新高考 数学高考总复习完整培训讲义含解析 (1)
新高考数学 A版讲义:第1节 集合的概念及表示

第1节集合的概念及表示要点一:集合及其相关概念知识点一元素与集合的概念生活中很多东西都是由一堆元素组成的整体,如《哈利波特七部曲》、考试后密封袋里的试卷,我们班的同学,一条直线等等,都可以看做一个个集合。
一般地,我们把研究对象统称为元素(element),常用小写的拉丁字母a,b,c…表示.把一些元素组成的总体叫做集合(set),(简称为集),常用大写拉丁字母A,B,C…表示.集合相等:指构成两个集合的元素是一样的.集合中元素的特性:给定的集合,它的元素必须是确定的、互不相同的,与顺序无关。
思考我班所有的“追梦人”能否构成一个集合?答案不能构成集合,因为“追梦人”没有明确的标准.知识点二元素与集合的关系1.属于:如果a是集合A的元素,就说a属于集合A,记作a∈A.2.不属于:如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.知识点三常见的数集及表示符号一、对集合的理解例1(1)考察下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④截止到2019年1月1日,参加一带一路的国家.A.③④B.②③④C.②③D.②④解析①中“美丽”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合,故选B.(2)下列说法中,正确的有______.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.解析①不正确. book的字母o有重复,共有3个不同字母,元素个数是3.②正确. 集合M中有3个元素a,b,c,所以a,b,c都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确. 小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.反思感悟判断一组对象是否为集合的三依据(1)确定性:负责判断这组元素是否构成集合.(2)互异性:负责判断构成集合的元素的个数.(3)无序性:表示只要一个集合的元素确定,则这个集合也随之确定,与元素之间的排列顺序无关.二、元素与集合的关系例2下列关系中正确的个数为()①2∈Q;②-1∉N;③π∉R;④|-4|∈Z.A.1 B.2 C.3 D.4解析①∵2是无理数,∴2∉Q,故①错误;②-1∉N,②正确;③∵π是实数,∴π∈R,故③错误;④∵|-4|=4是整数,∴|-4|∈Z,故④正确.反思感悟判断元素和集合关系的两种方法(1)直接法:集合中的元素是直接给出的.(2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可.跟踪训练1给出下列说法:①R中最小的元素是0;②若a∈Z,则-a∉Z;③若a∈Q,b∈N*,则a+b∈Q.其中正确的个数为()A.0 B.1 C.2 D.3解析实数集中没有最小的元素,故①不正确;对于②,若a∈Z,则-a也是整数,故-a∈Z,所以②也不正确;只有③正确.三、元素特性的应用例3已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.解∵-3∈A,∴-3=a-3或-3=2a-1,若-3=a-3,则a=0,此时集合A中含有两个元素-3,-1,符合题意;若-3=2a-1,则a=-1,此时集合A中含有两个元素-4,-3,符合题意;综上所述,a=0或a=-1.延伸探究若将“-3∈A”换成“a∈A”,求实数a的值.解∵a∈A,∴a=a-3或a=2a-1,解得a=1,此时集合A中有两个元素-2,1,符合题意.故所求a的值为1.反思感悟由集合中元素的特性求解字母取值(范围)的步骤跟踪训练2已知集合A中含有两个元素a和a2,若1∈A,则实数a=________.解析若1∈A,则a=1或a2=1,即a=±1.当a=1时,a=a2,集合A中有一个元素,∴a≠1.当a=-1时,集合A中含有两个元素1,-1,符合互异性.∴a=-1.要点二:集合的表示知识点一列举法把集合的所有元素一一列举出来,并用括号“{}”括起来表示集合的方法叫做列举法.知识点二描述法一般地,设A是一个集合,把集合A中所有具有共同特征P(x)的元素x所组成的集合表示为{x∈A|P(x)},这种表示集合的方法称为描述法.思考不等式x-2<3的解集中的元素有什么共同特征?答案元素的共同特征为x∈R,且x<5.一、列举法表示集合例1 用列举法表示下列集合:(1)不大于10的非负偶数组成的集合;(2)方程x 2=2x 的所有实数解组成的集合;(3)直线y =2x +1与y 轴的交点所组成的集合;(4)由所有正整数构成的集合.解 (1)因为不大于10是指小于或等于10,非负是大于或等于0的意思,所以不大于10的非负偶数集是 {0,2,4,6,8,10}.(2)方程x 2=2x 的解是x =0或x =2,所以方程的解组成的集合为{0,2}.(3)将x =0代入y =2x +1,得y =1,即交点是(0,1),故交点组成的集合是{(0,1)}.(4)正整数有1,2,3,…,所求集合为{1,2,3,…}.反思感悟 用列举法表示集合应注意的两点(1)应先弄清集合中的元素是什么,是数还是点,还是其他元素;(2)若集合中的元素是点时,则应将有序实数对用小括号括起来表示一个元素.跟踪训练1 用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ;(2)方程x 2-9=0的实数根组成的集合B ;(3)一次函数y =x +2与y =-2x +5的图象的交点组成的集合D .解 (1)因为大于1且小于6的整数包括2,3,4,5,所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3,所以B ={-3,3}.(3)由⎩⎪⎨⎪⎧ y =x +2,y =-2x +5,得⎩⎪⎨⎪⎧x =1,y =3, 所以一次函数y =x +2与y =-2x +5的交点为(1,3),所以D ={(1,3)}.二、描述法表示集合例2 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)平面直角坐标系中坐标轴上的点组成的集合.解 (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故平面直角坐标系中坐标轴上的点的集合可表示为{(x,y)|xy=0}.反思感悟利用描述法表示集合应关注五点(1)写清楚该集合代表元素的符号.例如,集合{x∈R|x<1}不能写成{x<1}.(2)所有描述的内容都要写在花括号内.例如,{x∈Z|x=2k},k∈Z,这种表达方式就不符合要求,需将k∈Z也写进花括号内,即{x∈Z|x=2k,k∈Z}.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x2-2x+1=0的实数解集可表示为{x∈R|x2-2x+1=0},也可写成{x|x2-2x+1=0}.跟踪训练2下列三个集合:①A={x|y=x2+1};②B={y|y=x2+1};③C={(x,y)|y=x2+1}.(1)它们是不是相同的集合?(2)它们各自的含义分别是什么?解(1)不相同.(2)集合A={x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}=R,即A=R;集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{y|y =x2+1}={y|y≥1}.集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对.可以认为集合C是由坐标平面内满足y=x2+1的点(x,y)构成的.三、集合表示法的综合应用例3集合A={x|kx2-8x+16=0},若集合A中只有一个元素,求实数k的值组成的集合.解(1)当k=0时,方程kx2-8x+16=0变为-8x+16=0,解得x=2,满足题意;(2)当k≠0时,要使集合A={x|kx2-8x+16=0}中只有一个元素,则方程kx2-8x+16=0有两个相等的实数根,所以Δ=64-64k=0,解得k=1,此时集合A={4},满足题意.综上所述,k=0或k=1,故实数k的值组成的集合为{0,1}.延伸探究1.本例若将条件“只有一个元素”改为“有两个元素”,其他条件不变,求实数k的值组成的集合.解由题意可知,方程kx2-8x+16=0有两个不等实根,故k≠0,且Δ=64-64k>0,即k<1,且k≠0.所以实数k组成的集合为{k|k<1,且k≠0}.2.本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k的取值范围.解由题意可知,方程kx2-8x+16=0至少有一个实数根.①当k=0时,由-8x+16=0得x=2,符合题意;②当k≠0时,要使方程kx2-8x+16=0至少有一个实数根,则Δ=64-64k≥0,即k≤1,且k ≠0.综合①②可知,实数k 的取值范围为{k |k ≤1}.反思感悟 (1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3集合A 中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.(2)在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想.集合及其相关概念1.以下各组对象不能组成集合的是( )A .中国古代四大发明B .地球上的小河流C .方程x 2-7=0的实数解D .周长为10 cm 的三角形答案 B 解析 因为没有明确的标准确定什么样的河流称为小河流,故地球上的小河流不能组成集合.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5 C.37D.7 答案 D 解析 由题意知a 应为无理数,故a 可以为7.3.有下列说法:①集合N 中最小的数为1;②若-a ∈N ,则a ∈N ;③若a ∈N ,b ∈N ,则a +b 的最小值为2;④所有小的正数组成一个集合.其中正确命题的个数是( )A .0B .1C .2D .3答案 A 解析 N 中最小的数为0,所以①错;由-(-2)∈N ,而-2∉N 可知②错;若a ∈N ,b ∈N ,则a +b 的最小值为0,所以③错;“小”的正数没有明确的标准,所以④错。
2025年新人教版高考数学一轮复习讲义含答案解析 第四章 §4.5 三角函数的图象与性质

2025年新人教版高考数学一轮复习讲义含答案解析§4.5三角函数的图象与性质课标要求 1.能画出三角函数的图象.2.了解三角函数的周期性、奇偶性、最大(小)值.3.借助图象理解正弦函数、余弦函数在[0,2π]-π2,知识梳理1.用“五点法”作正弦函数和余弦函数的简图(1)在正弦函数y=sin x,x∈[0,2π]的图象中,五个关键点是:(0,0),(π,0),(2π,0).(2)在余弦函数y=cos x,x∈[0,2π]的图象中,五个关键点是:(0,1),(π,-1),(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k∈Z)|π方程常用结论1.对称性与周期性(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是12个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是12个周期.2.与三角函数的奇偶性相关的结论(1)若y=A sin(ωx+φ)为偶函数,则φ=kπ+π2(k∈Z);若为奇函数,则φ=kπ(k∈Z).(2)若y=A cos(ωx+φ)为偶函数,则φ=kπ(k∈Z);若为奇函数,则φ=kπ+π2(k∈Z).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)函数y=sin x,x∈[0,2π],y=cos x,x∈[0,2π]的五个关键点是零点和极值点.(×)(2)函数y=sin x图象的对称轴方程为x=2kπ+π2(k∈Z).(×)(3)若f(2x+T)=f(2x),则T是函数f(2x)的周期.(×)(4)函数y=tan x在整个定义域上是增函数.(×)2.(多选)已知函数f(x)=x∈R),下列结论正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)在区间0,π2上单调递增C.函数f(x)的图象关于直线x=0对称D.函数f(x)是奇函数答案ABC解析由题意得f(x)=-cos x,对于A,T=2π1=2π,故A正确;对于B,因为y=cos x在0,π2上单调递减,所以函数f(x)在0,π2上单调递增,故B正确;对于C,f(-x)=-cos(-x)=-cos x=f(x),所以函数f(x)是偶函数,所以其图象关于直线x=0对称,故C 正确,D 错误.3.函数f (x )=2tan x ()π+π6,k ∈Z+π6,k ∈Z+π6,k ∈Z 答案D解析令2x -π3=k π2,k ∈Z ,解得x =k π4+π6,k ∈Z ,所以函数f (x )=2tanx +π6,k ∈Z .4.(必修第一册P213T4改编)函数y =3-2cos ______,此时x =________.答案53π4+2k π(k ∈Z )解析函数y =3-2cos 3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ).题型一三角函数的定义域和值域例1(1)函数y =cos x -32的定义域为()A.-π6,π6B.k π-π6,k π+π6(k ∈Z )C.2k π-π6,2k π+π6(k ∈Z )D .R 答案C解析由cos x -320,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6(k ∈Z ).(2)如果函数f (x )=+32+a 在区间-π3,5π6上的最小值为3,则a 的值为()A.3+12B.32C.2+32D.3-12答案A解析因为当x ∈-π3,5π6时,x +π3∈0,7π6,所以-12,1,当x =5π6时,sin 有最小值-12.可得f (x )=+32+a 的最小值为-12+32+a =3,解得a =3+12.思维升华三角函数值域的不同求法(1)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域.(2)把sin x 或cos x 看作一个整体,转换成二次函数求值域.(3)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.跟踪训练1(1)函数y =tan ()|x ≠π4|x ≠3π4|x ≠π4+k π,k ∈Z|x ≠3π4+k π,k ∈Z 答案D解析函数y =令x -π4≠π2+k π,k ∈Z ,解得x ≠3π4+k π,k ∈Z ,∴函数y |x ≠3π4+k π,k ∈Z(2)函数f (x )=cos 2x +6cos ()A .4B .5C .6D .7答案B解析因为f (x )=cos 2x +=cos 2x +6sin x =1-2sin 2x +6sin x=-x +112,又sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值5.题型二三角函数的周期性、对称性与奇偶性例2(1)(多选)(2023·合肥模拟)已知函数f (x )=sin x (sin x -cos x ),则下列说法正确的是()A .函数f (x )的最小正周期为πB -π8,y =f (x )图象的对称中心C y =f (x )图象的对称中心D .直线x =5π8是y =f (x )图象的对称轴答案AD解析f (x )=sin x (sin x -cos x )=sin 2x -sin x cos x =1-cos 2x 2-12sin 2x =-22sin x +12,T =2π2=π,故A 正确;当x =-π8时,2x +π4=0,此时x 0,-π8,B 错误;当x =π8时,2x +π4=π2,此时x 1,则函数关于直线x =π8对称,故C 错误;当x =5π8时,2x +π4=3π2,此时x 1,则函数关于直线x =5π8对称,故D 正确.(2)已知函数f (x )=2cos +π4+φ∈-π2,π2,则φ的值为________.答案π4解析由已知,得π4+φ=k π+π2(k ∈Z ),所以φ=k π+π4(k ∈Z ),又因为φ∈-π2,π2,所以当k =0时,φ=π4符合题意.思维升华(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)对称轴、对称中心的求法:对于可化为f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z )(或令ωx +φ=k π(k ∈Z )),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ωx +φ=π2+k π(k ∈Z x 即可.对于可化为f (x )=A tan(ωx +φ)形式的函数,如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π2(k ∈Z ),求x 即可.跟踪训练2(1)(多选)下列函数中,最小正周期为π的是()A .y =cos|2x |B .y =|cos x |C .y =xD .y =x答案ABC解析A中,y=cos|2x|=cos2x,最小正周期为π;B中,由图象知y=|cos x|的最小正周期为π;C中,y=cosxT=2π2=π;D中,y=tanxT=π2.