第一章1 量子力学基础

合集下载

第一章 量子力学基础知识

第一章  量子力学基础知识

《结构化学基础》讲稿第一章孟祥军第一章 量子力学基础知识 (第一讲)1.1 微观粒子的运动特征☆ 经典物理学遇到了难题:19世纪末,物理学理论(经典物理学)已相当完善: ◆ Newton 力学 ◆ Maxwell 电磁场理论 ◆ Gibbs 热力学 ◆ Boltzmann 统计物理学上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。

1.1.1 黑体辐射与能量量子化黑体:能全部吸收外来电磁波的物体。

黑色物体或开一小孔的空心金属球近似于黑体。

黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。

★经典理论与实验事实间的矛盾:经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。

按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。

按经典理论只能得出能量随波长单调变化的曲线:Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。

Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。

经典理论无论如何也得不出这种有极大值的曲线。

• 1900年,Planck (普朗克)假定:黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。

• h 称为Planck 常数,h =6.626×10-34J •S•按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合:●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。

能量波长黑体辐射能量分布曲线 ()1/8133--=kt h c h eE ννπν1.1.2 光电效应和光子学说光电效应:光照射在金属表面,使金属发射出电子的现象。

第一章 量子力学基础

第一章 量子力学基础

氧化锆晶体的X射线衍射图 (Debye-Scherrer图)
de Broglie还利用他的关系式为Bohr的轨道角动 量量子化条件
h mvr n 2
作了一个解释:由这一条件导出的
nh h S 2r n n mv p
表明圆轨道周长S是波长的整数倍,这正是在圆周上形 成稳定的驻波所需要的,如同琴弦上形成驻波的条件是 自由振动的弦长为半波长的整数倍一样. 尽管这种轨迹确定的轨道被不确定原理否定了, 但“定态与驻波相联系”的思想还是富有启发性的.
测物理量. 波函数应具有品优性 , 包括单值性、连续性 、平方可积性.
波函数的概率解释
例如, 坐标与相应的动量分量、方位角与动量矩等.
不确定原理可以用不同的方式来阐述, 最容易理解也 最常用的是电子的单缝衍射实验:
波是不确定性的表现
单 缝 衍 射
这个象征着科学 的标志, 迄今仍被有 些人认为是原子模型 的真实图像. 实际上, 它只是照耀过科学历 程的星光:
由于坐标与相应 的动量分量不可能同 时精确测定, 所以, 原子中的电子不可能 具有这种轨迹确切的 轨道.
(photoelectric effect), 后来导致了光的粒子学说. 1889年, 斯托列托夫提出获得光电流的电池方案(下图G为电 流表, V为电压表; C为阴极, A为阳极):
1898年,P.勒纳特确认放电粒子为电子, 并于1902年指出: 1.入射光线的频率低于一定值就不会放出光电子; 2.光电子的动能与光强度无关而与光的频率成正比; 3.光电流强度与光强成正比。
de Broglie波不仅对建立量子
力学和原子、分子结构理论有重要
意义,而且在技术上有重要应用.
使用de Broglie波的电子显微镜分辨率

第一章 量子力学基础 例题与习题

第一章 量子力学基础 例题与习题

第一章量子力学基础例题与习题一、练习题1.立方势箱中的粒子,具有的状态量子数,是A. 211 B. 231 C. 222 D. 213。

解:(C)。

2.处于状态的一维势箱中的粒子,出现在处的概率是多少?A.B.C.D.E.题目提法不妥,以上四个答案都不对。

解:(E)。

3.计算能量为100eV光子、自由电子、质量为300g小球的波长。

( )解:光子波长自由电子300g小球。

4.根据测不准关系说明束缚在0到a范围内活动的一维势箱中粒子的零点能效应。

解:。

5.链状共轭分子在波长方向460nm处出现第一个强吸收峰,试按一维势箱模型估计该分子的长度。

解:6.设体系处于状态中,角动量和有无定值。

其值是多少?若无,求其平均值。

解:角动量角动量平均值7.函数是不是一维势箱中粒子的一种可能的状态?如果是,其能量有没有确定值?如有,其值是多少?如果没有确定值,其平均值是多少?解:可能存在状态,能量没有确定值,8.求下列体系基态的多重性。

