高考数学专题复习1:数列与不等式

合集下载

高考数学复习第七章数列与数学归纳法专题探究课三高考中数列不等式证明的热点题型理市赛课公开课一等奖省名

高考数学复习第七章数列与数学归纳法专题探究课三高考中数列不等式证明的热点题型理市赛课公开课一等奖省名
6/34
≤|a2n-a2n-1|+|a2n-1-a2n-2|+…+|an+1-an| ≤13232n-2+232n-3+…+23n-1 =23n-1-232n-1 ≤23-233=1207. 综上,|a2n-an|≤1207.15 分(得分点 4)
7/34
❶得步骤分:抓住得分点步骤,“步步为营”,求得满分.如(1)中,归纳猜测得2分; 用数学归纳法证实得3分,第(2)放缩法证实结论得5分等.
殊到普通结论成立问题.所以,能够在数列不等式证实中大显身手.
【例 1】 (满分 15 分)(2018·绍兴检测)已知数列{an}满足,a1=1,an=an1+1-12. (1)求证:23≤an≤1; (2)求证:|an+1-an|≤13; (3)求证:|a2n-an|≤1207.
2/34
满分解答 证明 (1)由已知得 an+1=an+1 12, 又 a1=1,则 a2=23,a3=67,a4=1149, 猜想23≤an≤1.2 分(得分点 1) 下面用数学归纳法证明. ①当 n=1 时,命题显然成立; ②假设 n=k 时,有23≤ak≤1 成立,
12/34
(2)证明 因为 a1>2,可用数学归纳法证明:an>2 对任意 n∈N*恒成立. 于是 an+1-an=a2n-1<0,即{an}是递减数列. 在 Sn≥na1-13(n-1)中,令 n=2, 得 2a1+a21-1=S2≥2a1-13,解得 a1≤3,故 2<a1≤3. 下证:①当 2<a1≤73时, Sn≥na1-13(n-1)恒成立. 事实上,当 2<a1≤73时,由于 an=a1+(an-a1)≥a1+2-73=a1-13,
(3)证明 由(2)可得 an=32n1+1≥32n+132n-1=2523n-1. 所以 Sn≥25+25·231+…+25·23n-1 =651-23n, 故 Sn≥651-23n成立.

2020年高考数学专题复习指数型数列不等式放缩

2020年高考数学专题复习指数型数列不等式放缩

1 3n 1
11 16
3 4
1
3n 1
1 9 3n2
1
8 3n2
1 3n2
1
1 8 3n2
n2
1 3n 1
(3n
3n1 1 1)(3n 1
1)
(3n
3n1 1)(3n 1
1)
3 2 3n 2 (3n 1)(3n1 1)
3 2
(
1 3n
1
3n
1
1
) 1
1 31 1
1 32 1
1 3n 1
1 2
3 2
(
1 32 1
1 33
1
1 33
1
1 34 1
1 3n
1
1 3n1
) 1
1 3 11 2 16 16
引例
求证: 1 31
1
1 32
1
1 3n
1
11 16
1
3n1 1 1
3n 1 3n1 1
3n 3n1
1 3
3n 1
1 31
1
1 32
1
1 3n
1
1
1
1
1
n 1
3n 1
1 2
2 32
2 3n
1
2
1
1
n-1
9 3
2
1 1
3
11 5
23 6
引例
求证: 1 31 1
1 32 1
1 3n 1
3 4
1 3n 1
2 3n
于是, 1 31
1
1 32
1
1 3n
1
2 31