(2)(2023·日照模拟)已知函数f(x)=2sin(ωx+φ>0,|φπ,其图象关于直线x=π6对称,则f________.答案3解析函数f(x)=2sin(ωx+φ>0,|φπ,其图象关于直线x=π6对称,π,φ=π2+kπ,k∈Z,∵|φ|<π2,∴ω=2,φ=π6,故f(x)=x则f×π4+=3.题型三三角函数的单调性命题点1求三角函数的单调区间例3(1)(2022·北京)已知函数f(x)=cos2x-sin2x,则()A.f (x)-π2,-B.f (x)-π4,C.f(x)D.f(x)答案C解析依题意可知f(x)=cos2x-sin2x=cos2x.对于A 选项,因为x -π2,-2x πf (x )=cos 2x -π2,-单调递增,所以A 选项不正确;对于B 选项,因为x -π4,2x -π2,f (x )=cos 2x -π4,调,所以B 选项不正确;对于C 选项,因为x 2x f (x )=cos 2x 以C 选项正确;对于D 选项,因为x 2x f (x )=cos 2x 以D 选项不正确.(2)函数f (x )=sin 2________.答案k π-π12,k π+5π12,k ∈Z解析f (x )=sin 2g (x )=sin x 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所给函数的单调递减区间为k π-π12,k π+5π12,k ∈Z .延伸探究若例3(2)中的函数不变,求其在[0,π]上的单调递减区间.解令A =k π-π12,k π+5π12,k ∈Z ,B =[0,π],∴A ∩B =0,5π12∪11π12,π,∴f (x )在[0,π]上的单调递减区间为0,5π12和11π12,π.命题点2根据单调性求参数例4已知f (x )=sin(2x -φφ在0,π3上单调递增,且f (x )φ的取值范围是()A.π6,B.π6,C.π3,D.π4,答案B解析由x ∈0,π3,可得2x -φ∈-φ,2π3-φ,又由0<φ<π2,且f (x )在0,π3上单调递增,可得2π3-φ≤π2,所以π6≤φ<π2.当x 2x -φφ,7π4-由f (x )上有最小值,可得7π4-φ>3π2,所以φ<π4.综上,π6≤φ<π4.思维升华(1)已知三角函数解析式求单调区间求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,可先借助诱导公式将ω化为正数,防止把单调性弄错.(2)已知三角函数的单调区间求参数先求出函数的单调区间,然后利用集合间的关系求解.跟踪训练3(1)设函数f (x )=2f (x )在0,π2上的单调递减区间是()A.0,π8B.0,π4C.π4,π2 D.π8,π2答案D解析由已知f (x )=x 得2k π≤2x -π4≤2k π+π,k ∈Z ,则k π+π8≤x ≤k π+5π8,k ∈Z ,又x ∈0,π2,∴f (x )在0,π2上的单调递减区间为π8,π2.(2)若f (x )=cos x -sin x 在[-a ,a ]上单调递减,则a 的最大值是()A.π4B.π2C.3π4D .π答案A解析f(x)=cos x-sin x=2cos由题意得a>0,因为f(x)=2cos[-a,a]上单调递减,a+π4≥0,+π4≤π,>0,解得0<a≤π4,所以a的最大值是π4.课时精练一、单项选择题1.若函数y=3cosωxω>0)两对称中心间的最小距离为π2,则ω等于() A.1B.2C.3D.4答案A解析因为函数y=3cosωxω>0)两对称中心间的最小距离为π2,所以T2=π2,则T=π,所以T=2π2ω=π,解得ω=1.2.(2023·焦作模拟)已知函数f(x)=xf(x)在[-2,0]上()A.单调递增B.单调递减C.先增后减D.先减后增答案D解析∵x∈[-2,0],∴2x-π6∈-4-π6,-π6,∵-3π2<-4-π6<-π<-π6<0,∴函数f (x )=cos x [-2,0]上先减后增.3.已知函数f (x )=a =f b =f c =f a ,b ,c 的大小关系是()A .a >b >cB .a >c >bC .c >a >bD .b >a >c 答案A解析a =f 2cos 13π42,b =f 2cos π3,c =f 2cos 5π12,因为y =cos x 在[0,π]上单调递减,又0<13π42<π3<5π12<π,所以a >b >c .4.(2023·全国乙卷)已知函数f (x )=sin(ωx +φ)x =π6和x =2π3为函数y =f (x )的图象的两条相邻对称轴,则f ()A .-32B .-12 C.12 D.32答案D 解析因为直线x =π6和x =2π3为函数y =f (x )的图象的两条相邻对称轴,所以T 2=2π3-π6=π2,不妨取ω>0,则T =π,ω=2πT=2,由题意知,当x =π6时,f (x )取得最小值,则2×π6+φ=2k π-π2,k ∈Z ,则φ=2k π-5π6,k ∈Z ,不妨取k =0,则f (x )=x则f =32.5.(2023·抚州模拟)已知函数f (x )=sin|x |-cos 2x ,则下列结论错误的是()A .f (x )为偶函数B .f (x )的最小正周期为πC .f (x )的最小值为-98D .f (x )的最大值为2答案B 解析因为f (-x )=sin|-x |-cos(-2x )=sin|x |-cos 2x =f (x ),所以f (x )是偶函数,则A 正确;若f (x )的最小正周期为π,则f (x +π)=f (x )恒成立,即sin|x +π|-cos 2(x +π)=sin|x |-cos 2x ,即sin|x +π|=sin|x |恒成立,而当x =π2时,sin 3π2≠sin π2,所以“f (x )的最小正周期为π”是错误的,则B 错误;由f (x )是偶函数,只需考虑x ≥0时的最值即可,当x ≥0时,f (x )=sin x -cos 2x =2sin 2x +sin x-1=x -98,因为sin x ∈[-1,1],所以x -98∈-98,2,即f (x )的值域为-98,2,则C 和D 正确.6.(2023·安康模拟)记函数f (x )=b (ω∈N *)的最小正周期为T ,若π2<T <π,且y =f (x )的最小值为1.则y =f (x )图象的一个对称中心为()-π12,答案C 解析由函数的最小正周期T 满足π2<T <π,得π2<2πω<π,解得2<ω<4,又因为ω∈N *,所以ω=3,所以f (x )=x b ,又函数y =f (x )的最小值为1,所以b =2,所以f (x )=x 2,令3x +π4=k π,k ∈Z ,解得x =k π3-π12,k ∈Z ,-π12,k ∈Z ),只有C 符合题意(k =2).二、多项选择题7.(2024·株洲模拟)下列关于函数f (x )=cos x +a sin x (a ≠0)的说法正确的是()A .存在a ,使f (x )是偶函数B .存在a ,使f (x )是奇函数C .存在a ,使f (x +π)=f (x )D .若f (x )的图象关于直线x =π4a =1答案AD 解析函数f (x )=cos x +a sin x =1+a 2sin(x +θ),其中sin θ=11+a 2,cos θ=a1+a 2,θ∈(0,π),当a =0时,f (x )=cos x 为偶函数,故A 正确;对于B ,无论a 取何值,函数f (x )=1+a 2sin(x +θ)都不可能为奇函数,故B 错误;对于C ,f (x +π)=1+a 2sin(x +π+θ)=-1+a 2sin(x +θ)≠f (x ),故C 错误;对于D ,当x =π4时,函数f (x )取得最大值或最小值,故22+22a =±1+a 2,解得a =1,故D 正确.8.(2023·西安模拟)已知函数f (x )=sin(ωx +φ>0,0<|φ且f-f 1,则()A .ω=3B .φ=-π6C .ω=2D .φ=π6答案CD解析因为函数f (x )=sin(ωx +φ>0,0<|φ所以T 2=12·2πω≥2π3-π6=π2,所以0<ω≤2,因为f f 1,所以++1,所以π6ω+φ=π2+2k 1π,2π3ω+φ=3π2+2k 2π,k 1,k 2∈Z ,故π2ω=π+2(k 2-k 1)π,所以ω=2+4(k 2-k 1),k 2,k 1∈Z ,因为0<ω≤2,k 2-k 1∈Z ,所以ω=2,则φ=π6+2k 1π,k 1∈Z ,又0<|φ|<π2,所以φ=π6.三、填空题9.函数y =sin x -cos x 的定义域为________.答案2k π+π4,2k π+5π4(k ∈Z )解析方法一要使函数有意义,必须使sin x -cos x ≥0.在同一直角坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为2k π+π4,2k π+5π4(k ∈Z ).方法二要使函数y =sin x -cos x 有意义,即使sin x -cos x ≥0,即2sin 0,即2k π≤x -π4≤2k π+π(k ∈Z ),即原函数的定义域为2k π+π4,2k π+5π4(k ∈Z ).10.写出一个同时满足下列两个条件的函数f (x )=________.①∀x ∈R ,f f (x );②∀x ∈R ,f (x )≤f 答案-cos 4x (答案不唯一)解析由∀x ∈R ,f f (x )可知,函数的周期为π2,由∀x ∈R ,f (x )≤f x =π4处取到最大值,则f (x )=-cos 4x 满足题意,一方面根据余弦函数的周期公式,T =2π4=π2,满足∀x ∈R ,f f (x ),另一方面,f cos π=1=f (x )max ,满足∀x ∈R ,f (x )≤f11.若函数f (x )=7sin在区间π2,a 上单调,则实数a 的最大值为________.答案7π5解析因为x ∈π2,a ,所以x +π10∈3π5,a +π10,又3π5在y =sin x 的单调递减区间π2,3π2内,所以a +π10≤3π2,解得a ≤7π5,所以a 的最大值为7π5.12.已知sin x +cos y =14,则sin x -sin 2y 的最大值为________.答案916解析∵sin x +cos y =14,sin x ∈[-1,1],∴sin x =14-cos y ∈[-1,1],∴cos y ∈-34,54,即cos y ∈-34,1,∵sin x -sin 2y =14-cos y -(1-cos 2y )=cos 2y -cos y -34=y -1,又cos y ∈-34,1,利用二次函数的性质知,当cos y =-34时,sin x -sin 2y 取最大值,(sin x -sin 2y )max -34--1=916.四、解答题13.设函数f (x )=ωx m 的图象关于直线x =π对称,其中0<ω<12.(1)求函数f (x )的最小正周期;(2)若函数y =f (x )的图象过点(π,0),求函数f (x )在0,3π2上的值域.解(1)由直线x =π是y =f (x )图象的一条对称轴,可得ωπ±1,所以2ωπ-π6=k π+π2(k ∈Z ),解得ω=k 2+13(k ∈Z ).又0<ω<12,所以ω=13,所以函数f (x )的最小正周期为3π.(2)由(1)知f (x )=m ,因为f (π)=0,所以m =0,解得m =-2,所以f (x )=2,当0≤x ≤3π2时,-π6≤23x -π6≤5π6,可得-12≤ 1.所以-3≤f (x )≤0,故函数f (x )在0,3π2上的值域为[-3,0].14.(2023·新乡模拟)已知函数f (x )=a x 2cos a >0),且满足________.从①f (x )的最大值为1;②f (x )的图象与直线y =-3的两个相邻交点的距离等于π;③f (x )的图(1)求函数f (x )的解析式及最小正周期;(2)若关于x 的方程f (x )=1在区间[0,m ]上有两个不同解,求实数m 的取值范围.注:如果选择多个条件分别解答,则按第一个解答计分.解(1)函数f (x )=a x 2cos=a x x 1=a x x +π2-1=a x x 1=(a +x 1,若选择条件①f (x )的最大值为1,则a +1=2,解得a =1,所以f (x )=x 1,则函数f (x )的最小正周期T =2π2=π.若选择条件②f (x )的图象与直线y =-3的两个相邻交点的距离等于π,且f (x )的最小正周期T =2π2=π,所以-(a +1)-1=-3,解得a =1,所以f (x )=x 1.若选择条件③f (x )则f (a +1)sin π6-1=0,解得a =1.所以f (x )=x 1,则函数f (x )的最小正周期T =2π2=π.(2)令f (x )=1,得x 1,解得2x -π6=π2+2k π,k ∈Z ,即x =π3+k π,k ∈Z .若关于x 的方程f (x )=1在区间[0,m ]上有两个不同解,则x =π3或x =4π3,所以实数m 的取值范围是4π3,15.(2024·抚顺模拟)已知函数f (x )=|,则下列说法正确的是()A .f (x )的周期是π2B .f (x )的值域是{y |y ≠0,y ∈R }C .直线x =5π3是函数f (x )图象的一条对称轴D .f (x )k π-2π3,2k πk ∈Z答案D 解析函数f (x )的周期是2π,故A 错误;f (x )的值域是[0,+∞),故B 错误;当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,∴直线x =5π3不是函数f (x )图象的一条对称轴,故C 错误;令k π-π2<12x -π6<k π,k ∈Z ,可得2k π-2π3<x <2k π+π3,k ∈Z ,∴f (x )k π-2π3,2k πk ∈Z ,故D 正确.16.(2023·无锡模拟)设函数f (x )=sinx α,α+π3上的值域为[M ,N ],则N -M 的取值范围是______.答案12,3解析函数f (x )=sin x T =π,α=π3<T 2,当函数f (x )在α,α+π3上单调时,N -M =|f (α)-f=|αα=3|cos 2α|≤3,当函数f (x )在α,α+π3上不单调时,由正弦函数的图象性质知,当f (x )在α,α+π3上的图象关于直线x =α+π6对称时,N -M 最小,此时-π3=k π+π2,k ∈Z ,即α=k π2+π4,k ∈Z ,因此(N -M )min =|f (α)-f=|αsin 2α|=|ππ=|12cos k π-cos k π|=12,所以N -M 的取值范围是12,3.。
新高考数学复习基础知识专题讲义50 充分必要条件(解析版)

新高考数学复习基础知识专题讲义知识点50 充分必要条件知识理解充分条件、必要条件BAA=B 且A ⊉B考向一充分必要条件的判断【例1】(2021·江苏常州市·高三一模)“sin 2α=”是“sin cos αα=”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】D【解析】由sin 2α=,可得2,4k k Z παπ=+∈或32,4k k Z παπ=+∈, 当32,4k k Z παπ=+∈时,此时sin cos αα≠,即充分性不成立; 反之当sin cos αα=时,其中α可为54π,此时sin 2α=-,即必要性不成立, 考向分析所以“sin α=”是“sin cos αα=”的既不充分也不必要条件. 故选:D .【举一反三】1.(2021·浙江高三期末)已知m 、l 是不同的直线,α、β是不同的平面,且m α⊥,l β⊂,则“αβ⊥”是“//m l ”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】充分性:若αβ⊥,设n αβ=,存在直线b β⊂,使得b n ⊥,由面面垂直的性质定理可得b α⊥,m α⊥,则//m b ,从而可得//m β或m β⊂,则m 与l 的位置关系不确定,充分性不成立; 必要性:m α⊥,//m l ,则l α⊥,l β⊂,αβ∴⊥,必要性成立.因此,“αβ⊥”是“//m l ”的必要不充分条件. 故选:B.2.(2021·天津高三月考)已知x ∈R ,则“2x <”是“21x>”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】当1x =-时,“x <2”成立,但20x < ,故“21x<”,故“x <2”不是“21x >”的充分条件, “21x >”等价于2002x x x -<⇔<<,即21x>能推出2x <,∴“x <2”是“21x >”的必要条件, 故“x <2”是“21x>”的必要不充分条件,故选:B.3.(2021·浙江温州市·高三二模)已知,αβ是两个不重合的平面,直线l α⊥,则“//l β”是“αβ⊥”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A【解析】因为,αβ是两个不重合的平面,直线l α⊥,若//l β,则存在直线a β⊂,满足//l a ,因为l α⊥,所以a α⊥,所以αβ⊥,故充分性成立; 若αβ⊥,l α⊥,则l β⊂,或//l β,故必要性不成立; 所以“//l β”是“αβ⊥”的充分不必要条件;故选:A考向二 充分必要条件的选择【例2】(2021·北京门头沟区·高三一模)“ln(1)0x +<”的一个必要而不充分条件是( ) A .11x e-<<-B .0x >C .10x -<<D .0x < 【答案】D【解析】ln(1)0x +<等价于011x <+<,即10x -<<, 因为10x -<<可以推出0x <,而x <0不能推出10x -<<, 所以0x <是10x -<<的必要不充分条件,所以“ln(1)0x +<”的一个必要而不充分条件是0x <. 故选:D 【举一反三】1.