气体压强 体积和温度的关系

合集下载

气体压强温度体积公式

气体压强温度体积公式

气体压强温度体积公式咱们在日常生活中,经常会遇到各种各样和气体有关的现象。

比如说,给自行车打气的时候,轮胎会慢慢鼓起来;夏天打开汽水罐,“呲”的一声,气泡和汽水就喷出来了。

这些现象背后,都藏着气体压强、温度和体积之间的秘密。

咱们先来说说气体压强。

压强这东西,简单理解就是气体给容器壁的压力。

你想想看,一个充满气的气球,是不是绷得紧紧的?这就是因为气球里面的气体有压强,在使劲往外撑呢。

那气体压强和温度、体积又有啥关系呢?这就得提到一个很重要的公式——理想气体状态方程:PV = nRT。

这里的 P 就是压强,V 是体积,n 是气体的物质的量,R 是一个常数,T 是温度。

咱就拿吹气球来举个例子。

刚开始吹气球的时候,气球里面的气体少,体积小,温度也和外面差不多。

这时候压强不大,气球很好吹。

可随着你不断往里面吹气,气体的量增加了,体积变大了,温度也因为你吹气的动作稍稍升高了一些。

这时候气球里面的压强就变大了,你会感觉到越来越难吹,得使更大的劲儿。

再说说体积和压强的关系。

有一次我在家做实验,准备了一个密封的塑料瓶,在瓶盖上扎了一个小孔,然后往瓶子里打气。

一开始瓶子还没什么变化,可当气体打得越来越多,瓶子里的体积不变,压强增大,最后“砰”的一声,瓶子都被撑破了!把我吓了一跳。

温度对气体压强的影响也很明显。

冬天的时候,你会发现自行车的轮胎好像瘪了一些,这可不是轮胎漏气啦,而是因为温度降低,气体压强变小了。

在实际生活中,这个公式的应用可多了去了。

比如汽车的发动机,燃料燃烧让气缸里的气体温度迅速升高,体积膨胀,从而推动活塞做功。

还有空调和冰箱,也是通过控制气体的压强、温度和体积来实现制冷和制热的。

总之,气体压强、温度和体积的关系就像三个好朋友,互相影响,谁也离不开谁。

了解了它们之间的关系,咱们就能更好地解释生活中的很多现象,也能利用这些知识创造出更多有用的东西。

所以呀,别小看这个气体压强温度体积公式,它可是藏着大大的学问呢!。

温度与大气压强的关系

温度与大气压强的关系

温度与大气压强的关系
根据理想气体状态方程,大气压强与温度之间存在着一定的关系。

在恒定体积下,理想气体的压强与温度成正比,即当温度升高时,气体的压强也会增加;反之,温度降低时,气体的压强也会减小。

这种关系可以用以下的理想气体状态方程来描述:
P = nRT/V.
其中,P代表气体的压强,n代表气体的摩尔数,R代表气体常数,T代表温度,V代表气体的体积。

从这个方程可以看出,当温度增加时,压强也会增加,反之亦然。

这说明温度与大气压强之间存在着直接的关联。

这种关系在气象学和大气科学中具有重要的意义。

在大气层中,温度和压强的变化也会对天气和气候产生影响。

例如,气温升高会导致大气层的膨胀,从而使得大气压强减小;相反,气温下降会导致大气层的收缩,使得大气压强增加。

这种变化会对风向、气压系统和降水等气象现象产生影响。

因此,温度与大气压强的关系不仅是一种物理现象,也是影响
地球大气层运动和气候变化的重要因素。

深入研究和理解这种关系,有助于我们更好地理解和预测天气和气候变化,为人类社会的发展
和生活提供更加准确的气象信息和预警服务。

探究气体压强与体积、温度关系的实验

探究气体压强与体积、温度关系的实验

探究气体压强与体积、温度关系的实验①.通过气球的胀缩更直观地体会在一定条件下,气体压强与体积、温度的关系②. 学会用玻意耳定律、盖•吕萨克定律解释实验现象,并从微观角度理解本质③.理解理想气体状态方程,感受大气压的存在二、实验原理:玻意耳定律:一定质量的封闭气体,在温度不变的情况下,它的压强跟体积成反比,即P1*V1=P2*V2。