《高考题库》——数学:数列、不等

《高考题库》——数学:数列、不等

( 文) 如果数列{! # } 是等差数列, 则
&( $ ’ 是首项 !" 0 " , 公差 " 0 1 的等差 {! # } $% ・山东) ( 文) 数列, 如果 ! # 0 &$$% , 则序号 # 等于 ($ 223 +$ 22’ -$ 224 /$ 23$ 15 ( ’ 已知等差数列{! # } 中, !3 . !4 0 "2 , !* 0 $% ・福建) ", 则 !"& 的值是 (5 "% +5 1$ -5 1" /5 2* *5 ( ’ 等差数列{! # } 中, !" . !& . !1 0 6 &* , $* ・全国") !"’ . !"4 . !&$ 0 3’ , 则此数列前 &$ 项和等于 (5 "2$ +5 "’$ -5 &$$ /5 &&$ %5 ( ’ 设数列{! # } 是等差数列, 且 !& 0 6 2 , !’ $* ・全国#) 0 2, % # 是数列{! # } 的前 # 项和, 则 (5 %* , %% -5 %2 , %% +5 %* 0 %% /5 %% 0 %2
等差数列{! # } 中, 已知 !" 0 45 ( ’ $1 ・新课程) 0 *, ! # 0 11 , 则#为
— 1 —
&$ & &6 &. % 5"【解析】 ) 本题考查等差数列的性质% 由 ’ ’ &! &$ & &. % $ [ ( &$ & &6 )4 6]4 . ) .)6 )6 % . . 6 ’ 4 ’ ’ $, 故 ( ( $ ). 6). ). 6 6 [ ( &$ & &. )4 .]4 6 % !" ( ’ 且 %、 方程 % !% & "! & # ’ # 有实根, #$ ・京、 蒙、 皖春) 范围% 选 2% ) 解法一: 8 &$ 9 #, &% ##! & &% ##- 9 #, &% ##! ・&% ##- 0 #, "、 # 为等差数列的前三项, 求该等差数列公差 $ 的取值 /"【解析】 &$ & &- ##5 &% ##! & &% ##7 &% ##! 9 #, &% ##- 0 #% )- ##5 ’ 4 - ##5 ’ % % 4 - ##5 9 #, )- ##/ ’ &$ & &- ##/ 4 - ##/ ’ - ##/&% ##- 0 #, 7 使前 %

2015高考数学复习口诀:不等式和数列

2015高考数学复习口诀:不等式和数列

2015年高考数学复习口诀:不等式和数列不等式
解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

数列
等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,
取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:
一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:
首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理
来肯定。

精心整理,仅供学习参考。

2021年高考数学专题复习:数列(含答案解析)

2021年高考数学专题复习:数列(含答案解析)
已知等差数列{an}的前n项和为Sn,满足a3=6,____.
(1)求{an}的通项公式;
(2)设bn=2 an,求{bn}的前n项和Tn.
3.已知等比数列{an}的各项均为正数,且a1+16a3=1,a1a5=16a42.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{ }的前n项和Tn.
(1)求数列{an}的通项公式;
(2)证明: .
13.设数列{an}满足a1=2,an+1=an+2n.
(1)求数列{an}的通项公式;
(2)设bn=log2(a1•a2…an),求数列{ }的前n项和Sn.
14.已知等比数列{an}的各项都为正数,Sn为其前n项和,a3=8,S3=14.
(1)求数列{an}的通项公式;
(2)记Tn ,求使得Tn 成立的正整数n的最小值.
15.设数列{an}的前n项和为Sn(n∈N*),且满足an+Sn=2n+1.
(1)证明数列{an﹣2}是等比数列,并求数列{an}的通项公式;
(2)若bn=n(2﹣an),求数列{bn}的前n项和Tn.
16.已知{an}是等差数列,{bn}是等比数列,b1=a5,b2=3,b5=﹣81.
(1)求数列{an},{bn}的通项公式;
(2)设cn an,数列{cn}的前n项和为Tn,若不等式 1 恒成立,求λ的取值范围.
18.已知递增的等比数列{an}的前n项和为Sn,S3 ,a3a4=a5.
(1)求数列{an}的通项公式;
(2)若4an=3Sn,求正整数n的值.
19.已知等差数列{an}中,a2=3,a4=7.等比数列{bn}满足b1=a1,b4=a14.