(2021·江苏海门市·高三月考)命题“[]21220x x a ∀∈-≤,,”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .4a ≤D .4a ≥ 【答案】D【解析】“[]21220x x a ∀∈-≤,,”为真命题,可得2a ≥,因为[)[)4,2,+∞⊂+∞ , 故选:D .2.(2021·甘肃兰州市·高三月考(理))命题“对任意2[1,2),0x x a ∈-<”为真命题的一个充分不必要条件可以是( )A .4a ≥B .4a >C .1a ≥D .1a > 【答案】B【解析】命题为真命题,则2a x >对[)1,2x ∈恒成立 4a ∴≥{}4a a >是{}4a a ≥的真子集 4a ∴>是命题为真的充分不必要条件本题正确选项:B3.(2021·全国高三专题练习(文))若0x >,则2020x a x+≥恒成立的一个充分条件是( ) A .80a >B .80a <C .90a >D .90a < 【答案】B【解析】因为0x >,由基本不等式2020x x +≥=当且仅当2020x x =即x =时,取等号,要使得2020x a x +≥恒成立,则a ≤, 所以2020x a x+≥恒成立的一个充分条件是80a < 故选:B考向三 求参数【例3】(2021·浙江高三其他模拟)已知p :2x a +<,q :x a ≥,且p 是q 的充分不必要条件,则实数a 的取值范围是( )A .(],1-∞-B .(),1-∞-C .[)1,+∞D .()1,+∞ 【答案】A【解析】因为p :2x a +<,所以:22p a x a --<<-+,记为{}|22A x a x a =--<<-+;:q x a ≥,记为{}|B x x a =≥.因为p 是q 的充分不必要条件,所以AB所以2a a ≤--,解得1a ≤-. 故选:A 【举一反三】1.(2021·全国高三专题练习)若()2:140p a x +-=是2:60q x x +-=的充分不必要条件,则a 的值为( )A .1B .1-C .D .1或1-【答案】D【解析】由题意,命题()2:140p a x +-=即为241x a =+, 命题2:60q x x +-=即为3x =-或2x =, 因为p 是q 的充分不必要条件,所以2421a =+或2431a =-+(舍去), 所以1a =±. 故选:D.2.(2021·湖北襄阳市·高三月考)已知集合122A x x ⎧⎫=-≤<⎨⎬⎩⎭,集合2{(2)20}B x x a x a =-++<若“”x A ∈是“”x B ∈的充分不必要条件,则实数a 的取值范围为( ) A .1,2⎛⎫-∞-⎪⎝⎭B .1,2⎛⎤-∞- ⎥⎝⎦C .1,22⎡⎫-⎪⎢⎣⎭D .1,22⎛⎫- ⎪⎝⎭【答案】A【解析】由题意可知AB ,又{}()(){}2(2)20=|20B x x a x a x x a x =-++<--<,①当2a <时,{}|2B x a x =<<,若A B ,则12a <-; ②当2a >时,{}|2B x x a =<<,此时A B 不成立;③当2a =时,B =∅,A B 不成立.综上所述:12a <-. 故选:A.3.(2019·安徽宿州市·高三一模(文))设x ∈R ,若“log 2(x -2)<1”是“x >m 2-1”的充分不必要条件,则实数m 的取值范围是( )A .(3,3)B .(-1,1)C .[3,3]D .[-1,1] 【答案】C【解析】()22log 21log 2x -<=,解得24x <<,则“24x <<”是“x >m 2-1”的充分不必要条件,即212m -≤,解得33m -≤≤, 故选:C1.(2021·江苏徐州市·高三二模)已知x ∈R ,则“34x -≤≤”是“()2lg 21x x --≤”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分又不必要条件 【答案】B【解析】()22lg 210210x x x x --≤⇒<--≤,强化练习解得31x -≤<-或24x <≤,所以“34x -≤≤”不能推出“()2lg 21x x --≤”,反之成立, 所以“34x -≤≤”是“()2lg 21x x --≤”的必要不充分条件. 故选:B2.(2021·浙江高三其他模拟)已知a 为正实数,则“1a >”是“32212log log a a ->”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】C【解析】因为32212log log a a ->等价于3222log log a a >,由a 为正实数且1a >,故有32a a >,所以3222log log a a >成立;由a 为正实数,3222log log a a >且函数2log y x =是增函数,有32a a >,故()210a a ->,所以1a >成立. 故选:C .3(2021·浙江高三其他模拟)“0,2πα⎛⎫∈ ⎪⎝⎭”是“tan αα>”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】A【解析】令函数tan y x x =-,当0,2x π⎛⎫∈ ⎪⎝⎭时,2211tan 0cos y x x '=-=≥, 所以函数tan y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增,则tan tan000αα->-=,即tan αα>,故充分;但是反之未必成立,比如取23πα=-,易知22tan 33ππ⎛⎫-=>- ⎪⎝⎭,满足tan αα>,但是不满足0,2πα⎛⎫∈ ⎪⎝⎭, 所以“0,2πα⎛⎫∈ ⎪⎝⎭”是“tan αα>”的充分不必要条件, 故选:A .4.(2021·浙江高三其他模拟)已知等比数列{}n a 的公比为q ,前n 项积为n T ,且9512T =,则“241a a =”是“q =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】由等比数列的性质可知995512T a ==,所以52a =.若241a a =,则22431a a a ==,且50a >,所以31a =,故2532a q a ==,q =q =4a ,22a =,所以241a a =,必要性成立故“241a a =”是“q =. 故选:B .5.(2021·北京平谷区·高三一模)已知函数()sin()(0,0,)f x A x A ωϕωϕ=+>>∈R .则“()f x 是偶函数“是“2ϕπ=”的( ) A .充分不必要条件B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】若2ϕπ=,则()sin()cos 2f x A x A x πωω=+=,()cos()cos ()f x A x A x f x ωω-=-==,所以()f x 为偶函数;若()sin()f x A x ωϕ=+为偶函数,则2k πϕπ=+,k Z ∈,ϕ不一定等于2π.所以“()f x 是偶函数“是“2ϕπ=”的必要不充分条件. 故选:B6.(2021·山西高三一模(文))“α∀∈R ,sin cos 2k παα⎛⎫-= ⎪⎝⎭,k ∈Z ”是“1k =”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】B【解析】当1k =,sin cos 2k παα⎛⎫-= ⎪⎝⎭成立 ;反之,当5k =,sin cos 2k παα⎛⎫-= ⎪⎝⎭推不出1k =,故“α∀∈R ,sin cos 2k παα⎛⎫-= ⎪⎝⎭,k ∈Z ”是“1k =”的必要不充分条件 故选:B7.(2021·湖南长沙市·长郡中学高三月考)1943年19岁的曹火星在平西根据地进行抗日宣传工作,他以切身经历创作了歌曲《没有共产党就没有中国》,后毛泽东主席将歌曲改名为《没有共产党就没有新中国》.2021年是中国共产党建党100周年,仅从逻辑学角度来看,“没有共产党就没有新中国”这句歌词中体现了“有共产党”是“有新中国”的( ) A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件 【答案】B【解析】从逻辑学角度,命题“没有共产党就没有新中国”的逆否命题是“有了新中国就有了共产党”,因此“有共产党”是“有新中国”的必要条件, 故选:B .8.(2021·全国高三其他模拟)已知直线()1:21230l x a y a +-+-=,22:340l ax y a +++=,则“12//l l ”是“32a =”的( ) A .充分不必要条件B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】C【解析】若12//l l ,则()213a a -=,解得:32a =或1a =-, 当1a =-时,1:350l x y --=,2:350l x y -++=,直线1l ,2l 重合,32a ∴=; ∴充分性成立;当32a =时,1:20l x y +=,225:206l x y ++=,显然12//l l ,∴必要性成立. ∴故“12//l l ”是“32a =”的充要条件.故选:C.9.(2021·荆门市龙泉中学高三月考)已知{}2:230p A x x x =--≤,{}22:240q B x x mx m =-+->,若p 是q 成立的充分不必要条件,求m 的取值范围是( )A .()(),35,-∞-+∞B .()3,5-C .[]3,5-D .(][),35,-∞-+∞【答案】A【解析】由2230x x --≤解得:13x -≤≤,[]1,3A ∴=-.由22240x mx m -+->,即()24x m ->,解得2x m >+或2x m <-+.()(),22,B m m ∴=-∞-++∞.p 是q 成立的充分不必要条件,则A B ,32m ∴<-+或21m +<-,解得:5m >或3m <-. m ∴的取值范围是()(),35,-∞-+∞.故选:A.10.(2021·北京师范大学珠海分校附属外国语学校高三月考)若p :2,:x q x a ≤≤,且p 是q 的充分不必要条件,则a 的取值范围是( )A .{}|2?a a ≥B .{}|2a a ≤C .{}|2a a ≥-D .{}|2a a ≤-【答案】A 【解析】因为2x ≤,所以22x -≤≤,因为p 是q 的充分不必要条件,所以2a ≥,故选:A.11.(2021·江苏镇江市·扬中市第二高级中学高三开学考试)已知“x k ≤”是“12x ->”的充分不必要条件,则k 的取值范围是( )A .[2,)+∞B .(,1)-∞-C .(2,)+∞D .(,1]-∞-【答案】B 【解析】由12x ->得12x ->或12x -<-,解得:1x <-或3x >,因为“x k ≤”是“12x ->”的充分不必要条件,所以{}|x x k ≤是{|1x x <-或}3x >的真子集,可得:1k <-,故选:B12.(2019·兴安县第三中学高三期中)已知集合A ={x |x >5},集合B ={x |x >a },若命题“x ∈A ”是命题“x ∈B ”的充分不必要条件,则实数a 的取值范围是( )A .(-∞,5)B .(-∞,5]C .(5,+∞)D .[5,+∞)【答案】A【解析】【解析】由题意可知,A ⫋B ,又A ={x |x >5},B ={x |x >a },如图所示,由图可知,a <5.故选:A.13.(2021·安徽合肥市·高三三模(理))“关于x 的方程()212x x a +=有实数解”的一个充分不必要条件是( )A .113a <<B .12a ≥C .213a <<D .112a ≤< 【答案】C 【解析】由题知:()212x x a +=,221x x a =+, 令21x t =≥,()1111t f t t t ==-++, 因为1t ≥,11012t <≤+,所以()1,12f t ⎡⎫∈⎪⎢⎣⎭. 故关于x 的方程()212x x a +=有实数解”的一个充分不必要条件是213a <<. 故选:C14.(2021·贵溪市实验中学高三月考(文))已知:1:12p x ≥-,:||1q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(,3]-∞B .[2,3]C .(2,3]D .(2,3)【答案】C 【解析】由112x ≥-,得302x x -≥-,解得23x <≤,即:23p x <≤, 由||1x a -<,得11a x a -<<+,即:11q a x a -<<+,因为p 是q 的充分不必要条件,所以1213a a -≤⎧⎨+>⎩,解得23a <≤, 故选:C15.(2017·天津高三一模(文))命题“[]1,3x ∀∈,2x a ≤”为真命题的一个充分不必要条件是( )A .9a ≤B .9a ≥C .10a ≤D .10a ≥【答案】D【解析】[1,3]x ∀∈,219x ≤≤,因此2x a ≤恒成立,则9a ≥,因此D 是其一个充分不必要条件,故选D .16.(2021·江苏高三专题练习)满足函数()()ln 3f x mx =+在(],1-∞上单调递减的一个充分不必要条件是A .42m -<<-B .30m -<<C .40m -<<D .3<1m -<-【答案】D【解析】结合复合函数的单调性,函数()()lg 3f x mx =+在(],1-∞上单调递减的充要条件是030m m <⎧⎨+>⎩,解得30m -<<. 选项A 中,42m -<<-是函数在(],1-∞上单调递减的既不充分也不必要条件,所以A 不正确; 选项B 中,30m -<<是函数在(],1-∞上单调递减的充要条件,所以B 不正确;选项C 中,40m -<<是函数在(],1-∞上单调递减的必要不充分条件,所以C 不正确; 选项D 中,31m -<<-是函数在(],1-∞上单调递减的充分不必要条件,所以D 正确.故选D .17(2021·全国高三专题练习)已知1:12p x ≥-,()2:1q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(-∞,3]B .[2,3]C .(2,3]D .(2,3)【答案】C 【解析】由1:12p x -,所以23x <,又()2:1q x a -<,11a x a -<<+,因为p 是q 的充分不必要条件,所以3112a a <+⎧⎨-⎩,解得23a <≤即(]2,3a ∈. 故选:C .18.(2021·全国高三专题练习)已知集合{|A x y ==,集合{|}B x x a =≥,则A B ⊆的一个充分不必要条件是( )A .(),2-∞-B .(],2-∞-C .()2,+∞D .[)2,+∞【答案】A【解析】{{}||22A x y x x ===-≤≤, ∴当A B ⊆时,2a ≤-由充分不必要条件的性质可知,只有A 项满足∴2a <-,故选:A.19.(多选)(2021·江苏盐城市·高三一模)下列选项中,关于x 的不等式()2120ax a x +-->有实数解的充分不必要条件的有( )A .0a =B .3a ≥-+.0a >D .3a ≤--【答案】AC【解析】0a ≥时必有解,当0a <时,()21803a a a ∆=-+>⇒<--或30a -+<, 故AC 符合题意.故选:AC20.(2021·全国高三月考(文))已知命题():0,p x ∀∈+∞,2230x mx -+>,命题:q m a <;若p 是q 的充分不必要条件,则实数a 的取值范围为______.【答案】()+∞【解析】设命题():0,p x ∀∈+∞,2230x mx -+>成立对应的m 的范围为集合A ,{}|B m m a =<若()0,x ∀∈+∞,223x mx +>,则32x m x +>,所以min 32m x x ⎛⎫<+ ⎪⎝⎭而32x x +≥32x x =,即x =时等号成立,所以min 32x x ⎛⎫+= ⎪⎝⎭m <{|A m m =<, 因为p 是q 的充分不必要条件,所以A B,所以a >即实数a的取值范围为()+∞.故选答案为:()+∞21.(2021·广东佛山市·高三月考)已知p x k ≥:,q :()()120x x +-<,如果p 是q 的充分不必要条件,则实数k 的取值范围是________.【答案】2, 【解析】不等式(1)(2)0x x +-<的解集为{1B xx =<-∣或2}x > 令{}A xx k =∣ p 是q 的充分不必要条件,A B ∴⊆即2k >故答案为:2,22.(2021·陕西省洛南中学高三月考(理))已知集合128,2x A x x R ⎧⎫=<<∈⎨⎬⎩⎭,{}11B x x m =-<<+,若x A ∈是x B ∈的充分不必要条件,则实数m 的取值范围为________.【答案】()2,+∞ 【解析】解:根据指数函数的性质得{}128,132x A xx R x x ⎧⎫=<<∈=-<<⎨⎬⎩⎭, 因为x A ∈是x B ∈的充分不必要条件,所以A B ,所以13m +>,解得2m >.所以实数m 的取值范围为()2,+∞故答案为:()2,+∞23.(2021·全国高三专题练习)条件:25p x -<<,条件2:0x q x a +<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.【答案】5a >【解析】p 是q 的充分而不必要条件,p q ∴⇒,20xx a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =,5a ∴>, 故答案为:(5,)+∞.。
2023年高考数学一轮复习讲义(新高考)第1章§1