(2s+1) (1)二维方势箱中的9个电子。

(2)二维势箱中的10个电子。

(3)三维方势箱中的11个电子。

解:(1)2,(2)3,(3)4。

9.在0-a间运动的一维势箱中粒子,证明它在区域内出现的几率。

当,几率P怎样变?解:10.在长度l的一维势箱中运动的粒子,处于量子数n的状态。

求 (1)在箱的左端1/4区域内找到粒子的几率?(2)n为何值,上述的几率最大?(3),此几率的极限是多少?(4)(3)中说明什么?解:11.一含K个碳原子的直链共轭烯烃,相邻两碳原子的距离为a,其中大π键上的电子可视为位于两端碳原子间的一维箱中运动。

取l=(K-1)a,若处于基组态中一个π电子跃迁到高能级,求伴随这一跃迁所吸收到光子的最长波长是多少?解:12.写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。

解:13.在什么条件下?解:14.已知一维运动的薛定锷方程为:。

和是属于同一本征值得本征函数,证明常数。

第一章量子力学基础知识总结

第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。

●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。

●不同金属的临阈频率不同。

●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。

●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。

●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。

Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。

如:sin,log等。

线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。

5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。

量子力学课后习题答案

量子力学课后习题答案

量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。

解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。

本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。

但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThcλλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。

首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。

解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。

chapter1总结.ppt

chapter1总结.ppt

假设Ⅴ:Pauli原理
§ 1.2 量子力学在简单体系中的应用
一维势箱

n (x)
2 l
sin
n
l
x;En
n2h2 8ml 2
(0 x l;n 1,2,3)
立方势箱
nz,ny,nz (x, y, z)
8 a3
sin
nx
a
x
sin
ny
a
y sin
nz
a
z;
Enz , ny , nz
h2 8ma2
(nx2
ny2
nz2 )
(0 x, y, z a;nx , ny , nz 1,2,3 )
简并能级;简并态;简并度
第二章 原子结构和性质
Chapter 2 The structure and properties of atoms
例题:
• 1.微观粒子体系的定态波函数所描述的状态 是( )
• A. 波函数不随时间变化的状态 • B.几率密度不随时间变化的状态 • C. 自旋角动量不随时间变化的状态 • D. 粒子势能为零的状态
• (北师大) 简答: 1.波函数的合格条件

2. Pauli原理
• 选择:1.一维谐振子的势能表达式 为 V 1 kx2 ,则该体系的定态S方程式中
2
的哈密顿算符为( )
原子光谱
-Bohr “玻尔假说”
2. 实物粒子的波粒二向性
粒 子 性
= h v 波

p= h /λ 性
h h
p mv
德布罗意(de Broglie)波长
3. 物质波统计解释
玻恩(Born)提出实物微粒波的统计解释 -几率波

第1章 量子力学基础知识

第1章 量子力学基础知识

d 8 m E 2 2 dx h
2 2
8 m E 8 m E c1 cos( ) x c2 sin( ) x 2 2 h h
2 1 2 2 1 2
边界条件: x 0 , 0
2
x l , 2 0
8 m E 8 m E c1 cos( ) x c sin( ) x 2 h2 h2
1927年,美国, C. J. Davisson L. H. Germer 单晶 体电子衍射实验 G.P.Thomson 多晶金属箔电子衍射实验 质子、中子、氦原子、氢原子等粒子流也同样观 察到衍射现象,充分证实了实物微粒具有波动性, 而不限于电子。
22
氧化锆晶体的X射线衍射图
金晶体的电子衍射图
23
n h E 2 8m l
2
n 1,2,3,
nx ( x) c2 sin( ) l
nx ( x) c2 sin( ) l
nx c sin ( )dx 1 l 0
l 2 2 2
* d 1
nx 2 c sin ( ) 1 l 0
l 2 2 2
2 c2 l
25
波粒两相性是微观粒子运动 的本质特性,为微观世界的 普遍现象。
26
-1.1.4- 不确定关系(测不准原理)
x D A e O P
y
Q
A
O C
P psin
电子单缝衍射实验示意图
单 缝 衍 射
1.2 量子力学基本假设
量子力学是描述微观粒子运动规律 的科学。 电子和微观粒子不仅表现出粒性, 而且表现出波性,它不服从经典力 学的规律。
31
-1- 波函数和微观粒子的运动状态

