydroxide at 3;The material-liquor ratio was 1︰30.The reaction system was heated from room temperatureto 85 °C and maintained in vibrational water for 45 min. At the end of the reaction, silk fiberwas washed with water (containing 0.5 g/l non-ionic surfactant OP) at 60 °C for 30 min, andthen rinsed with cold water. After that removed ungrafted flame retardant with a propersolvent and then rinsed with tap water and dried at 105 °C for 2h.Samples were placed in a desiccator over silica gel before measurements.Grafting yield was calculated as follows:Grafting yield (%) = (w2-w1)/w1×100, where w2 is the oven-dried weight of grafted silk fibers and w1 is the oven-dried weight of the original silk fibers.MeasurementsWhiteness and Yellowness Index was measured by WSD III whiteness instrument. The result was the average of 8 measurements.Char length was determined by the GB/T 5455-1997 (equivalent to ISO 6940:1984) Textiles-Burning behavior-Vertical method [5].Tensile properties were measured under standard conditions on an YG026A Electrical Fabric Strength Tester. The values presented were the average of 10 tests.The Limiting oxygen index (LOI) was assessed with the HC-2 LOI instrument, according to the GB/T5454-1997 (equivalent to ISO 4589-2 or to ASTM D 2863) Textiles-Burning behavior-Oxygen Index [5].Laundry cycles are according to the GB/T 17596-1998 (equivalent to ISO 10528-1984) Textiles-Commercial Laundering Procedure for Textile Fabrics [5].Permeability was determined by the GB/T 5453-1997 (equivalent to ISO 9237:1995) Textiles-Determination of the permeability of fabrics to air [5].The instrument is YG (B) 461D digital fabric permeability tester.Formaldehyde content on fabrics is determined by GB/T 2912.1-1998(equivalent to ISO/FDIS 14184-1:1997) Textiles-Determination of formaldehyde-Part 1: Free and hydrolyzed formaldehyde (Water extraction method).Hygroscopy of fabrics is determined by FZ/T 01071-1999 Textiles-Capillary effect test method [5].RESULTS AND DISCUSSIONComparison of MDPA and DEMEP process methodTable I Structure of MDPA and DEMEPFlame retardant Structure formulaMolecularweightPhosphoruscontent /%FunctionalgroupWatersolubilityMDPA211 14.69 YesDEMEP 266 11.65 No From Table I we can see that MDPA has higher phosphorus than DEMEP. And the functional group of MDPA is hydroxyl, which has some reactivity with hydroxyl or amino group on tyrosine or lysine of the silk fibers, but this reactivity is not enough so itmust add crosslinking agent HMM to improve its fixation amount onto silk fabrics[6].While the functional group of DEMEP is vinyl. As we all know, vinyl monomers arevery effective for silk fabrics to produce many added function by graft copolymerizationtechnique, such as wrinkle resistance, water repellency, anti bacteria etc[7-9].In most cases , MDPA is applied onto fabrics by pad-dry-cure technique accompanied by HMM,so dyeing and finishing are not in the same bath. But DEMEP can be applied either in exhausting method or in pad-dry-cure method with crosslinking agent. It can be appliedonto fabrics by plasma or radiation initiation technique [10].MDPA is water soluble, whileDEMEP is not soluble in water. So before applying DEMEP onto fabrics, it must me pre-emulsified.Flammability properties of treated silk fabricsTable II Flammability properties of grafted silk fabrics Flammability Properties Samples Weight gain or graft yield /% Char Length /cm LOI/%Control sample 0 BEL 23.0MDPA treated sample 30.41 6.2 31.1MDPA treated sample after 15 laundry cycles - 11.129.4MDPA treated sample after 50 laundry cycles - 14.1 26.7DEMEP treated sample 40.5 3.85 30.6DEMEP treated sample after 15 laundry cycles - 5.529.2DEMEP treated sample after 50 laundry cycles - BEL 23.6Note: LOI= Limiting Oxygen Index; BEL=Burns Entire LengthTable II shows that, after adding a flame resistance finish, silk fabrics have a satisfactory LOI value of about 30%, which is much more than that of the control silk fabric (23.0%). The char length can fulfill the flame resistance requirement of char length less than 200 mm, as specified by China National Standard GB 17951-1998, “Woven flame retardant fabrics” [5]. DEMEP treated silk fabrics present better flame resistance than MDPA treated silk fabrics because DEMEP treated silk fabrics have higher LOI with 30.6% and lower char length with3.85 cm than MDPA treated silk fabrics with LOI 31.1% and char length 6.2 cm. After 15 laundry cycles, DEMEP treated silk fabrics still shows better flame resistance than MDPA treated silk fabrics. But when experienced 50 laundry cycles, MEPA treated silk fabrics still have some flame resistance, but DEMEP treated silk fabrics are almost without any flame resistance. That is, MDPA treated silk fabrics have much excellent flame resistance durability than DEMEP treated silk fabrics.Comparison of phosphorus content on silk fabricsa b cFig.1 Element content