§1.3 等式性质与不等式性质考试要求 1.掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用.知识梳理1.两个实数比较大小的方法作差法Error! (a ,b ∈R )2.等式的性质性质1 对称性:如果a =b ,那么b =a ;性质2 传递性:如果a =b ,b =c ,那么a =c ;性质3 可加(减)性:如果a =b ,那么a ±c =b ±c ;性质4 可乘性:如果a =b ,那么ac =bc ;性质5 可除性:如果a =b ,c ≠0,那么a c =b c .3.不等式的性质性质1 对称性:a >b ⇔b <a ;性质2 传递性:a >b ,b >c ⇒a >c ;性质3 可加性:a >b ⇔a +c >b +c ;性质4 可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;性质5 同向可加性:a >b ,c >d ⇒a +c >b +d ;性质6 同向同正可乘性:a >b >0,c >d >0⇒ac >bd ;性质7 同正可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).常用结论1.若ab >0,且a >b ⇔1a <1b .2.若a >b >0,m >0⇒b a <b +ma +m ;若b >a >0,m >0⇒b a >b +ma +m .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ )(2)若b a>1,则b >a .( × )(3)若x >y ,则x 2>y 2.( × )(4)若1a >1b,则b <a .( × )教材改编题1.(多选)设b >a >0,c ∈R ,则下列不等式中正确的是( )A .1122a b <B.1a >1bC.a +2b +2>a bD .ac 3<bc 3答案 ABC解析 因为y =12x 在(0,+∞)上单调递增,所以1122a b <,A 正确;因为y =1x在(0,+∞)上单调递减,所以1a >1b,B 正确;因为a +2b +2-a b =2(b -a )(b +2)b >0,所以a +2b +2>a b ,C 正确;当c =0时,ac 3=bc 3,所以D 不正确.2.已知M =x 2-3x ,N =-3x 2+x -3,则M ,N 的大小关系是________.答案 M >N解析 M -N =(x 2-3x )-(-3x 2+x -3)=4x 2-4x +3=(2x -1)2+2>0,∴M >N .3.已知-1<a <2,-3<b <5,则a +2b 的取值范围是______.答案 (-7,12)解析 ∵-3<b <5,∴-6<2b <10,又-1<a <2,∴-7<a +2b <12.题型一 比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为( )A .p <qB .p ≤qC .p >qD .p ≥q答案 B解析 p -q =b 2a +a 2b -a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2)·(1a -1b )=(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .(2)(2022·菏泽模拟)已知a ,b ,c ∈(0,3),且a 5=5a ,b 4=4b ,c 3=3c ,下列不等式正确的是( )A .a >b >cB .c >a >bC .c >b >aD .a >c >b答案 C解析 a 5=5a ,即ln a a =ln 55,b 4=4b ,即ln b b =ln 44,c 3=3c ,即ln c c =ln 33,设f (x )=ln x x ,则f (a )=f (5),f (b )=f (4),f (c )=f (3),f ′(x )=1-ln xx 2(x >0),当x >e 时,f ′(x )<0,f (x )=ln x x 单调递减,当0<x <e 时,f ′(x )>0,f (x )=ln x x 单调递增,因为a ,b ,c ∈(0,3),f (a )=f (5),f (b )=f (4),f (c )=f (3),所以a,b,c∈(0,e),因为f(5)<f(4)<f(3),所以f(a)<f(b)<f(c),a<b<c.教师备选已知M=e2 021+1e2 022+1,N=e2 022+1e2 023+1,则M,N的大小关系为________.答案 M>N解析 方法一 M-N=e2 021+1e2 022+1-e2 022+1e2 023+1=(e2 021+1)(e2 023+1)-(e2 022+1)2 (e2 022+1)(e2 023+1)=e2 021+e2 023-2e2 022 (e2 022+1)(e2 023+1)=e2 021(e-1)2(e2 022+1)(e2 023+1)>0.∴M>N.方法二 令f(x)=e x+1e x+1+1=1e(e x+1+1)+1-1ee x+1+1=1e+1-1ee x+1+1,显然f(x)是R上的减函数,∴f(2 021)>f(2 022),即M>N.思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④得出结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.(3)构造函数,利用函数的单调性比较大小.跟踪训练1 (1)已知0<a<1b,且M=11+a+11+b,N=a1+a+b1+b,则M,N的大小关系是( )A.M>N B.M<N C.M=N D.不能确定答案 A解析 ∵0<a<1 b ,∴1+a>0,1+b>0,1-ab>0.∴M -N =1-a 1+a +1-b 1+b =2(1-ab )(1+a )(1+b )>0,∴M >N .(2)e π·πe 与e e ·ππ的大小关系为________.答案 e π·πe <e e ·ππ解析 e π·πe e e ·ππ=e π-eππ-e =(e π)π-e ,又0<e π<1,0<π-e<1,∴(e π)π-e <1,即e π·πee e ·ππ<1,即e π·πe <e e ·ππ.题型二 不等式的性质例2 (1)(2022·滨州模拟)下列命题为真命题的是( )A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2<ab <b 2C .若c >a >b >0,则a c -a <b c -bD .若a >b >c >0,则a b >a +c b +c答案 D解析 对于A 选项,当c =0时,显然不成立,故A 选项为假命题;对于B 选项,当a =-3,b =-2时,满足a <b <0,但不满足a 2<ab <b 2,故B 选项为假命题;对于C 选项,当c =3,a =2,b =1时,a c -a =23-2>b c -b =12,故C 选项为假命题;对于D 选项,由于a >b >c >0,所以a b -a +c b +c =a (b +c )-b (a +c )b (b +c )=ac -bc b (b +c )=(a -b )c b (b +c )>0,即a b >a +c b +c ,故D 选项为真命题.(2)(多选)若1a <1b<0,则下列不等式正确的是( )A.1a +b <1ab B .|a |+b >0C .a -1a >b -1bD .ln a 2>ln b 2答案 AC解析 由1a <1b<0,可知b <a <0.A 中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab ,即A 正确;B 中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故B 错误;C 中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b,故C 正确;D 中,因为b <a <0,根据y =x 2在(-∞,0)上单调递减,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上单调递增,所以ln b 2>ln a 2,故D 错误.教师备选若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A.1a <1b B .a 2>b 2C .a |c |>b |c | D.a c 2+1>bc 2+1答案 D解析 对于A ,若a >0>b ,则1a >1b ,故A 错误;对于B ,取a =1,b =-2,则a 2<b 2,故B 错误;对于C ,若c =0,a |c |=b |c |,故C 错误;对于D ,因为c 2+1≥1,所以1c 2+1>0,又a >b ,所以a c 2+1>bc 2+1,故D 正确.思维升华 判断不等式的常用方法(1)利用不等式的性质逐个验证.(2)利用特殊值法排除错误选项.(3)作差法.(4)构造函数,利用函数的单调性.跟踪训练2 (1)(2022·珠海模拟)已知a ,b ∈R ,满足ab <0,a +b >0,a >b ,则( )A.1a <1b B.b a +a b >0C .a 2>b 2D .a <|b |答案 C解析 因为ab <0,a >b ,则a >0,b <0,1a >0,1b <0,A 不正确;b a <0,a b <0,则b a +a b<0,B 不正确;又a +b >0,即a >-b >0,则a 2>(-b )2,a 2>b 2,C 正确;由a >-b >0得a >|b |,D 不正确.(2)(多选)设a >b >1>c >0,下列四个结论正确的是( )A.1ac >1bcB .ba c >ab cC .(1-c )a <(1-c )bD .log b (a +c )>log a (b +c )答案 CD解析 由题意知,a >b >1>c >0,所以对于A ,ac >bc >0,故1ac <1bc,所以A 错误;对于B ,取a =3,b =2,c =12,则ba c =23,ab c =32,所以ba c <ab c ,故B 错误;对于C ,因为0<1-c <1,且a >b ,所以(1-c )a <(1-c )b ,故C 正确;对于D ,a +c >b +c >1,所以log b (a +c )>log b (b +c )>log a (b +c ),故D 正确.题型三 不等式性质的综合应用例3 (1)已知-1<x <4,2<y <3,则x -y 的取值范围是______,3x +2y 的取值范围是______.答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.延伸探究 若将本例(1)中条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则Error!∴Error!即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为(-32,232).(2)已知3<a <8,4<b <9,则a b的取值范围是________.答案 (13,2)解析 ∵4<b <9,∴19<1b <14,又3<a <8,∴19×3<a b <14×8,即13<a b<2.教师备选已知0<β<α<π2,则α-β的取值范围是________.答案 (0,π2)解析 ∵0<β<π2,∴-π2<-β<0,又0<α<π2,∴-π2<α-β<π2,又β<α,∴α-β>0,即0<α-β<π2.思维升华 求代数式的取值范围,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3 (1)已知a >b >c ,2a +b +c =0,则c a的取值范围是( )A .-3<c a<-1 B .-1<c a <-13C .-2<c a<-1 D .-1<c a <-12答案 A解析 因为a >b >c ,2a +b +c =0,所以a >0,c <0,b =-2a -c ,因为a >b >c ,所以-2a -c <a ,即3a >-c ,解得c a>-3,将b =-2a -c 代入b >c 中,得-2a -c >c ,即a <-c ,得c a <-1,所以-3<c a<-1.(2)已知1<a <b <3,则a -b 的取值范围是________,a b的取值范围是________.答案 (-2,0) (13,1)解析 ∵1<b <3,∴-3<-b <-1,又1<a <3,∴-2<a -b <2,又a <b ,∴a -b <0,∴-2<a -b <0,又13<1b <1a,∴a 3<a b <1,又a 3>13,∴13<a b<1.综上所述,a -b 的取值范围为(-2,0);a b 的取值范围为(13,1).课时精练1.(2022·长春模拟)已知a >0,b >0,M =a +b ,N =a +b ,则M 与N 的大小关系为( )A .M >NB .M <NC .M ≤ND .M ,N 大小关系不确定答案 B解析 M 2-N 2=(a +b )-(a +b +2ab )=-2ab <0,∴M <N .2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2b D.b a <a b答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若Error!则a 2b <ab 2,故B 不成立;若a =1,b =2,则b a =2,a b =12,b a >a b ,故D 不成立,由不等式的性质知,C 正确.3.已知-3<a <-2,3<b <4,则a 2b 的取值范围为( )A .(1,3) B.(43,94)C.(23,34)D.(12,1)答案 A解析 因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故a 2b 的取值范围为(1,3).4.若a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是( )A .n >m >p B .m >p >nC .m >n >pD .p >m >n答案 B解析 由a >1知,a 2+1-2a =(a -1)2>0,即a 2+1>2a ,而2a -(a +1)=a -1>0,即2a >a +1,∴a 2+1>2a >a +1,而y =log a x 在定义域上单调递增,∴m >p >n .5.(2022·杭州模拟)若(13)a <(13)b<1,则下列各式中一定成立的是( )A .ln(a -b )>0B .2b -a >1C .-1a >-1bD .log c a >log c b (c >0且c ≠1)答案 C解析 指数函数y =(13)x在(-∞,+∞)上单调递减,由(13)a <(13)b<1可知,a >b >0.所以1a <1b ,则-1a >-1b ,故C 正确;a -b >0,但不一定有a -b >1,则不一定有ln(a -b )>0,故A 错误;函数y =2x 在(-∞,+∞)上单调递增,b -a <0.则2b -a <20=1,故B 错误;当0<c <1时,函数y =log c x 在(0,+∞)上单调递减,则log c a <log c b ,故D 错误.6.(多选)(2022·济宁模拟)已知x >y >z ,x +y +z =0,则下列不等式不成立的是( )A .xy >yz B .xy >xzC .xz >yzD .x |y |>|y |z答案 ACD解析 因为x >y >z ,x +y +z =0,所以x >0,z <0,y 的符号无法确定,对于A ,因为x >0>z ,若y <0,则xy <0<yz ,故A 错误;对于B ,因为y >z ,x >0,所以xy >xz ,故B 正确;对于C ,因为x >y ,z <0,所以xz <yz ,故C 错误;对于D ,因为x >z ,当|y |=0时,x |y |=|y |z ,故D 错误.7.(多选)设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的有( )A.c2<cd B.a-c<b-dC.ac<bd D.ca-db>0答案 AD解析 因为a>b>0>c>d,所以a>b>0,0>c>d,对于A,因为0>c>d,由不等式的性质可得c2<cd,故选项A正确;对于B,取a=2,b=1,c=-1,d=-2,则a-c=3,b-d=3,所以a-c=b-d,故选项B错误;对于C,取a=2,b=1,c=-1,d=-2,则ac=-2,bd=-2,所以ac=bd,故选项C错误;对于D,因为a>b>0,d<c<0,则ad<bc,所以ca>d b,故ca-db>0,故选项D正确.8.(多选)若0<a<1,b>c>1,则( )A.(b c)a>1B.c-a b-a>c b C.c a-1<b a-1D.log c a<log b a 答案 AD解析 对于A,∵b>c>1,∴bc>1.∵0<a<1,则(b c)a>(b c)0=1,故选项A正确;对于B,若c-ab-a>cb,则bc-ab>bc-ac,即a(c-b)>0,这与0<a<1,b>c>1矛盾,故选项B错误;对于C,∵0<a<1,∴a-1<0.∵b>c>1,∴c a-1>b a-1,故选项C错误;对于D,∵0<a<1,b>c>1,∴log c a<log b a,故选项D正确.9.已知M=x2+y2+z2,N=2x+2y+2z-π,则M________N.(填“>”“<”或“=”)答案 >解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .10.(2022·烟台模拟)若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2.其中正确的不等式的序号为________.答案 ①④解析 因为1a <1b<0,所以b <a <0,故③错误;所以a +b <0<ab ,故①正确;所以|a |<|b |,故②错误;所以b a >0,a b >0且均不为1,b a +a b ≥2b a ·a b=2,当且仅当b a =a b =1时,等号成立,所以b a +a b>2,故④正确.11.