第一章 量子力学基础

第一章 量子力学基础

1.1.3 氢原子光谱与轨道角动量量子化
1913年, Bohr提出一个新模型: 原子中的电子在确定的分 立轨道上运行时并不辐射能量; 只有在分立轨道之间跃迁时才有 不连续的能量辐射; 分立轨道由“轨道角动量量子化”条件确定:
m、v、r分别是电子的质量、线速度和轨道半径,n是一系列正 整数. 由此解释了氢原子的不连续线状光谱. 1922年, Bohr获诺 贝尔物理学奖.
假设 1
微观体系的状态可用一个状态函数或波函数Ψ(x, y, z, t) 描述, Ψ(x, y, z, t)决定了体系的全部可测物理量. 波函数应具有品优性, 包括单值性、连续性、平方可积性.
z 定态波函数 不含时间的波函数ψ(x,y,z)称为定态波函数。 (定态:概率密 度与能量不随时间改变的状态) z 波函数的具体表示形式 用量子力学处理微观体系时,要设法求出波函数的具体表示形 式。而波函数的具体表达式是由解Schrödinger方程得到的。 例如氢原子的1s态的波函数为: ψ 1s =
n=5 n=4 n=3 n=2
n=1
1.1.3 氢原子光谱与轨道角动量量子化
Bohr模型对于单电子原子在多方面应用得很有成效,也 能解释原子的稳定性. 但它竟不能解释 He 原子的光谱,更不 必说较复杂的原子;也不能计算谱线强度。 量子化条件是对的,半径有问题,角动量是错的; 仍属于经典力学,只是认为附加了一些量子化条件——称 为旧量子论
E = hv
λ= h / p
1.1.4 实物微粒的波粒二象性
1927年,戴维逊、革末用电子束单晶衍射法,G.P.汤姆逊用 多晶透射法证实了物质波的存在. 1929年, de Broglie获诺贝尔物 理学奖;1937年,戴维逊、革末、G.P.汤姆逊也获得诺贝尔奖.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