在其他条件不变的情况下,体积减小,压强增大,体积增大,压强减小。

盖•吕萨克定律:压强不变时,一定质量气体的体积跟热力学温度成正比,即V1/V2=T1/T2。

在其他条件不变的情况下,温度降低,体积缩小,温度升高,体积增大。

查理定律:体积不变时,一定质量气体的压强跟热力学温度成正比,即P1/P2=T1/T2。

在其他条件不变的情况下,温度升高,压强增大,温度降低,压强减小。

基于玻意耳定律、查理定律、盖-吕萨克定律等经验定律,得出克拉伯龙方程即理想气体状态方程:pV =nRT该方程严格意义上来说只适用于理想气体,但近似可用于非极端情况(低温或高压)的真实气体(包括常温常压)。

人们把假想的,在任何情况下都严格遵守气体三定律的气体称为理想气体。

就是说一切实际气体并不严格遵守这些定律,只有在温度较高,压强不大时,偏离才不显著。

气体压强与体积、温度关系的原理解释:①气体的压强实际上是大量的做无规则运动的气体分子与容器壁不断碰撞而产生的,因此当其他条件不变的情况下,气体体积减小会使气体分子容器壁碰撞的次数增多而使压强增大,反之,体积增大,压强减小。

②一定质量的气体保持体积不变时,分子的密度也保持不变。

温度升高后,分子的平均动能增加,根据压强产生的微观机理可知,气体的压强就会增大,反之,温度降低,分子的平均动能减小,压强减小③一定质量气体的温度升高时,分子的平均动能增加,为了保持其压强不变,必须相应地增大气体的体积,使分子的密度减小,反之,温度降低,体积减小,使分子密度增大。