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________.答案 a <2ab <12<a 2+b 2<b 解析 方法一 令a =13,b =23,则2ab =49,a 2+b 2=19+49=59,故a <2ab <12<a 2+b 2<b .方法二 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1,∴a <2b ·a =2a (1-a )=-2a 2+2a =-2(a -12)2+12<12,即a <2ab <12.又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12,即a 2+b 2>12.∵12<b <1,∴(a 2+b 2)-b =[(1-b )2+b 2]-b =2b 2-3b +1=(2b -1)(b -1)<0,即a 2+b 2<b ,综上可知a <2ab <12<a 2+b 2<b .12.(2022·上海模拟)设实数x ,y 满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y 4的最大值是________.答案 27解析 x 3y 4=x 4y 2·1xy 2=(x 2y )2·1xy 2≤81×13=27,当且仅当x 2y=9,xy 2=3,即x =3,y =1时等号成立.13.(多选)(2022·长沙模拟)设实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则下列不等式成立的是( )A .c <bB .b ≥1C .b ≤aD .a <c 答案 BD解析 ∵Error!两式相减得2b =2a 2+2,即b =a 2+1,∴b ≥1.又b -a =a 2+1-a =(a -12)2+34>0,∴b >a .而c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,从而c ≥b >a .14.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .那么a ,b ,c ,d 的大小关系是________.答案 b >d >c >a解析 由题意知d >c ①,②+③得2a +b +d <2c +b +d ,化简得a <c ④,由②式a +b =c +d 及a <c 可得到,要使②成立,必须b >d ⑤成立,综合①④⑤式得到b >d >c >a .15.已知函数f(x)=ax2+bx+c满足f(1)=0,且a>b>c,则ca的取值范围是________.答案 (-2,-12)解析 因为f(1)=0,所以a+b+c=0,所以b=-(a+c).又a>b>c,所以a>-(a+c)>c,且a>0,c<0,所以1>-a+ca>ca,即1>-1-ca>ca.所以Error!解得-2<ca<-12.即ca的取值范围为(-2,-12).16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x,女学生人数为y,教师人数为z,由已知得Error!且x,y,z均为正整数.①当z=4时,8>x>y>4,∴x的最大值为7,y的最大值为6,故女学生人数的最大值为6.②x>y>z>x2,当x=3时,条件不成立,当x=4时,条件不成立,当x=5时,5>y>z>52,此时z=3,y=4.∴该小组人数的最小值为12.。
高考数学总复习 第七章 不等式 第1节 不等式的性质与一元二次不等式教案 文(含解析)

第1节不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一二次不等式模型;3.通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的算法框图.知识梳理1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c;a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c >d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒n∈N,n≥2).3.三个“二次”间的关系二次函数y =ax 2+bx +c (a >0)的图像一元二次方程ax 2+bx +c =0 (a >0)的根有两相异实根x 1,x 2(x 1<x 2)有两相等实根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集{x |x >x 2或x <x 1}⎩⎨⎧⎭⎬⎫x |x ≠-b 2aRax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅∅[微点提醒]1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m(b -m >0).(2)若ab >0,且a >b ⇔1a <1b.2.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形. 3.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc 2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( ) (3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( )(4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )解析 (1)由不等式的性质,ac 2>bc 2⇒a >b ;反之,c =0时,a >b ac 2>bc 2.(3)若方程ax 2+bx +c =0(a <0)没有实根,则不等式ax 2+bx +c >0(a <0)的解集为∅.(4)当a =b =0,c ≤0时,不等式ax 2+bx +c ≤0也在R 上恒成立. 答案 (1)× (2)√ (3)× (4)×2.(必修5P72思考交流改编)若a >b >0,c <d <0,则一定有( )A.a d >b cB.a d <b cC.a c >b dD.a c <b d 解析 因为c <d <0,所以0>1c >1d,两边同乘-1,得-1d>-1c>0,又a >b >0,故由不等式的性质可知-a d >-bc >0.两边同乘-1,得a d <bc. 答案 B 3.(必修5P113A1改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( ) A.(-2,3) B.(-2,2) C.(-2,2]D.[-2,2]解析 因为A ={x |x ≤2},B ={x |-2<x <3},所以A ∩B ={x |-2<x ≤2}=(-2,2]. 答案 C4.(2018·抚州联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2B.1a <1bC.b a >a bD.a 2>ab >b 2解析 c =0时,A 项不成立; 1a -1b =b -a ab>0,选项B 错;b a -a b =b 2-a 2ab =(b +a )(b -a )ab<0,选项C 错. 由a <b <0,∴a 2>ab >b 2.D 正确. 答案 D5.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________.解析 由2x 2-x -3>0,得(x +1)(2x -3)>0, 解得x >32或x <-1.∴不等式2x 2-x -3>0的解集为⎩⎨⎧⎭⎬⎫x |x >32或x <-1.答案⎩⎨⎧⎭⎬⎫x |x >32或x <-16.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.解析 若a =0,则f (x )=-1≤0恒成立, 若a ≠0,则由题意,得⎩⎪⎨⎪⎧a <0,Δ=a 2+4a ≤0,解得-4≤a <0, 综上,得a ∈[-4,0]. 答案 [-4,0]考点一 不等式的性质多维探究角度1 比较大小及不等式性质的简单应用【例1-1】 (1)已知实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a ,b ,c 的大小关系是( ) A.c ≥b >a B.a >c ≥b C.c >b >aD.a >c >b(2)(一题多解)若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b;④ln a 2>ln b 2.其中正确的不等式是( )A.①④B.②③C.①③D.②④解析 (1)∵c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b . 又b +c =6-4a +3a 2,∴2b =2+2a 2,∴b =a 2+1,∴b -a =a 2-a +1=⎝⎛⎭⎪⎫a -122+34>0, ∴b >a ,∴c ≥b >a .(2)法一 因为1a <1b<0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误.综上所述,可排除A ,B ,D.法二 由1a <1b<0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b <0,则-1a >-1b>0,所以a -1a >b -1b,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确. 答案 (1)A (2)C角度2 利用不等式变形求范围【例1-2】 (一题多解)设f (x )=ax 2+bx ,若1≤f (-1)≤2,2≤f (1)≤4,则f (-2)的取值范围是________.解析 法一 设f (-2)=mf (-1)+nf (1)(m ,n 为待定系数),则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a +(n -m )b .于是得⎩⎪⎨⎪⎧m +n =4,n -m =-2,解得⎩⎪⎨⎪⎧m =3,n =1.∴f (-2)=3f (-1)+f (1).又∵1≤f (-1)≤2,2≤f (1)≤4. ∴5≤3f (-1)+f (1)≤10, 故5≤f (-2)≤10. 法二由⎩⎪⎨⎪⎧f (-1)=a -b ,f (1)=a +b ,得⎩⎪⎨⎪⎧a =12[f (-1)+f (1)],b =12[f (1)-f (-1)],∴f (-2)=4a -2b =3f (-1)+f (1). 又∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤3f (-1)+f (1)≤10,故5≤f (-2)≤10. 法三由⎩⎪⎨⎪⎧1≤a -b ≤2,2≤a +b ≤4确定的平面区域如图阴影部分所示, 当f (-2)=4a -2b 过点A ⎝ ⎛⎭⎪⎫32,12时, 取得最小值4×32-2×12=5,当f (-2)=4a -2b 过点B (3,1)时, 取得最大值4×3-2×1=10, ∴5≤f (-2)≤10. 答案 [5,10]规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p ⇒q 和q ⇒p 是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】 (1)(2019·东北三省四市模拟)设a ,b 均为实数,则“a >|b |”是“a 3>b 3”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则ab 的取值范围是________.解析 (1)a >|b |能推出a >b ,进而得a 3>b 3;当a 3>b 3时,有a >b ,但若b <a <0,则a >|b |不成立,所以“a >|b |”是“a 3>b 3”的充分不必要条件.(2)依题意可得4<1b <8,又1<a <3,所以4<ab<24.答案 (1)A (2)(4,24)考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.解析 (1)设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0. 于是不等式f (x )>x等价于⎩⎪⎨⎪⎧x >0,x 2-2x >x 或⎩⎪⎨⎪⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞).(2)由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎪⎨⎪⎧-12+⎝ ⎛⎭⎪⎫-13=ba,-12×⎝ ⎛⎭⎪⎫-13=-1a ,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.答案 (1)(-3,0)∪(3,+∞) (2){x |x ≥3或x ≤2} 【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≥0,解得x ≥2a或x ≤-1.③当a <0时,原不等式化为⎝⎛⎭⎪⎫x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a;当2a =-1,即a =-2时,解得x =-1满足题意; 当2a<-1,即-2<a <0时,解得2a≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1}; 当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≥2a 或x ≤-1;当-2<a <0时,不等式的解集为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2a .规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅). (3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集. 2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12B.⎣⎢⎡⎦⎥⎤-12,3C.⎣⎢⎡⎭⎪⎫12,1∪(1,3]D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3](2)(2019·铜川一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3) C.(-1,3)D.(-∞,1)∪(3,+∞)解析 (1)不等式可化为2x 2-5x -3(x -1)2≤0,即(2x +1)(x -3)(x -1)2≤0, 解得-12≤x <1或1<x ≤3.(2)关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0, ∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3, ∴所求不等式的解集是(-1,3). 答案 (1)D (2)C考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]解析 当a -2=0,即a =2时,-4<0恒成立;当a -2≠0,即a ≠2时,则有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4×(a -2)×(-4)<0,解得-2<a <2.综上,实数a 的取值范围是(-2,2]. 答案 D角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.解析 要使f (x )<-m +5在[1,3]上恒成立, 故mx 2-mx +m -6<0,则m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 法一 令g (x )=m ⎝⎛⎭⎪⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0. 所以m <67,则0<m <67.当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)=m -6<0. 所以m <6,所以m <0. 综上所述,m的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0.法二因为x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可.因为m ≠0,所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 . 答案⎩⎨⎧⎭⎬⎫m ⎪⎪⎪0<m <67或m <0 角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A.(-∞,2)∪(3,+∞) B.(-∞,1)∪(2,+∞) C.(-∞,1)∪(3,+∞)D.(1,3)解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则由f (a )>0对于任意的a ∈[-1,1]恒成立, 得f (-1)=x 2-5x +6>0, 且f (1)=x 2-3x +2>0即可,解不等式组⎩⎪⎨⎪⎧x 2-5x +6>0,x 2-3x +2>0,得x <1或x >3.