满足上述条件的波函数称为合格波函数或品优波函数 (well-behaved function)
(a)违反单值条件
(b)不连续
(c)一阶微商不连续
(d)波函数不是有限的
不符合品优函数条件的情况
(2)、Ψ 和CΨ 描述同一状态 C为一个非零的常数因子(可以是实数或复数)
ψ
2
重要的是在空间不同点的比值,而不是各点的绝对值大小。
r1 0.529 1010 m=52.9pm
玻尔 半径
氢原子轨道能量 1 me 4 R En 2 ( 2 2 ) 2 ,n 1, 2,3, n 8 0 h n
R 13.6eV
比较:多电子原子轨道能量
Z2 En R 2 n
玻尔理论的缺陷:旧量子论
● 玻尔理论仍然以经典理论为基础,定态假设
2、 电子衍射实验—德布罗意假设的实验验证
(1)戴维逊—革末电子单晶反射实验(1927年)
1925年,戴维逊和革末第一次得到了电子在单晶体中 衍射的现象(Ni 氧化,单晶),1927年他们又精确地进 行了这个实验,实验发现,从衍射数据中求得的电子 的物质波波长与从德布罗意关系式中计算出的波长一 致。
2 2 l 2
求此波函数的归一化常数A。
nx A sin( ) l
(0 x l)
l A 1 A 2
2
2 l
二、假设Ⅱ:力学量和算符
1、算符的定义:一种运算符号,当将其作用到某一函数上 时,就会根据某种运算规则,使该函数变成另一函数
g Af
2、算符的性质 ①相等
定态(E2)→定态(E1)跃迁辐射
(3)量子化条件
电子轨道角动量 M n
1 E 2 E1 h
h 2
缺点:玻尔理论仅能够解释氢原子和类氢离子体系的原子光谱,不能推广 到多电子原子也不能解释光谱精细结构。
氢原子轨道半径的计算
0 h2 rn n2 ( ) 52.9n2 pm),n 1, 2, 3, me2
如何证实? A 从衍射数据中求得的电子的物质波波长
2d sin
1 ( ) 65 2 10 d 0.91 10 m 1.65 10 m 165 pm
10
B 从德布罗意关系式中计算出的波长
问:一个54eV电子,电子经加速电势差为U的电场加速后, ? (c)
如果一个体系的可观测性质不随时间而改变,这个体 系就被说成是处于一个定态(time-independent)之中,描述 这种状态的波函数称为定态波函数
(3)、波函数的归一化常数C 一般从物理意义上看,总规定一个粒子在全部空间 出现的概率为1。因此通常要求将波函数归一化。

d
A f B f A B

②相加
③线性 ④ 乘法
A f B f C f A B C






A(c1 f1 c2 f 2 ) c1 A f1 c2 A f 2



ˆˆ ˆ ˆ ABf A( Bf )
算符对易 AB BA ˆ ˆ ˆˆ
ˆ ˆ ˆˆ 一般情况 AB BA
EPx
2. 波函数的性质
(1)合格条件 ①单值性(single-valued)—|Ψ |2表示粒子在空间某点 出现的概率密度,必须是一个确定的值 ② 连续性(continuous)—从物理上,粒子在空间各处 出现的概率密度呈波动性,是连续变化的,因此波函数Ψ 必须在变数变化的全部区域内是连续的,并且具有连续的 一级微商 ③平方可积(quadratically integrable)—在变数变化的 全部区域内,波函数的数值必须是有限的 |Ψ |2dτ —粒子出现在dτ中的概率,其值不可能是无限大。 在全部空间发现粒子的概率为1(该性质称为归一化),因此 只有一定是一个有限值时, 才能保证归一化。
狭缝到底片的距离比狭缝的宽度 大得多,当CP=AP时, PAC, PCA, D ACO均接近90°, sin=OC/AO=/2/D/2 =/D
x A O P
D越小(坐标确定得越准确),越 大,电子经狭缝后运动方向分散得 越厉害(动量的不确定程度越大).落到 P点的电子,在狭缝处其px=psin, 即 px
3 氢原子的线状光谱与玻尔(Bohr)原子结构理论 原子光谱
当原子被电火花、电弧或其它方法激发时,能够发 出一系列具有一定频率(或波长)的光谱线,这些 光谱线构成原子光谱。
Bohr原子模型
(1)定态假设
原子存在具有确定能量的状态 —— 定态(能量最 低的叫基态,其它叫激发态),定态不辐射。
(2)频率条件
(2)仅对微观粒子测量重要,宏观物体无需考虑 (3)不确定关系反映了微观粒子运动的基本规律,是 微观粒子波粒二象性的必然结果。不是测量技术和主观能力 的问题,是量子理论中的一个重要概念。 (4)推广:速度与坐标,速度与位臵,动能与势能等不能同 时测定
3、测不准关系式的导出: OP-AP=OC=/2
位臵的不确定度∆ x如此之小,与子弹的运动路程相比, 完全可以忽略。因此,可以用经典力学处理。
34
例2
求原子、分子中运动的电子的速度不确定度。电子的 质量m =9.1×10-31kg,原子的数量级为10-10m。 Δx = 10-10m
Δv = h/(Δx· m)
=(6.626×10-34J.s)/(10-10m×9.1×10-31kg) ≈106~107m.s-1
汤姆逊1927年使用快电子通过金属箔得到电子衍射 图,计算出的结果也与从德布罗意关系式中计算出的 波长一致。加磁场衍射条纹偏移,证明是电子衍射的 结果,而不是X射线造成的衍射 1937年 戴维逊 与 G.P.汤姆逊获诺贝尔物理奖。
三、 Born 统计解释
Born
实物微粒在空间不同区域出现的概率呈波动性分布。
*
2
d 1
定积分 ?
如:

2
d 1
2
c
c
d 1
1
C:归一化系数
2

d
例. 已知一个在一维势箱中运动的粒子,其波函数为:
nx d A 0 sin ( l )dx 1 解: 2nx 1 cos l l dx 1 A2 0 2 1 l 2nx l 2 1 A ( l sin |0 ) 1 2 2 2n l
在空间任何一点上波的强度和粒子出现的几率密度成正比。 按照这种解释描述的实物粒子波称为几率波。
四、测不准关系(不确定关系)(uncertainty principle)
1、定义:微观粒子的位臵和动量不能同时准确地测定
x px h
2、注意:
Heise nberg
(1)物理量可以准确测定,只是不能同时测定;
微观粒子具有波粒二象性,根据不确定关系原理,微观 粒子的运动没有确定的轨道,因此必须有一套全新的理论来 描述微观粒子的运动—量子力学。
量子力学是自然界的基本规律之一,在其研究实物微粒 运动的规律时,形成了一整套人们公认的公设(基本假设 Postulate),量子力学就是建立在这些公设基础之上的。 这些公设不能用演绎的方法证明,虽然这些假设相对 于其它一些经典理论来说显得“难以理解”,这是因为这些 假设与日常经验相距较远,但其正确性仍然可以从它所推 导出的结论与实验事实一致而得到证实。
px=psin=p/D=h/D,而x=D
e
C y
Q A O C 电子单缝衍射实验示意图 P psin
所以 x px=h,考虑二级以上衍射,
x.px≥h
例1
质量为0.01kg的子弹,运动速度为1000ms-1,若速度的
不确定程度为其运动速度的1%,求其位臵的不确定度
h 6.6 10 x 6.6 1033 m mv 0.011000 1%
(1)物质波:微粒性、波动性。
德布罗依(De Brogile)关系式
h h p mv
De Brogile
1929年 德布罗意获诺贝尔物理奖。
例:子弹的质量为0.01kg,运动速度为1000m/s,电子质量 为9.11×10-31kg,运动速度为5×106m/s,试求子弹和电子的 de Broglie波长。 解: 对宏观粒子子弹: λ = h/mv = 6.626×10-25Å 对微观粒子电子: λ=1.46Å 普通光学光栅宽度 为10-6m即104Å 晶体光栅 Å数量级
3、如何确定力学量算符
方法 :先用经典表达式写出坐标和动量p的函数 ①坐标和时间 ②动量
ˆ x xˆ t t
i h px x 2 i x
若 d,则波动性显著,波动性可以被观察到; 若 <<d,波动性基本没有,波动性不能被观察到。
光子与实物粒子的主要差别:
自由的实物粒子 光 子

u
h P
P
P2 E 2m

c
h P
P
E Pc

E h
E

E h
E
§1.2 量子力学假设
量子力学(Quantum Mechanics)
又和经典理论相抵触。 ● 量子化条件的引进没有适当的理论解释。
● 对谱线的强度、宽度、偏振等无法处理。
二、实物微粒的波粒二象性
实物微粒是指静止质量不为零的微观粒子(m0≠0)。 如电子、质子、中子、原子、分子等。
1、 德布罗意(De Brogile)假设
E h h (2) 适用于光的两个式子也适用于微粒 p
第一章
量子力学基础和 原子结构
1-1经典物理学困难和量子论诞生
一、三个著名实验导致“量子”概念引入
相关文档
最新文档