2024年新高考版数学专题1_7.4 数列求和、数列的综合

2024年新高考版数学专题1_7.4 数列求和、数列的综合

1 2
+
1 2
1 3
+…+
1 n
n
1 1
=1-
n
1 1
,
又因为n≥1,所以0< 1 ≤ 1 ,即有 1 ≤Tn<1,
n1 2
2
所以 1 ≤Tn<1 2
≤Tn<1.
解析 (1)选①.因为a4是a3与a5-8的等差中项,所以2a4=a3+a5-8,则16a1=4a1+ 16a1-8,解得a1=2,所以数列{an}的通项公式是an=2n.
选②.设{an}的公比为q,依题意,有 aS23
a1q 4, a1(1 q
13+23+33+…+n3= n(n 1) 2 .
2
2.倒序相加法 如果一个数列{an},与首末两端等“距离”的两项的和相等或等于同一常
数,那么求这个数列的前n项和即可用倒序相加法. 3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积 构成的,那么这个数列的前n项和即可用此法来求. 4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而 求得其和.以下为常见的拆项公式:
1) 1 = 1 - 1 ;
n(n 1) n n 1
2)
(2n
1 1)(2n
1)
=
1 2
1 2n 1
1 2n 1
;
3) 1 = n 1- n .
n n1
5.分组求和法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开, 可分为几个等差、等比或常见的数列,即先分别求和,再合并,例如:
高考 数学
专题七 数列