答案 C规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( )A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ) A.0B.-2C.-52D.-3解析 (1)当k =0时,不等式kx 2-6kx +k +8≥0可化为8≥0,其恒成立,当k ≠0时,要满足关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,只需⎩⎪⎨⎪⎧k >0,Δ=36k 2-4k (k +8)≤0,解得0<k ≤1.综上,k 的取值范围是[0,1]. (2)由于x ∈⎝⎛⎦⎥⎤0,12,若不等式x 2+ax +1≥0恒成立,则a ≥-⎝ ⎛⎭⎪⎫x +1x ,x ∈⎝⎛⎦⎥⎤0,12时恒成立,令g (x )=x +1x ,x ∈⎝⎛⎦⎥⎤0,12,易知g (x )在⎝ ⎛⎦⎥⎤0,12上是减函数,则y =-g (x )在⎝ ⎛⎦⎥⎤0,12上是增函数.∴y =-g (x )的最大值是-⎝ ⎛⎭⎪⎫12+2=-52. 因此a ≥-52,则a 的最小值为-52.答案 (1)A (2)C [思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单. [易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化解析 f (x )-g (x )=x 2-2x +2=(x -1)2+1>0⇒f (x )>g (x ). 答案 B2.(2019·北京东城区综合练习)已知x ,y ∈R ,那么“x >y ”的充要条件是( ) A.2x>2yB.lg x >lg yC.1x >1yD.x 2>y 2解析 因为2x>2y⇔x >y ,所以“2x>2y ”是“x >y ”的充要条件,A 正确;lg x >lg y ⇔x >y >0,则“lg x >lg y ”是“x >y ”的充分不必要条件,B 错误;“1x >1y”和“x 2>y 2”都是“x >y ”的既不充分也不必要条件.答案 A3.不等式|x |(1-2x )>0的解集为( )A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫12,+∞D.⎝⎛⎭⎪⎫0,12解析 当x ≥0时,原不等式即为x (1-2x )>0,所以0<x <12;当x <0时,原不等式即为-x (1-2x )>0,所以x <0,综上,原不等式的解集为(-∞,0)∪⎝⎛⎭⎪⎫0,12.答案 A4.(2018·延安质检)若实数m ,n 满足m >n >0,则( ) A.-1m<-1nB.m -n <m -nC.⎝ ⎛⎭⎪⎫12m>⎝ ⎛⎭⎪⎫12nD.m 2<mn解析 取m =2,n =1,代入各选择项验证A ,C ,D 不成立.只有B 项成立(事实上2-1<2-1). 答案 B5.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)解析 易知f (x )在R 上是增函数,∵f (2-x 2)>f (x ), ∴2-x 2>x ,解得-2<x <1,则实数x 的取值范围是(-2,1). 答案 D 二、填空题6.若0<a <1,则不等式(a -x )⎝⎛⎭⎪⎫x -1a >0的解集是________.解析 原不等式可化为(x -a )⎝ ⎛⎭⎪⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a.答案⎝⎛⎭⎪⎫a ,1a7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________. 解析 由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1, 所以-1<k <1. 答案 (-1,1)8.(2019·宜春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.解析 令t =cos x ,t ∈[-1,1],则不等式f (t )=t 2-(a -1)t -a 2≤0对t ∈[-1,1]恒成立,因此⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0⇒⎩⎪⎨⎪⎧a -a 2≤0,2-a -a 2≤0,∵a <0,∴a ≤-2. 答案 (-∞,-2] 三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解 (1)由题意知f (1)=-3+a (6-a )+6=-a 2+6a +3>0,即a 2-6a -3<0,解得3-23<a <3+2 3.所以不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧(-1)+3=a (6-a )3,(-1)×3=-6-b 3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.故a 的值为3±3,b 的值为-3.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域;(2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解(1)由题意得,y =100⎝ ⎛⎭⎪⎫1-x 10·100⎝⎛⎭⎪⎫1+850x .因为售价不能低于成本价,所以100⎝ ⎛⎭⎪⎫1-x 10-80≥0,解得0≤x ≤2.所以y =f (x )=40(10-x )(25+4x ), 定义域为{x |0≤x ≤2}.(2)由题意得40(10-x )(25+4x )≥10 260, 化简得8x 2-30x +13≤0,解得12≤x ≤134.所以x的取值范围是⎣⎢⎡⎦⎥⎤12,2.能力提升题组 (建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( )A.log 2a >0B.2a -b<12C.log 2a +log 2b <-2D.2a b +b a <12解析 由题意知0<a <1,此时log 2a <0,A 错误;由已知得0<a <1,0<b <1,所以-1<-b <0,又a <b ,所以-1<a -b <0,所以12<2a -b<1,B 错误;因为0<a <b ,所以a b +ba >2a b ·b a =2,所以2a b +b a>22=4,D 错误;由a +b =1>2ab ,得ab <14,因此log 2a +log 2b =log 2(ab )<log 214=-2,C 正确.答案 C12.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2)B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞) 解析 因为f (x )在R 上为奇函数,且在[0,+∞)上为增函数,所以f (x )在R 上是增函数,结合题意得-4t >2m +mt 2对任意实数t 恒成立⇒mt 2+4t +2m <0对任意实数t 恒成立⇒⎩⎪⎨⎪⎧m <0,Δ=16-8m 2<0⇒m ∈(-∞,-2). 答案 A13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.解析 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232, ∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232. 答案 ⎝ ⎛⎭⎪⎫-32,232 14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x.若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.解 因为函数f (x )是偶函数,故函数图像关于y 轴对称,且在(-∞,0]上单调递减,在[0,+∞)上单调递增.所以由f (x +a )≥f (2x )可得|x +a |≥2|x |在[a ,a +1]上恒成立, 从而(x +a )2≥4x 2在[a ,a +1]上恒成立,化简得3x 2-2ax -a 2≤0在[a ,a +1]上恒成立, 设h (x )=3x 2-2ax -a 2,则有⎩⎪⎨⎪⎧h (a )=0≤0,h (a +1)=4a +3≤0,解得a ≤-34. 故实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34.。
2025年新人教版高考数学一轮复习讲义 第一章 §1.1 集 合

(2)已知集合A={0,m,m2-3m+2},且2∈A,则实数m的值为
A.2
√B.3
C.0
D.-2
因为集合A={0,m,m2-3m+2},且2∈A, 则m=2或m2-3m+2=2,解得m∈{0,2,3}. 当m=0时,集合A中的元素不满足互异性; 当m=2时,m2-3m+2=0,集合A中的元素不满足互异性; 当m=3时,A={0,3,2},符合题意.综上所述,m=3.
知识梳理
3.集合的基本运算
表示 运算
集合语言
并集 _{_x_|x_∈__A_,__或__x_∈__B_}_
交集 _{_x_|x_∈__A_,__且__x_∈__B_}_
补集 _{_x_|x_∈__U__,__且__x∉_A__}_
图形语言
记法 _A__∪__B_ _A__∩__B_
_∁_U_A_
常用结论
例5 (多选)群论是代数学的分支学科,在抽象代数中具有重要地位,且 群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及 以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基 本的概念之一,其定义如下:设G是一个非空集合,“·”是G上的一个代 数运算,即对所有的a,b∈G,有a·b∈G,如果G的运算还满足:①∀a, b,c∈G,有(a·b)·c=a·(b·c);②∃e∈G,使得∀a∈G,有e·a=a·e=a; ③∀a∈G,∃b∈G,使a·b=b·a=e,则称G关于“·”构成一个群.
1.若集合A有n(n≥1)个元素,则集合A有2n个子集,2n-1个真子集. 2.空集是任何集合的子集,是任何非空集合的真子集. 3.A∩B=A⇔A⊆B,A∪B=A⇔B⊆A. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
2021年新高考数学一轮专题复习第01讲-集合(解析版)

8.(2020·江苏省泰州中学高三月考)已知集合 A {x | 0 x 2} , B {x | x 1} ,则 A B ______
【答案】{x |1 x 2}
【解析】因为集合 A {x | 0 x 2} , B {x | x 1} , 所以 A B {x |1 x 2}. 故答案为:{x |1 x 2}
2.子集的传递性:A⊆B,B⊆C⇒A⊆C.
3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁UA⊇∁UB. 4.∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
三、 经典例题
考点一 集合的基本概念
【例 1-1】(2020·全国高三一模(文))已知集合 A x x2 2ax 2a 0 ,若 A 中只有一个元素,则实数 a
④如果 a1 M , a2 M ,那么 a1 a2 M
其中,正确结论的序号是__________. 【答案】①③
【解析】对①:对 b 2n 1, n N ,
总是有 b 2n 1 n 12 n2 , n 1, n z ,故 B M ,则①正确;
对② c 2n, n N ,若 c 2n M ,则存在 x, y Z ,使得
A.30
B.31
C.62
【答案】A
【解析】因为集合 A x | x 6 且 x N* 1, 2,3, 4,5 ,
D.63
所以 A 的非空真子集的个数为 25 2 30 .
故选:A
【例 2-3】(2020·北京牛栏山一中高三月考)已知集合 A={-2,3,1},集合 B={3,m²}.若 B A,则实数 m 的
解不等式 lg x 1 1,得 0 x 1 10 ,解得 1 x 9 .
A x x 1或x 3 , B x 1 x 9 ,则 ðR A x 1 x 3 ,
第2节 基本不等式--2025年高考数学复习讲义及练习解析

第二节基本不等式1.基本不等式:ab ≤a +b 2.(1)基本不等式成立的条件:01a >0,b >0.(2)等号成立的条件:当且仅当02a =b 时,等号成立.(3)其中03a +b2叫做正数a ,b 的算术平均数,04ab 叫做正数a ,b 的几何平均数.2.几个重要的不等式(1)a 2+b 205≥2ab (a ,b ∈R ).(2)b a +ab 06≥2(a ,b同号).(3)(a ,b ∈R ).(a ,b ∈R ).以上不等式等号成立的条件均为09a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当10x =y 时,和x +y 有最小值112P .(简记:积定和最小)(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当12x =y 时,积xy 有最大值1314S 2.(简记:和定积最大)注意:(1)利用基本不等式求最值应满足三个条件“一正、二定、三相等”,其中“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指满足等号成立的条件.(2)形如y =x +ax (a >0)的函数求最值时,首先考虑用基本不等式,若等号取不到,再利用该函数的单调性求解.1.连续使用基本不等式求最值要求每次等号成立的条件要一致.2.若a >0,b >0,则21a +1b ≤ab ≤a +b2≤a 2+b 22,当且仅当a =b 时,等号成立.3.常见求最值的模型模型一:mx +nx≥2mn (m >0,n >0,x >0),当且仅当x =nm时,等号成立;模型二:mx +n x -a =m (x -a )+nx -a +ma ≥2mn +ma (m >0,n >0,x >a ),当且仅当x -a =n m时,等号成立;模型三:xax 2+bx +c =1ax +b +c x ≤12ac +b(a >0,c >0,x >0),当且仅当x =ca时,等号成立;模型四:x (n -mx )=mx (n -mx )m ≤1m ·>0,n >0,0<x 当且仅当x =n 2m时,等号成立.4.三个正数的均值不等式:若a ,b ,c >0,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.1.概念辨析(正确的打“√”,错误的打“×”)(1)y =x +1x 的最小值是2.()(2)|b a +a b |≥2.()(3)已知0<x <12,则x (1-2x )的最大值为18.()(4)函数f (x )=sin x +4sin x 的最小值为4.()答案(1)×(2)√(3)√(4)×2.小题热身(1)设a >0,则9a +1a 的最小值为()A .4B .5C .6D .7答案C 解析9a +1a≥29a ·1a =6,当且仅当9a =1a ,即a =13时,等号成立.(2)矩形两边长分别为a ,b ,且a +2b =6,则矩形面积的最大值是()A .4 B.92C.322D .2答案B解析依题意,可得a >0,b >0,则6=a +2b ≥2a ·2b =22·ab ,当且仅当a =2b 时取等号,所以ab ≤628=92,即矩形面积的最大值为92.故选B.(3)(2024·河南郑州高三模拟)已知实数a >0,b >0,a +b =2,则1a +ab 的最小值为________.答案12+2解析1a +a b =12×a +b a +a b =12+b 2a +a b ≥12+2b 2a ·a b =12+2,当且仅当b 2a =ab,即a =22-2,b =4-22时,等号成立.(4)(人教A 必修第一册习题2.2T1(2)改编)函数y =x (3-2x )(0≤x ≤1)的最大值是________.答案98解析因为0≤x ≤1,所以3-2x >0,所以y =12·2x ·(3-2x )≤122x +(3-2x )22=98,当且仅当2x =3-2x ,即x =34时取等号.(5)(人教A 必修第一册复习参考题2T5改编)已知a ,b >0,且ab =a +b +3,则ab 的取值范围为________.答案[9,+∞)解析因为a,b>0,所以ab-3=a+b≥2ab,于是ab-2ab-3≥0,解得ab≤-1(舍去)或ab≥3,所以ab≥9,当且仅当a=b=3时,等号成立,所以ab的取值范围是[9,+∞).考点探究——提素养考点一利用基本不等式求最值(多考向探究)考向1配凑法求最值例1(1)(2024·福建福州四校高三期中联考)已知0<x<2,则y=x4-x2的最大值为() A.2B.4C.5D.6答案A解析因为0<x<2,所以y=x4-x2=x2(4-x2)≤x2+(4-x2)2=2,当且仅当x2=4-x2,即x=2时,等号成立,即y=x4-x2的最大值为2.故选A.(2)函数y=x2+3x+3x+1(x<-1)的最大值为()A.3B.2C.1D.-1答案D解析y=x2+3x+3x+1=(x+1)2+(x+1)+1x+1=--(x+1)+1-(x+1)+1≤-1=-1,当且仅当x+1=1x+1=-1,即x=-2时,等号成立.故选D.【通性通法】配凑法求最值的关键点【巩固迁移】1.函数y =3x ()A .8B .7C .6D .5答案D解析因为x >13,所以3x -1>0,所以y =3x +43x -1=(3x -1)+43x -1+1≥2(3x -1)·43x -1+1=5,当且仅当3x -1=43x -1,即x =1时,等号成立,故函数y =3x 值为5.