distribution on silk fabrics by SEM-EDS(a is control sample; b is MDPA treated sample; c is DEMEP treated sample)Table III Element content of silk fabricsSamples Element content / Wt /%Control sample C 64.49;N 13.24;O 22.27MDPA treated sample C 56.49;N 17.44;O 25.21;P 0.86DEMEP treated sample C 58.55;N 10.09;O 27.73;P 3.35;Cl 0.27Phosphorus is an effective component in flame resistance. Only phosphorus attain a certain amount can textiles have flame resistance [11] Fig.1 shows that the element content distribution on silk fabrics and Table III listed the specific data. Table III shows that on control sample, there is no phosphorus, so it is easy to burn.The DEMEP treated samples have higher phosphorus content 3.35% than MDPA treated sample with phosphorus content 0.86%, so the former exhibits much excellent flame resistance than the latter.Physical properties of treated silk fabricsTable IV Physical properties of treated silk fabricsElongation at Break/ % Samples Whiteness index Yellowing index Tensile strength/N16.92 Control sample 88.64 10.6 352.2 MDPA treated sample 78.56 30.37 310.0 11.58DEMEP treated sample 82.63 20.68 319.5 18.40Table IV indicated that after flame resistance finish, silk fabrics become yellow which is shown by the decrease of whiteness index and the increase of yellowing index. And the treatment will also cause the loss of tensile strength, which may be the result of the hydrolysis of some sensitive peptide bonds caused by acid in wet and thermal state [12], but this loss is negligible. The elongation at break of MDPA treated silk fabrics is lower than that of control sample, which is because after treated with MDPA, silk fabrics become crisp and easily broken. While the DEMEP treated samples have higher elongation at break 18.40 % than that of control sample 16.92 %. That is , after treated with DEMEP, silk fabrics have better elasticity, so it is hard to break, which should be mainly attributed to the changes of the inner orientation of silk fibers caused by flame retardant. DEMEP treated silk fabrics had lower average orientation than that of control sample, the polymer grown during the grafting process filled the space available within the fiber matrix, which disturbs the arrangement of the fibroin chains in the amorphous regions and partially hindering their mobility when subjected to tension [13]. Effect on comfort characteristics of silk fabricsTable V Permeability, hygroscopy and toxicity of silk fabricsCapillary effect / cmSamples Permeability5 min/mm/s 10 min20 min 30 minControl sample 1027 4.6 6.3 7.3 7.4 MDPA treated sample 1599 3.3 3.4 5.4 6.2DEMEP treated sample 685 5.1 7.0 7.6 8.3 Wear comfort, is an outstanding characteristic of silk fabrics,esp permeability ,hygroscopy and health care.Table V shows that after treated with MDPA , silk fabrics have higher permeability than DEMEP treated samples,which is because MDPA samples become loose when dry and cure under heat and tension conditions. MDPA treated samples have poorer hygroscopy than DEMEP treated samples. With the time increase, the capillary effect value increased. So, DEMEP treated samples will give excellent wear comfort.CONCLUSIONSThe self-prepared organophosphorus flame retardant vinyl phosphate ester DEMEP is a reactive retardant. Only less phosphorus content can make silk fabrics gain excellent flame resistance. Silk fabrics treated with DEMEP can endure 15 laundry cycles. While MDPA can be fixed onto silk fabrics effectively only with the help of crosslinking agent HMM. And MDPA-treated silk fabrics have better laundry endurance. Both flame retardants can cause silk fabrics yellow and damage.But both strength losses are negligible. DEMEP treated silk fabrics have better elasticity and wear comfort than MDPA treated silk fabrics.ACKNOWLEDGEMENTSWe express our appreciation to Zhejiang Haoyunlai Group for providing silk fabrics.REFERENCES1. Nair G.. P., Colourage, V ol 47, No. 8, 2000, pp27-34.2. Hui-xuan LI, Jian-gang WANG, Jilin Engineering College Acta, V ol 12, No.2,1991,pp68-71.3. Hongxiang ZHOU, Guangxi Textile Science Technology, V ol 24, No. 2, 1995,pp 35-39.4. Achwal W.B.,et.al, Colourage, No.6, 1987,pp16-30.5. China Textile Standards Compile (I), (II), China Standards Press, Beijing, 2000.6. Jin-Ping GUAN, Guo-Qiang CHEN,Fire and Materials,V ol.30,No.6,pp 415-424.7. Reinhard R.M.,Srthur J.C., ,J.Appl.Polym.Sci.,V ol.24,1979,pp147.8. M.Tsudada, H.Shiozaki,J.Appl.Polym.Sci.,vol37,1989,pp2637.9. Tarun Kumar Maji, Amar Nath Banerjee, J.Appl.Polym.Sci.V ol. 62,1996,pp595.10. M.J. Tsafack and J. Levalois-Grützmacher,Surface and Coating Technology,V ol201,No.6,pp 2599-2610.11. Yu-xiang OU, Applied Flame Resistance Technique, Chemical IndustryPress,Beijing,2002,pp141.12. G..Q. Chen, T.L.Xing, et.al, Acta. Chemica. Sinica., No.6,2002,pp1106.13. G..Q. Chen, and X. Zhou, Journal of Dong Hua University, No. 1,2002, pp20.11。

相关文档
最新文档