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

高考数学第二轮复习数列与不等式结合题型

高考数学第二轮复习数列与不等式结合题型

数列与不等式交汇的综合题例38 已知数列{}n a 满足.21211--+=n n n a na a *)(N n ∈ (1)若数列{}n a 是以常数1a 首项,公差也为1a 的等差数列,求a 1的值; (2)若012a =,求证:21111n n a a n --<对任意n N *∈都成立; (3)若012a =,求证:12n n a n n +<<+对任意n N *∈都成立. 解 (1)由21121()n n n a a a n N n*--=+∈得:[]211121(2)a a n a n =+-即221121()n a a n-=,求得10a =(2)由10n n a a ->>知1121n n n n a a a a n--<+,两边同除以1n n a a -,得21111n n a a n--< (3)00112111111111()()()n n na a a a a a a a --=-+-++- 222111123n <++++ 11111223(1)n n<++++⨯⨯- 111111111()()()()233445(1)n n=+-+-+-++--12n=-,将012a =代入,得n a n <; ㈠11n a n -<- ∴ 21121n n n a a a n --=+1121n n n a a n---<+2121n n n a a n n ->+- 2112211n n n n n a a a a n n n -->+∙+-211111111n n a a n n n n -->>-+-+11223111111111()()()n n na a a a a a a a --=-+-++- 111111()()()23341n n >-+-++-+ 1121n =-+ 而134a =, 1512611n n a n n +∴<+<++ 12n n a n +∴>+ ㈡ 由㈠㈡知,命题成立.例39 设数列{}n a 的前n 项和为n S ,)1(2,11-+==n nS a a nn 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高三二轮复习讲练测之讲案【新课标版理科数学】专题四数列与不等式考向一等差数列与等比数列的计算问题【高考改编☆回顾基础】1.【等差数列的通项公式、求和公式】【2018年新课标I卷改编】设为等差数列的前项和,若,,则 .【答案】【解析】设该等差数列的公差为,根据题中的条件可得,整理解得,所以.2. 【等比数列的通项公式】【2017课标3,理14】设等比数列{}n a满足a1 + a2 = –1, a1– a3 = –3,则a4 = ___________.【答案】8-3. 【等差的通项公式及求和公式、等比中项】【2017课标3改编】等差数列{}n a的首项为1,公差不为0.若a2,a3,a6成等比数列,则{}n a前6项的和为 .-【答案】24【解析】【命题预测☆看准方向】等差数列、等比数列的判定及其通项公式是高考的热点,在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查; 对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n 项和最大、最小等问题,主要是中低档题;等差数列、等比数列的证明多在解答题中的某一问出现,属于中档题;等差数列、等比数列的前n 项和是高考考查的重点,在解答时要注意与不等式、函数、方程等知识相结合.预测2019年数列问题将保持一大一小的命题形式,且小题也可能将等差数列与等比数列综合考查.【典例分析☆提升能力】【例1】【2018年全国卷II 理】记为等差数列的前项和,已知,.(1)求的通项公式; (2)求,并求的最小值.【答案】(1)a n =2n –9,(2)S n =n 2–8n ,最小值为–16.【趁热打铁】【2017·全国卷Ⅱ改编】已知{a n }为等差数列,{b n }为等比数列,a 1=-1,b 1=1,a 2+b 2=2,a 3+b 3=5,则{b n }的通项公式为 ________.【答案】b n =2n -1【解析】设{a n }的公差为d ,{b n }的公比为q , 由a 2+b 2=2得d +q =3,① 由a 3+b 3=5得2d +q 2=6.②联立①②,解得⎩⎪⎨⎪⎧d =3,q =0 (舍去)或⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.【例2】【2017·江苏卷】等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【答案】32【趁热打铁】【2018届湖北省潜江市城南中学高三期中】若正项等比数列{}n a 满足243a a +=, 351a a =,则公比q =_________, n a =_________.【答案】 22222n-【解析】设等比数列的首项为11,0a a >,公比为,0q q >,由题意可得()326113,1a q q a q +==解得1222,,2n a q a === 222n-,填(1).22(2). 222n- 【方法总结☆全面提升】1.等差数列、等比数列的基本运算,一般通过其通项公式与前n 项和公式构造关于a 1与d 、a 1与q 的方程(组)解决.在求解过程中灵活运用等差数列、等比数列的性质,不仅可以快速获解,而且有助于加深对等差数列、等比数列问题的认识.2.解决等差数列{a n}前n 项和问题常用的三个公式是: S n =;S n =na 1+d ;S n=An 2+Bn(A,B 为常数),灵活地选用公式,解决问题更便捷.3.等差数列和等比数列的中项、前n 项和都有一些类似的性质,充分利用性质可简化解题过程.4.证明数列是等差数列或等比数列的基本方法是定义法和中项法.5.等差数列、等比数列的通项公式、求和公式有多种形式的变形.在求解相关问题时,要根据条件灵活选择相关公式,同时两种数列可以相互转化,如等差数列取指数函数之后即为等比数列,正项等比数列取对数函数之后即为等差数列.【规范示例☆避免陷阱】【典例】【2017北京改编】若等差数列{}n a 和等比数列{}n b 满足a 1=b 1=–1,a 4=b 4=8,求22a b .【规范解答】设等差数列{a n }的公差为d,等比数列{b n }的公比为q, 由题意知-1+3d=-q 3=8, 即解得故=1.【反思提高】等差数列、等比数列的通项公式、求和公式中一共包含a 1,n ,d (q ),a n 与S n这五个量.如果已知其中的三个,就可以求其余的两个.因为a 1,d (q )是两个基本量,所以等差数列与等比数列的基本运算问题一般先设出这两个基本量,然后根据通项公式、求和公式构建这两者的方程(组),通过解方程(组)求其值,这也是方程思想在数列问题中的体现. 【误区警示】用数列性质解决数列问题,往往可以简化解题过程,但技巧性较强,同时还要注意性质成立的条件,如等差数列{a n }中,a 1+a n =a 2+a n -1,但a 1+a n ≠a n +1;等比数列的前n 项和为S n ,则在公比不等于-1或m 不为偶数时,S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列.