故选D.2.(2023·浙江杭州高三教学质量检测)已知a >1,b >1,且log 2a =log b 4,则ab 的最小值为()A .4B .8C .16D .32答案C解析∵log 2a =log b 4,∴12log 2a =log b 4,即log 2a =2log 24log 2b ,∴log 2a ·log 2b =4.∵a >1,b >1,∴log 2a >0,log 2b >0,∴log 2(ab )=log 2a +log 2b ≥2log 2a ·log 2b =4,当且仅当log 2a =log 2b =2,即a =b =4时取等号,所以ab ≥24=16,当且仅当a =b =4时取等号,故ab 的最小值为16.故选C.考向2常数代换法求最值例2(1)已知0<x <1,则9x +161-x 的最小值为()A .50B .49C .25D .7答案B解析因为0<x <1,所以9x +161-x =(x +1-x )25+9(1-x )x+16x 1-x ≥25+29(1-x )x ·16x 1-x =49,当且仅当9(1-x )x=16x 1-x ,即x =37时,等号成立,所以9x +161-x 的最小值为49.故选B.(2)已知a >0,b >0,a +2b =3,则1a +1b 的最小值为()A.223B.233C .1+223D .1+233答案C解析因为a +2b =3,所以13a +23b =1,+23b =13+23+a 3b +2b 3a≥1+2a 3b ·2b3a=1+223,当且仅当a 3b =2b3a ,即a =3(2-1),b =3(2-2)2时,等号成立.故选C.【通性通法】常数代换法求最值的基本步骤【巩固迁移】3.若正实数x ,y 满足2x +y =9,则-1x -4y 的最大值是()A.6+429B .-6+429C .6+42D .-6-42答案B解析因为1x +4y =19x +y )+y x +8x y+6+429,当且仅当y x =8xy ,即x =9(2-1)2,y =9(2-2)时,等号成立,所以-1x -4y ≤-6+429.故选B.4.(2024·湖北荆门三校高三联考)已知实数a ,b 满足lg a +lg b =lg (a +2b ),则2a +b 的最小值是()A .5B .9C .13D .18答案B解析由lg a +lg b =lg (a +2b ),可得lg (ab )=lg (a +2b ),所以ab =a +2b ,即2a +1b =1,且a >0,b >0,则2a +b =(2a +b 5+2b a +2ab ≥5+22b a ·2a b =9,当且仅当2b a =2ab,即a =b =3时,等号成立,所以2a +b 的最小值为9.故选B.考向3消元法、换元法求最值例3(1)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是()A.14B.45C.255D .2答案B解析因为5x 2y 2+y 4=1,所以x 2=1-y 45y 2,又x 2≥0,所以y 2∈(0,1],所以x 2+y 2=y 2+1-y 45y2=4y 4+15y 2=y 2≥15×24y 2·1y 2=45,当且仅当4y 2=1y 2,即y 2=12,x 2=310时取等号,所以x 2+y 2的最小值是45.故选B.(2)(2024·浙江嘉兴第一中学高三期中)若x >0,y >0,且1x +1+1x +2y=1,则2x +y 的最小值为()A .2B .23C.12+3D .4+23答案C解析设x +1=a ,x +2y =b ,则x =a -1,y =b -a +12,且a >0,b >0,则1a +1b =1,2x +y=2(a -1)+b -a +12=3a +b 2-32,而3a +b =(3a +b 4+3a b +ba ≥4+23a b ·ba=4+23,当且仅当3a b =ba ,即a =3+33,b =3+1时,等号成立,则2x +y ≥4+232-32=12+ 3.故选C.【通性通法】当所求最值的代数式中变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.【巩固迁移】5.(2023·江苏南京高三调研)设a ≥0,b ≥0,且2a +b =1,则ab 的最小值为__________.答案解析因为2a +b =1,所以a =(b -1)24,所以a b =(b -1)24b=b 4+14b -12≥2b 4·14b-12=0,当且仅当a =0,b =1时取等号.6.(2024·湖北襄阳五中高三质量检测)若正数a ,b 满足2a +b =1,则a 2-2a +b2-b的最小值是________.答案223-12解析设u =2-2a ,v =2-b ,则a =2-u 2,b =2-v ,则u +v =3(u >0,v >0),所以a 2-2a +b2-b=1-12u u+2-v v =1u +2v -32=13(u +v 32+v u +-32+321+223-32=223-12,当且仅当v =6-32,u =32-3时,等号成立,所以a 2-2a +b 2-b 的最小值为223-12.考向4“和”“积”互化求最值例4(多选)设a >1,b >1,且ab -(a +b )=1,那么()A .a +b 有最小值22+2B .a +b 有最大值22-2C .ab 有最大值3-22D .ab 有最小值3+22答案AD解析∵a >1,b >1,∴ab -1=a +b ≥2ab ,当a =b 时取等号,即ab -2ab -1≥0,解得ab ≥2+1,∴ab ≥(2+1)2=3+22,∴ab 有最小值3+2 2.又ab ,当a =b 时取等号,∴1=ab -(a +b )-(a +b ),即(a +b )2-4(a +b )≥4,则[(a +b )-2]2≥8,解得a +b -2≥22,即a +b ≥22+2,∴a +b 有最小值22+2.故选AD.【通性通法】“和”“积”互化求最值的方法(1)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值.(2)如果条件中含有两个变量的和与积的形式,可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解,或者通过构造一元二次方程,利用根的分布解决问题.【巩固迁移】7.正实数x ,y 满足4x 2+y 2+xy =1,则xy 的最大值为________,2x +y 的最大值为________.答案152105解析∵1-xy =4x 2+y 2≥4xy ,∴5xy ≤1,∴xy ≤15,当且仅当y =2x ,即x =1010,y =105时取等号.∵4x 2+y 2+xy =1,∴(2x +y )2-3xy =1,∴(2x +y )2-1=3xy =32·2x ·y,即(2x +y )2-1≤38(2x +y )2,∴(2x +y )2≤85,∴2x +y ≤2105,当且仅当2x =y ,即x =1010,y=105时取等号.考点二基本不等式的综合应用例5(2024·河南濮阳外国语学校模拟)若对任意正数x ,不等式2x 2+4≤2a +1x恒成立,则实数a 的取值范围为()A .[0,+∞) B.-14,+∞C.14,+∞ D.12,+∞答案B解析依题意得,当x >0时,2a +1≥2x x 2+4=2x +4x恒成立,又x +4x ≥4,当且仅当x =2时取等号,所以2x +4x 的最大值为12,所以2a +1≥12,解得实数a 的取值范围为-14,+故选B.【通性通法】1.利用基本不等式求参数的值或范围时,要观察题目的特点,先确定是恒成立问题还是有解问题,再利用基本不等式确定等号成立的条件,最后通过解不等式(组)得到参数的值或范围.2.当基本不等式与其他知识相结合时,往往是为其他知识提供一个应用基本不等式的条件,然后利用常数代换法求最值.【巩固迁移】8.在等腰三角形ABC 中,AB =AC ,若AC 边上的中线BD 的长为3,则△ABC 面积的最大值是()A .6B .12C .18D .24答案A解析设AB =AC =2m ,BC =2n ,因为∠ADB =π-∠CDB ,所以m 2+9-4m 26m =-m 2+9-4n 26m,整理得m 2=9-2n 2.设△ABC 的面积为S ,则S =12BC =12×2n ×4m 2-n 2=3n 4-n 2=3n 2(4-n 2)≤3×n 2+4-n 22=6,当且仅当n =2时,等号成立.故选A.考点三基本不等式的实际应用例6网店和实体店各有利弊,两者的结合将在未来一段时期内成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2022年10月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x (万件)与投入实体店体验安装的费用t (万元)之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.答案37.5解析由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.【通性通法】利用基本不等式解决实际应用问题的技巧【巩固迁移】9.一家商店使用一架两臂不等长的天平称黄金.一位顾客到店里购买10g 黄金,售货员先将5g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中使天平平衡;再将5g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中使天平平衡;最后将两次称得的黄金交给顾客.若顾客实际购得的黄金为m g ,则()A .m >10B .m =10C .m <10D .以上都有可能答案A解析由于天平两臂不等长,可设天平左臂长为a ,右臂长为b ,则a ≠b ,设先称得黄金为xg ,后称得黄金为y g ,则bx =5a ,ay =5b ,∴x =5a b ,y =5b a ,∴x +y =5a b +5ba=5×2a b ·b a =10,当且仅当a b =ba,即a =b 时,等号成立,但a ≠b ,等号不成立,即x +y >10.因此顾客实际购得的黄金克数m >10.故选A.课时作业一、单项选择题1.当x <0时,函数y =x +4x ()A .有最大值-4B .有最小值-4C .有最大值4D .有最小值4答案A解析y =x +4x=-(-x )-4,当且仅当x =-2时,等号成立.故选A.2.(2023·陕西咸阳高三模拟)已知x >0,y >0,若2x +y =8xy ,则xy 的最小值是()A.18B.14C.24D.22答案A解析因为2x +y ≥22xy ,所以8xy ≥22xy ,解得xy ≥18,当且仅当2x =y ,即x =14,y =12时,等号成立.故选A.3.已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为()A .13B .12C .9D .6答案C解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|=9,当且仅当|MF 1|=|MF 2|=3时,等号成立.故选C.4.(2024·浙江绍兴第一中学高三期中)已知直线ax +by -1=0(ab >0)过圆(x -1)2+(y -2)2=2024的圆心,则1a +1b 的最小值为()A .3+22B .3-22C .6D .9答案A解析由圆的方程知,圆心为(1,2).∵直线ax +by -1=0(ab >0)过圆的圆心,∴a +2b =1(ab >0),∴1a +1b =(a +2b )=3+a b +2ba≥3+2a b ·2b a=3+当且仅当a b =2ba,即a =2b ,∴1a +1b的最小值为3+2 2.故选A.5.(2023·湖南五市十校联考)原油作为“工业血液”“黑色黄金”,其价格的波动牵动着整个化工产业甚至世界经济.小李在某段时间内共加油两次,这段时间燃油价格有升有降,现小李有两种加油方案:第一种方案是每次加油40升,第二种方案是每次加油200元,则下列说法正确的是()A .第一种方案更划算B .第二种方案更划算C .两种方案一样D .无法确定答案B解析设小李这两次加油的油价分别为x 元/升、y 元/升(x ≠y ),则第一种方案:两次加油的平均价格为40x +40y 80=x +y 2>xy ,第二种方案:两次加油的平均价格为400200x +200y =2xyx +y <xy ,故无论油价如何起伏,第二种方案都比第一种方案更划算.故选B.6.(2023·浙江杭州调研)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为()A .4 B.92C.2D .22答案D 解析由m 2-amn +2n 2≥0得m 2+2n 2≥amn ,即a ≤m 2+2n 2mn=m n +2n m 恒成立,因为m n +2nm≥2m n ·2n m =22,当且仅当m n =2nm,即m =2n 时取等号,所以a ≤22,故实数a 的最大值为2 2.故选D.7.(2024·浙江名校协作体高三模拟)设x ,y 为正实数,若2x +y +2xy =54,则2x +y 的最小值是()A .4B .3C .2D .1答案D解析因为x ,y 为正实数,且54=2x +y +2xy =(2x +1)(y +1)-1,令m =2x +1,n =y +1,则mn =94,所以2x +y =m +n -2≥2mn -2=1,当且仅当m =n ,即y =12,x =14时取等号.故选D.8.(2024·湖北襄阳第四中学高三适应性考试)若a ,b ,c 均为正数,且满足a 2+2ab +3ac +6bc =1,则2a +2b +3c 的最小值是()A .2B .1C.2D .22答案A解析因为a 2+2ab +3ac +6bc =1,所以a (a +2b )+3c (a +2b )=(a +2b )(a +3c )=1,又a ,b ,c 均为正数,(a +2b )(a +3c )=(2a +2b +3c )24,当且仅当a +2b =a +3c =1时取等号,所以(2a+2b+3c)24≥1,即2a+2b+3c≥2.故选A.二、多项选择题9.下列四个函数中,最小值为2的是()A.y=sin xxB.y=ln x+1ln x(x>0,x≠1)C.y=x2+6 x2+5D.y=4x+4-x 答案AD解析对于A,因为0<x≤π2,所以0<sin x≤1,则y=sin x+1sin x≥2,当且仅当sin x=1sin x,即sin x=1时取等号,故y=sin x x2,符合题意;对于B,当0<x<1时,ln x<0,此时y=ln x+1ln x为负值,无最小值,不符合题意;对于C,y=x2+6x2+5=x2+5+1x2+5,设t=x2+5,则t≥5,则y≥5+15=655,其最小值不是2,不符合题意;对于D,y=4x+4-x=4x+14x≥24x·14x=2,当且仅当x=0时取等号,故y=4x+4-x的最小值为2,符合题意.故选AD.10.(2024·湖北部分名校高三适应性考试)已知正实数a,b满足ab+a+b=8,下列说法正确的是()A.ab的最大值为2B.a+b的最小值为4C.a+2b的最小值为62-3D.1a(b+1)+1b的最小值为12答案BCD解析对于A,因为ab+a+b=8≥ab+2ab,即(ab)2+2ab-8≤0,解得0<ab≤2,则ab≤4,当且仅当a=b=2时取等号,故A错误;对于B,ab+a+b=8≤(a+b)24+(a+b),即(a+b)2+4(a+b)-32≥0,解得a+b≤-8(舍去),a+b≥4,当且仅当a=b=2时取等号,故B正确;对于C,由题意可得b(a+1)=8-a,所以b=8-aa+1>0,解得0<a<8,a+2b=a+2·8-a a +1=a +18a +1-2=a +1+18a +1-3≥2(a +1)·18a +1-3=62-3,当且仅当a +1=18a +1,即a =32-1时取等号,故C 正确;对于D ,因为1a (b +1)+1b =181a (b +1)+1b [a (b +1)+b ]=182+b a (b +1)+a (b +1)b ≥18+2)=12,当且仅当b a (b +1)=a (b +1)b ,即b =4,a =45时取等号,故D 正确,故选BCD.11.已知a >0,b >0,且a +b =1,则()A .a 2+b 2≥12B .2a -b >12C .log 2a +log 2b ≥-2D.a +b ≤2答案ABD解析对于A ,a 2+b 2=a 2+(1-a )2=2a 2-2a +1=+12≥12,当且仅当a =b =12时,等号成立,故A 正确;对于B ,a -b =2a -1>-1,所以2a -b >2-1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log=log 214=-2,当且仅当a =b =12时,等号成立,故C 不正确;对于D ,因为(a +b )2=1+2ab ≤1+a +b =2,所以a +b ≤2,当且仅当a =b =12时,等号成立,故D 正确.故选ABD.三、填空题12.(2023·山东滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案3解析当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3.13.(2024·河北衡水中学高三第三次综合素养评价)已知实数a >b >1,满足a +1a -1≥b +1b -1,则a +4b 的最小值是________.