1标准大气压=101325牛顿/米^2,即为101325帕斯卡(Pa)。

温度与压强的关系公式

温度与压强的关系公式

温度与压强的关系公式嘿,咱来聊聊温度与压强的关系公式这回事儿。

先给您说个事儿,我之前去参加一个户外活动,那天天气挺热的,我带着一个小的充气床垫,准备在休息的时候躺躺。

一开始,床垫充好气还挺舒服的。

可随着太阳越来越大,气温升高,我就发现这床垫越来越硬,躺上去都没那么舒服了。

当时我还挺纳闷,这是咋回事儿呢?后来我才明白,这其实就和温度与压强的关系有关系。

温度和压强之间存在着一个重要的公式,那就是理想气体状态方程:PV = nRT 。

这里的 P 代表压强,V 是体积,n 表示物质的量,R 是一个常数,T 则代表温度。

咱们来仔细瞅瞅这个公式。

比如说,在一个封闭的容器里,如果温度升高了,那压强就会增大。

就像我那个充气床垫,温度一高,里面气体分子的运动变得更加剧烈,撞击容器壁的力量也就更大,从而导致压强增大,床垫就变硬了。

再举个例子,您想想夏天的时候,车胎是不是更容易爆胎?这也是因为温度升高,车胎内气体的压强增大。

如果车胎本身就有点老旧或者充气太足,那爆胎的风险可就大大增加啦。

反过来,如果压强不变,温度降低,体积就会缩小。

比如说,冬天的时候,您要是把一个没盖严实的瓶子放在外面,第二天可能会发现瓶子瘪了一些,这就是因为温度降低,瓶内气体压强不变,体积缩小了。

在实际生活中,理解温度与压强的关系公式用处可大了。

像空调制冷,就是通过改变压强和温度来实现的。

还有一些工业生产中的压缩气体,也得考虑温度和压强的变化,不然可能会出现安全问题。

还有啊,您知道热气球为啥能飞起来不?也是因为加热气体,温度升高,压强增大,体积膨胀,密度变小,所以就能带着整个热气球升空啦。

再比如说,咱们家里用的高压锅。

高压锅之所以能更快地把食物煮熟,就是因为它能增加锅内的压强。

压强增大,水的沸点就升高了,这样就能在更高的温度下煮东西,食物自然就熟得快。

总之,温度与压强的关系公式虽然看起来有点复杂,但只要咱们多联系生活中的实际例子,就不难理解啦。

就像我那次充气床垫的经历,让我对这个知识点有了更深刻的认识。

恒温和恒压下气体的变化规律

恒温和恒压下气体的变化规律

恒温和恒压下气体的变化规律在恒温和恒压条件下,气体的变化规律是一个重要的物理现象。

恒温指的是气体所处的环境温度不变,恒压则指气体所受到的压强保持不变。

在这两种条件下,气体的性质和行为会产生一系列的变化。

首先,恒温和恒压条件下气体的体积与温度呈正比例关系。

根据查理定律,当温度不变时,气体的体积与温度成正比。

简单来说,如果将气体的温度提高一倍,其体积也会增加一倍,反之亦然。

这个规律可以用以下公式来表示:V1/T1 = V2/T2其中V1和T1分别代表初始的体积和温度,V2和T2代表气体发生变化后的体积和温度。

其次,恒温和恒压条件下气体的压强与体积呈反比例关系。

根据波义耳定律,当温度不变时,气体的压强与体积呈反比。

简单来说,如果将气体的体积减小一半,其压强将增加一倍,反之亦然。

这个规律可以用以下公式来表示:P1V1 = P2V2其中P1和P2分别代表初始的压强和体积,V1和V2代表气体发生变化后的体积和压强。

此外,在恒温和恒压条件下,气体的物质的量与体积呈正比例关系。

根据阿伏伽德罗定律,当温度不变时,气体的物质的量与体积成正比。

简单来说,如果将气体的物质的量增加一倍,其体积也会增加一倍,反之亦然。

这个规律可以用以下公式来表示:V1/n1 = V2/n2其中V1和n1分别代表初始的体积和物质的量,V2和n2代表气体发生变化后的体积和物质的量。

最后,在恒温和恒压条件下,气体的容器中所含的不同气体的分子数在一定温度下所占的体积比是一定的。

这个规律被称为道尔顿定律。

根据道尔顿定律,当温度不变时,混合气体的分子数与总体积的比例是一定的,与气体的种类和分子质量无关。

这个规律可以用以下公式来表示:(V1/n1):(V2/n2) = (V1+V2)/(n1+n2)其中V1和n1分别代表第一个气体的体积和物质的量,V2和n2代表第二个气体的体积和物质的量。

总结起来,在恒温和恒压条件下,气体的变化规律可以归纳为:1. 气体的体积与温度成正比。

高一物理:气体的压强、体积与温度的关系

高一物理:气体的压强、体积与温度的关系

第六章 气体定律
C. 气体的压强与温度的关系 体积与温度的关系
思考:气体体积不变时,其压强与温 度有什么关系?
为什么夏天自行车车胎的气不能打得太足?
1.在体积不变时,气体的压强与温度的关系
1)等容变化: 气体在体积保持不变的情况下,发生的
状态变化叫做等容变化。 2)实验探究: DIS实验
实 验 装 置
P = F/S
国际单位:Pa(帕斯卡) 标准大气压强:相当于76厘米汞柱产生的压强 P0 = ρgh =13.6 × 103 × 9.8 × 0.76 =1.013×105 Pa
而1.0×105 Pa相当于75厘米汞柱产பைடு நூலகம்的压强
气体压强的微观本质是由于气体内大量分子 做无规则运动过程中,对容器壁频繁撞击的 结果。
= 4× 10
4
×
310/300 =4.13×10 (Pa)
4
练一练
1.封闭在容器中的气体,当温度升高时,下面的哪 个说法是正确的( C )(不计容器的膨胀) A.密度和压强均增大; B.密度增大,压强减小; C.密度不变,压强增大; D.密度增大,压强不变。
4 . 2 一个密闭容器里的气体,在0℃时压强8×10 Pa, 5 给容器加热, 当气体压强为1.0×10 Pa时, 则温度升高到多 少摄氏度? 68.25℃
调节水银压强计的可动管 A,使B管水银面始终保持在 同一水平面上。改变气体温度, 得到多次压强值。
实验步骤一:
一只烧瓶上连一根玻璃管, 用橡皮管把它跟一个水银压强 计连在一起,从而在烧瓶内封 住一定质量的空气。 上下移动压强计,使得其 中的两段水银柱的高度在同一 水平面上。标记下B管水银柱 的高度。
气体温度上升,A柱上 升,B柱下降,瓶内气体体 积增大。