考向二 数列的通项与求和 【高考改编☆回顾基础】1.【等比数列的求和】【2018年新课标I 卷理】记为数列的前项和,若,则_____________. 【答案】【解析】 根据,可得,两式相减得,即, 当时,,解得,所以数列是以-1为首项,以2为公布的等比数列,所以,故答案是.2.【裂项相消法】【2017·全国卷Ⅲ改编】已知a n =22n -1,则数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为________. 【答案】2n2n +1【解析】记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n ,∵a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1, ∴S n =11-13+13-15+…+12n -1-12n +1=2n 2n +1.3. 【错位相减法】【2017山东卷改编】已知a n =2n ,b n =2n +1,则数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n =________. 【答案】5-2n +52n【解析】令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+12+122+…+12n -1-2n +12n +1,所以Tn =5-2n +52n.4 .【数列中的数学文化】【2017·全国卷Ⅱ改编】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯________盏. 【答案】3【解析】设塔的顶层共有a 1盏灯,根据题意得a 1(1-27)1-2=381,解得a 1=3.【命题预测☆看准方向】数列的通项与求和是高考重点考查的内容之一,命题形式多种多样,以解答题为主,难度中等或稍难,数列的基本问题为先导,在解决数列基本问题后考查数列求和,在求和后进一步研究综合问题.考查等差数列的求和多于等比数列的求和,考查的重点应该是围绕:常见求数列通项的方法、倒序求和法、分组求和法、错位相减法、裂项相消法等. 数列求和常与函数、方程、不等式联系在一起,在考查基本运算、基本能力的基础上,又注意考查学生分析问题、解决问题的能力.【典例分析☆提升能力】【例1】【2018届衡水金卷高三大联考理】已知数列{}n a 与{}n b 的前n 项和分别为n S , n T ,且0n a >,2*63,n nn S a a n N =+∈, ()()122121nnn a n a a b +=--,若*,n n N k T ∀∈>恒成立,则k 的最小值是( )A.17 B. 149 C. 49 D. 8441【答案】B【解析】当1n =时, 211163a a a =+,解得13a =或10a =. 由0n a >得13a =.由263n n n S a a =+,得211163n n n S a a +++=+. 两式相减得22111633n n n n n a a a a a +++=-+-.所以11()(3)0n n n n a a a a +++--=.因为0n a >,所以110,3n n n n a a a a +++>-=.即数列{}n a 是以3为首项,3为公差的等差数列,所以()3313n a n n =+-=. 所以()()()()111281117818181812121nnn a n n n n n n a a b +++⎛⎫===- ⎪------⎝⎭. 所以22311111111111117818181818181778149n n n n T ++⎛⎫⎛⎫=-+-++-=-<⎪ ⎪-------⎝⎭⎝⎭L . 要使*,n n N k T ∀∈>恒成立,只需149k ≥. 故选B.【趁热打铁】【2018届湖南省衡阳县高三12月联考】若曲线()()ln *y x x n n N =-∈在x 轴的交点处的切线经过点()1,n a ,则数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S =__________. 【答案】1nn -+[来源【解析】令()ln 0x x n -=,得1x n =+,则切点为()1,0n + ∵()ln x y x n x n=-+-' ∴1|1x n y n =+=+'∴曲线()ln y x x n =-在x 轴的交点处的切线方程为()()11y n x n =+-- ∵切线经过点()1,n a ∴()1n a n n =-+ ∴()111111n a n n n n ⎛⎫=-=-- ⎪++⎝⎭∴11111122311n nS n n n ⎛⎫=--+-+⋅⋅⋅+-=- ⎪++⎝⎭ 故答案为1n n -+ 【例2】【2018年浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式. 【答案】(Ⅰ)(Ⅱ)【解析】 (Ⅰ)由是的等差中项得,所以,解得.由得,因为,所以.(Ⅱ)设,数列前n 项和为. 由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.【趁热打铁】【2018届安徽省合肥市高三调研性检测】数列{}n a 满足1111,021n n n a a a a ++=+=-.(Ⅰ)求证:数列1n a ⎧⎫⎨⎬⎩⎭是等差数列; (Ⅱ)若数列{}n b 满足1122,1n nn n b a b b a +==+,求{}n b 的前n 项和n S . 【答案】(Ⅰ)证明见解析 (Ⅱ)()12326n n S n +=-⋅+【解析】(Ⅰ)若10n a +=,则0n a =,这与11a =矛盾, ∴10n a +≠,由已知得1120n n n n a a a a ++-+=, ∴1112n na a +-=, 故数列{}n a 是以111a =为首项,2为公差的等差数列. (Ⅱ)由(Ⅰ)可知,()1112121n n a =+-=-, 由112n n n n b ab a ++=⋅可知112n n n n a b a b ++=.又112a b = ∴1222n nn n a b -=⨯= ∴()212nn b n =-⋅,∴()123123252212nn S n =⋅+⋅+⋅++-⋅L ,则()23412123252212n n S n +=⋅+⋅+⋅++-⋅L ,∴()()231122222222123226nn n n S n n ++-=+⋅+⋅++⋅--⋅=-⋅-L ,∴()12326n n S n +=-⋅+【例3】【2018届江西省南昌市第二中学高三上第五次月考】已知数列{}n a 的前n 项和n S 满足:21n n S a =-.(1)数列{}n a 的通项公式;(2)设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证: 13n T <. 【答案】(1)1*111·333n nn a n N -⎛⎫⎛⎫==∈ ⎪⎪⎝⎭⎝⎭,;(2)见解析。

相关文档
最新文档