答案9解析由已知条件,得a -b ≥1b -1-1a -1=(a -1)-(b -1)(b -1)(a -1)=a -b (b -1)(a -1),∵a -b >0,∴1≥1(b -1)(a -1),又a -1>0,b -1>0,∴(b -1)(a -1)≥1,∴a +4b =(a -1)+4(b -1)+5≥2(a -1)·4(b -1)+5=9,-1=4(b -1),-1)(a -1)=1,=3,=32时,等号成立.14.(2023·湖北荆宜三校高三模拟)已知正数a ,b 满足a +3b +3a +4b =18,则a +3b 的最大值是________.答案9+36解析设t =a +3b ,则3a +4b =18-t ,所以t (18-t )=(a +3b 15+9b a +4ab≥15+29b a ·4ab=27,当且仅当2a =3b 时取等号.所以t 2-18t +27≤0,解得9-36≤t ≤9+36,即a +3b 的最大值是9+36,当且仅当2a =3b ,即a =3+6,b =2+263时取等号.15.(2024·浙江名校联盟高三上学期第一次联考)已知正实数x ,y 满足1x +4y +4=x +y ,则x+y 的最小值为()A.13-2B .2C .2+13D .2+14答案C解析因为正实数x ,y 满足1x +4y+4=x +y ,等式两边同乘以x +y ,可得(x +y )2=4(x +y )+5+y x +4xy≥4(x +y )+5+2y x ·4xy =4(x +y )+9,所以(x +y )2-4(x +y )-9≥0,因为x +y >0,所以x +y ≥2+13,当且仅当y =2x 时,等号成立.因此x +y 的最小值为2+13.故选C.16.已知点E 是△ABC 的中线BD 上的一点(不包括端点),若AE →=xAB →+yAC →,则2x +1y 的最小值为()A .4B .6C .8D .9答案C解析设BE →=λBD →(0<λ<1),∵AE →=AB →+BE →=AB →+λBD →=AB →+λ(AD →-AB →)=(1-λ)AB →+λ2AC →,∴x =1-λ,y =λ2(x >0,y >0),∴2x +1y =21-λ+2λ=-λ)+λ]=4+2λ1-λ+2(1-λ)λ≥4+22λ1-λ·2(1-λ)λ=8,当且仅当2λ1-λ=2(1-λ)λ,即λ=12时取等号,故2x +1y 的最小值为8.故选C.17.(多选)(2022·新高考Ⅱ卷)若x ,y 满足x 2+y 2-xy =1,则()A .x +y ≤1B .x +y ≥-2C .x 2+y 2≤2D .x 2+y 2≥1答案BC解析由x 2+y 2-xy =1得(x +y )2-1=3xy ≤,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1得x 2+y 2-1=xy ,又x 2+y 2≥2x 2·y2=2|xy |,所以|x 2+y 2-1|≤x2+y 22即-x 2+y 22≤x 2+y 2-1≤x 2+y 22,所以23≤x 2+y 2≤2,当且仅当x =y =±1时,x 2+y 2=2,当x =33,y =-33或x =-33,y =33时,x 2+y 2=23,所以C 正确,D 错误.故选BC.18.(多选)(2024·湖北襄阳第五中学高三月考)若a >b >0,且a +b =1,则()A .2a +2b ≥22B .2a +ab ≥2+22C .(a 2+1)(b 2+1)<32D .a 2a +2+b 2b +1≥14答案BD解析因为a >b >0,且a +b =1,所以0<b <12,12<a <1.对于A ,因为2a +2b ≥22a ·2b =22a +b=22,当且仅当a =b =12时取等号,但a >b >0,所以等号取不到,故A 错误;对于B ,因为b a >0,a b >0,由基本不等式,得2a +a b =2a +2b a +a b =2+2b a +a b ≥2+22b a ·ab=2+22,当且仅当2b a =a b ,即a =2-2,b =2-1时,等号成立,所以2a +ab≥2+22,故B 正确;对于C ,因为a +b =1,所以(a 2+1)(b 2+1)=a 2b 2+a 2+b 2+1=a 2b 2+(a +b )2-2ab +1=a 2b 2-2ab +2=(ab -1)2+1,其中ab ≤(a +b )24=14,当且仅当a =b 时取等号,但a >b >0,所以等号取不到,所以0<ab <14,(a 2+1)(b 2+1)=(ab -1)2+1故C 错误;对于D ,a 2a +2+b 2b +1=[(a +2)-2]2a +2+[(b +1)-1]2b +1=(a +2)+4a +2-4+(b +1)+1b +1-2=4a +2+1b +1-2,因为a +b=1,所以a +2+b +1=4,故a +24+b +14=1,所以4a +2+1b +1==1+14+b +1a +2+a +24(b +1)≥54+2b +1a +2·a +24(b +1)=94,当且仅当b +1a +2=a +24(b +1),即a =23,b =13时,等号成立,所以a 2a +2+b 2b +1=4a +2+1b +1-2≥94-2=14,故D 正确.故选BD.19.(2024·湖北百校高三联考)已知正数x ,y 满足3x +4y =4,则y是________.答案1解析因为x ,y 是正数,所以=y xy +3+y 2xy +1=1x +3y +12x +1y,且x +3y +2x +1y =3x +4y =4,所以y=14+3y +2x·=+2x +1y x +3y +≥14×(2+2)=1,当且仅当2x +1y x +3y =x +3y 2x +1y,即x =45,y =52,等号成立,所以y 1.20.(2023·广东深圳高三二模)足球是一项很受欢迎的体育运动.如图,某标准足球场的底线宽AB =72码,球门宽EF =8码,球门位于底线的正中位置.在比赛过程中,攻方球员带球运动时,往往需要找到一点P ,使得∠EPF 最大,这时候点P 就是最佳射门位置.当攻方球员甲位于边线上的点O 处(OA =AB ,OA ⊥AB )时,根据场上形势判断,有OA →,OB →两条进攻线路可供选择.若选择线路OA →,则甲带球________码时,到达最佳射门位置;若选择线路OB →,则甲带球________码时,到达最佳射门位置.答案72-165722-165解析若选择线路OA →,设AP =t ,其中0<t ≤72,AE =32,AF =32+8=40,则tan ∠APE =AEAP=32t ,tan ∠APF =AF AP =40t ,所以tan ∠EPF =tan(∠APF -∠APE )=tan ∠APF -tan ∠APE 1+tan ∠APF tan ∠APE=40t -32t 1+1280t 2=8t 1+1280t2=8t +1280t ≤82t ·1280t =520,当且仅当t =1280t ,即t =165时,等号成立,此时OP =OA -AP =72-165,所以若选择线路OA →,则甲带球72-165码时,到达最佳射门位置;若选择线路OB →,以线段EF 的中点N 为坐标原点,BA →,AO →的方向分别为x ,y 轴正方向建立如图所示的空间直角坐标系,则B (-36,0),O (36,72),F (-4,0),E (4,0),k OB =7236+36=1,直线OB 的方程为y =x +36,设点P (x ,x +36),其中-36<x ≤36,tan ∠AFP =k PF =x +36x +4,tan ∠AEP =k PE =x +36x -4,所以tan ∠EPF =tan(∠AEP -∠AFP )=tan ∠AEP -tan ∠AFP1+tan ∠AEP tan ∠AFP=x +36x -4-x +36x +41+x +36x -4·x +36x +4=8(x +36)x 2-161+(x +36)2x 2-16=8(x +36)+x 2-16x +36,令m =x +36∈(0,72],则x =m -36,所以x +36+x 2-16x +36=m +(m -36)2-16m =2m +1280m -72≥22m ·1280m72=3210-72,当且仅当2m =1280m,即m =810,即x =810-36时,等号成立,所以tan ∠EPF =82m+1280m-72≤83210-72=1410-9,当且仅当x=810-36时,等号成立,此时|OP|=2·|36-(810-36)|=722-165,所以若选择线路OB→,则甲带球722-165码时,到达最佳射门位置.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时集合的概念及运算【考点导读】1.了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2.理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3.理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4.集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合用列举法表示.2.设集合,,则.3.已知集合,,则集合_______.4.设全集,集合,,则实数a 的值为____.【范例解析】例.已知为实数集,集合.若,或,求集合B.【反馈演练】1.设集合,,,则=_________.2.设P,Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是____个.3.设集合,.(1)若,求实数a的取值范围;(2)若,求实数a的取值范围;(3)若,求实数a的值.第3 课时充分条件和必要条件【考点导读】1.理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2.从集合的观点理解充要条件,有以下一些结论:若集合,则是的充分条件;若集合,则是的必要条件;若集合,则是的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若则是的充分条件.若,则是的必要条件.若,则是的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知,,那么是的____ ___条件.(2)已知两直线平行,内错角相等,那么是的__ _____条件.(3)已知四边形的四条边相等,四边形是正方形,那么是的___ __条件.3.若,则的一个必要不充分条件是.【范例解析】例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)是的___________________条件;(2)是的___________________条件;(3)是的___________________条件;(4)是或的___________________条件.分析:从集合观点“小范围大范围”进行理解判断,注意特殊值的使用. 【反馈演练】1.设集合,,则“”是“”的 _ 条件.2.已知p:1<x<2,q:x(x-3)<0,则p是q的条件.3.已知条件,条件.若是的充分不必要条件,求实数a 的取值范围.高中数学复习讲义第二章函数A【知识导读】【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”.4.掌握“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.第1课函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数.【基础练习】1.设有函数组:①,;②,;③,;④,;⑤,.其中表示同一个函数的有___ __ _.2.设集合,,从到有四种对应如图所示:其中能表示为到的函数关系的有____ ___.3.写出下列函数定义域:(1) 的定义域为________; (2) 的定义域为______________;(3) 的定义域为______; (4) 的定义域为___.4.已知三个函数:(1);(2);(3).写出使各函数式有意义时,,的约束条件:(1)_____________________; (2)__________ (3)____________5.写出下列函数值域:(1) ,;(2) ;(3) ,.【范例解析】例1. 设有函数组:①,;②,;③,;④,.其中表示同一个函数的有.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.例2. 求下列函数的定义域:①;②;例3.求下列函数的值域:(1),;(2);(3).【反馈演练】1.函数f(x)=的定义域是___________.2.函数的定义域为_________________.3. 函数的值域为________________.4. 函数的值域为_____________.5.函数的定义域为_____________________.6.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1) 的定义域为B.(1) 求A;(2) 若B A,求实数a的取值范围.第2课函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式.【基础练习】1.设函数,,则_________;__________.2.设函数,,则___________;;.3.已知函数是一次函数,且,,则__ ___.4.设f(x)=,则f[f()]=_____________.5.如图所示的图象所表示的函数解析式为__________________________.【范例解析】例1.已知二次函数最小值等于4,且,求解析式.例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y(km)与时间x(分)的关系.试写出的函数解析式.分析:理解题意,根据图像待定系数法求解析式.【反馈演练】1.若,,则()A.B.C.D.2.已知,且,则m等于________.3. 已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.求函数g(x)的解析式.第3课函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性.【基础练习】1.下列函数中:①;②;③;④.其中,在区间(0,2)上是递增函数的序号有______.2.函数的递增区间是___ ___.3.函数的递减区间是__________.4.已知函数在定义域R上是单调减函数,且,则实数a 的取值范围__________.5.已知下列命题:①定义在上的函数满足,则函数是上的增函数;②定义在上的函数满足,则函数在上不是减函数;③定义在上的函数在区间上是增函数,在区间上也是增函数,则函数在上是增函数;④定义在上的函数在区间上是增函数,在区间上也是增函数,则函数在上是增函数.其中正确命题的序号有__________.例 . 求证:(1)函数在区间上是单调递增函数;(2)函数在区间和上都是单调递增函数.例2.确定函数的单调性.【反馈演练】1.已知函数,则该函数在上单调递____,(填“增”“减”)值域为_________.2.已知函数在上是减函数,在上是增函数,则_____.3. 函数的单调递增区间为.4. 函数的单调递减区间为.5. 已知函数在区间上是增函数,求实数a的取值范围.第4课函数的奇偶性【考点导读】1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数.【基础练习】1.给出4个函数:①;②;③;④.其中奇函数的有___ ___;偶函数的有____ ____;既不是奇函数也不是偶函数的有___ ____.2.设函数为奇函数,则实数.3.下列函数中,在其定义域内既是奇函数又是减函数的是()A.B.C. D.【范例解析】例1.判断下列函数的奇偶性:(1);(2);(3);(4);(5);(6)点评:判断函数的奇偶性,应首先注意其定义域是否关于原点对称;其次,利用定义即或判断,注意定义的等价形式或.例2. 已知定义在上的函数是奇函数,且当时,,求函数的解析式,并指出它的单调区间.分析:奇函数若在原点有定义,则.【反馈演练】1.已知定义域为R的函数在区间上为减函数,且函数为偶函数,则()A. B.C.D.2. 在上定义的函数是偶函数,且,若在区间是减函数,则函数()A.在区间上是增函数,区间上是增函数B.在区间上是增函数,区间上是减函数C.在区间上是减函数,区间上是增函数D.在区间上是减函数,区间上是减函数3. 设,则使函数的定义域为R且为奇函数的所有的值为______.4.设函数为奇函数,则________.5.若函数是定义在R上的偶函数,在上是减函数,且,则使得的x的取值范围是.6. 已知函数是奇函数.又,,求a,b,c的值;第5 课函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法.【基础练习】1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:(1);(2).2.作出下列各个函数图像的示意图:(1);(2);(3).3.作出下列各个函数图像的示意图:(1);(2);(3);(4).4. 函数的图象是()【范例解析】例1.作出函数及,,,,的图像.例2.设函数.(1)在区间上画出函数的图像;(2)设集合. 试判断集合和之间的关系,并给出证明.【反馈演练】1.函数的图象是()2. 为了得到函数的图象,可以把函数的图象向平移个单位长度得到.3.已知函数的图象有公共点A,且点A的横坐标为2,则=.4.设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_____ ___ .5. 作出下列函数的简图:(1);(2);(3).。