气体的分子运动与压强体积和温度的关系

气体的分子运动与压强体积和温度的关系

气体的分子运动与压强体积和温度的关系气体是由大量分子组成的物质,其中分子之间几乎没有相互作用。

分子在气体中以高速无规则运动,这种运动与气体的压强、体积和温度有密切关系。

1. 气体的分子运动及分子间距离
气体分子具有高速无规则运动的特性。

当气体处于高压下,气体分子之间的距离相对较小,而在低压下,分子之间的距离则相对较大。

当气体分子受到外界压力作用时,分子间相互碰撞,从而产生了气体的压强。

2. 压强与体积的关系
根据分子运动引起的压强定义,分子与容器壁碰撞的次数与气体压强成正比。

当容器体积增大时,气体分子可运动的空间相应增大,分子碰撞壁的次数减少,压强降低。

相反,若容器体积减小,气体分子可运动的空间减小,分子碰撞壁的次数增加,压强增大。

根据这种关系,可以得出压强与体积成反比的结论,即普遍的物理规律——玛利奥特定律。

3. 压强与温度的关系
分子的运动状态同时受到温度的影响。

温度越高,分子运动速度越快,碰撞壁的频率也越高,从而压强增大。

相反,温度越低,分子的运动速度减慢,碰撞壁的频率降低,压强减小。

因此,压强与温度成正比的关系也是普适的物理规律,即查理氏定律。

综上所述,气体的分子运动与压强、体积和温度之间存在着密切的关系。

根据玛利奥特定律和查理氏定律,我们可以得知气体分子运动与压强、体积和温度之间的定量关系。

这些定律的发现和应用对科学研究和工程技术具有重要的意义,在工业生产、天气预测、航空航天等方面都有广泛的应用。

气体P V T关系

气体P V T关系
《方案》p.121-高考2 《方案》p.12方案》p.121-5/6/7/8
4.理想气体状态方程:
1 P ( nv ) 2mv 6
理想气体状态方程:
P n Ek
T p V
pV C T
克拉伯龙方程:
C 跟气体质量和气体摩尔质量有 关,即跟气体物质的量有关
m pV RT M
R=8.31J/mol· K =0.08/2atmL/mol· K
三.热力学第一定律在气体中的应用 对质量一定的气体
等压过程(p不变):①气体压强不变,单位体积分子数与 分子平均动能的乘积不变,即热力学 温度与体积的比值不变,温度升高则 体积增大,温度降低则体积减小.
② W=pSL=pV,ΔU=Q+W 若气体温度升高,则气体内能增加,而温度升高 则体积增大,故气体对外做功,将吸收热量;气 体温度降低,内能减少,体积减小,外界做功, 则放出热量
理想气体:分子间作用力可忽略,没有分子势能,内 能为所有分子平均动能的总和。 实际气体的温度越高、压强越小,越接近理想气 体。 常温、常压下的气体都可视为理想气体。 气体质量一定时,若气体处于一个稳定状态, 则P、V、T三个参量不变;当气体状态发生变 化,则P、V、T三个参量中有两个或三个参量 发生变化
等温过程(T不变): ①ΔU=0,Q+W=0 气体体积增加,对外做功,吸收热 量;气体体积减小,外界对气体做 功,放出热量 ②气体温度不变,分子平均动能不变.体积 减 小,单位体积分子数增加,压强增大;体积 增 大,压强减小
等容过程(V不变): ①W=0,Q=ΔU 气体温度升高,内能增加,吸收热 量;气体温度降低,内能减少,放 出热量 ②气体体积不变,单位体积内分子数不变. 气体温度升高,分子平均动能增加,压强变 大;气体温度降低,分子平均动能减少,压 强降低
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力和压强
(1)垂直压在物体表面上的力叫压力.
(2)物体单位面积上受到的压力叫压强.
通常用p表示压强,F表示压力,S表示受
力面积,压强的公式可以写成 p=F/S
在国际单位制中,力的单位是N,面积的
单位是m2,压强的单位是N/m2,它的专
门名称叫帕斯卡,简称帕,1Pa=1N/
m2
(3)在压力不变的情况下,增大受力面积
2.气体分子的形成原因是_大__量__气__体__分__子__频__繁__、__持__续__地__ 撞__击__器__壁________________
3.影响气体压强的因素微观上是_气__体__分__子__的__平__均__动__能_、 _气__体__分__子__的__密__集__程__度____;宏观上是__温__度____、_体__积_____
ppt课件
3
1.气体分子运动的特点是_分__子__间__隙__大___、分__子__间__作__用__力__小_、 __分__子__运__动__速__率__很__大___、_____分__子__速__率__不__相__等__,__其__分__布__呈_ ___“__中__间__大___两__头__小__”__的__统__计__规__律
可以减小压强;减小受力面积可以增大
压强.
ppt课件
1
液体的压强 (1)液体对容器底和侧壁都有压强,液体 内部向各个方向都有压强. (2)液体的压强随深度增加而增大.在液 体内部的同一深度处,液体向各个方向 的压强相等;液体的压强还跟液体密度 有关系,在同一深度处,密度大的液体 产生的压强大。 (3)计算液体压强的公式是
13
二.推导理想气体状态方程
对于一定质量的理想气体的状态可用三个状态参量 p、V、T来描述,且知道这三个状态参量中只有一个变 而另外两个参量保持不变的情况是不会发生的。换句话 说:若其中任意两个参量确定之后,第三个参量一定有 唯一确定的值。它们共同表征一定质量理想气体的唯一 确定的一个状态。
假定一定质量的理想气体在开始状态时各状态参量 为(p1,V1,T1),经过某变化过程,到末状态时各状 态参量变为(p2,V2,T2),这中间的变化过程可以是 各种各样的.
ppt课件
18
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
体积增大 热胀
压强p一定 温度降低,体积减小 盖。吕萨克定律
冷缩
质量m一定
分子平均动能
↑ 温度T ↑
压强p ↑
↓ 体积v一定 温度T

压强p ↓
分子密集程 度同
查理定律
例如 汽车、拖拉机的内燃机,就是利
用利用气体温度急剧升高后压强增大, 推动活塞对外做功
V↑
p↓
T不变
V↓
p↑
m一定
T↑
V不变
p↑
T↓
ppt课件
14
三.理想气体的状态方程
P1V1 P2V 2
T1
T2
PV C T
P1 P2
1T1 2T2
一定质量的理想气体的压强、体积的 乘积与热力学温度的比值是一个常数。
ppt课件
15
克拉伯龙(Benoit Paul Émile Clapeyron,1799-1864)方程又名理想气体 状态方程
PV=nRT, 其中P是压强(Pa)、V是体积 (m^3)、n是物质的量(mol)、T是温 度(K)、R是一个常数。不过只适用于 理想气体。
ppt课件
16
气体状态参量:
压强
温度
体积
一定质量气体的压强、体积、温度的关系 温度不变时: 体积减小,压强增大。
PV=恒量 体积不变时: 温度升高,压强增大。
P 恒量
压强不变时:温度升高T,体积变大
V 恒量
理想气体状态方程:
T
PV 恒量
T
ppt课件
17
用油膜法测分子的直径
• 注意事项; • 1、油酸酒精溶液的浓度时百分之几 • 2、痱子粉轻弹与水面上,薄而均匀 • 3、针尖靠近水面,使液滴无初速的滴
在水面上。(一滴) • 4、做第二次一定洗净浅盘。
p↓
P不变 T ↑
V↑
T↓
V↓
理想气体是不存在的.
1、在常温常压下,大多数实际气体,尤其 是那些不易液化的气体都可以近似地看 成理想气体.
2、在温度不低于负几十摄氏度,压强不超过 大气压的几倍时,很多气体都可当成理想气 体来处理.
3、理想气体的内能仅由温度和分子总数决 定 ,与气体的体积无关.
ppt课件
ppt课件
4
气体质量一定
{ ⇒ } 活塞缓慢压向密
实验 封的玻璃管内
体积减小,气体对手 指的压力增大
⇒ 往外缓慢拉动活

体积增大,气体对手 指的压力减小
热传递充分,
温度与外界
相同,保持
不变
结论:对于一定质量的气体,在温度不变的情况下, 体积减小时,压强增大; 体积增大时,压强减小

分子总数 N一定
压入肺中.
ppt课件
8
请吐气体会呼气原理
填空:
当我们吐气时,胸部 收缩(扩张、收缩),胸内肺泡跟 着 收缩(扩张.收缩),于是肺的容积 缩增小大、缩 小),肺内空气压强 增(大增大、减小), 大于(大于、 小于)体外的大气压强,肺中一部分空气被压出体外 .
ppt课件
9
分子平均
动能↑
分子密度↓
质量m一定 温度升高
p=ρgh
ppt课件
2
大气压强
1.大气压强及其产生 大气对浸在它里面的物体的压强叫做大气压强.大气压 强跟760毫米高水银柱产生的压强相等,约为10五次方 帕 1标准大气压等于101325帕。 空气像液体一样,在它内部向各个方向都有压强. 大气压用气压计来测量. 2.大气压强随高度减小 离地面越高的地方,上面的大气层越薄,那里的大气压 强越小. 3.液体的沸点与大气压强的关系 一切液体的沸点,都是气压减小时降低,气压增大时升 高。
↑ 质量m一定 当V 时
n↓
P↓
↓ 温度T一定 当V 时
n↑
P↑
分子平均 动能一定
玻意耳定律
呼吸作用利用了上述规律
请深深吸一口气体会吸气原理
填空: 当我们吸气时,胸部 扩张(扩张、收缩),胸内肺泡跟
着 扩(张扩张.收缩),于是肺的容积
增(大增大、缩
小),肺内空气压强 (增减大小、减小),
小于( 大于、小于)体外的大气压强,大气压将新鲜空气
相关文档
最新文档