继电保护实验报告
继电保护实验报告内容

继电保护实验报告内容一、引言继电保护是电力系统中保证设备安全运行的重要组成部分,它通过灵敏地监测电力系统中的异常情况,并迅速采取措施来隔离故障,保护设备免受损害。
本实验旨在通过实际操作,了解继电保护的工作原理和基本应用。
二、实验目的1. 掌握继电保护的基本概念和原理;2. 熟悉继电保护装置的基本组成和工作方式;3. 了解继电保护的常见应用场景和保护对象。
三、实验仪器和设备1. 继电保护装置(型号:RP2000);2. 电力系统模拟实验箱;3. 外部电源。
四、实验步骤1. 连接实验装置将继电保护装置与电力系统模拟实验箱通过适当的电缆连接,并确保连接稳固。
同时,将外部电源连接至继电保护装置上,为其提供电力供应。
2. 设置保护参数根据实验要求,通过控制继电保护装置上的操作面板,设置相应的保护参数。
这些参数包括电流保护值、短路保护时间延迟等等。
3. 模拟故障情况在电力系统模拟实验箱中,人为制造故障,例如电路短路、过载、接地故障等。
通过调节外部电源的电压和电流,使得实验系统达到故障状态。
4. 观察保护器的反应记录继电保护装置的反应时间、动作方式等,并与设置的保护参数进行比较。
同时观察继电保护装置的各个指示灯、液晶显示屏等,了解装置的工作状态。
5. 分析实验结果根据所观察到的保护装置反应和实验参数的关系,分析不同故障情况下继电保护的工作特点和保护效果。
同时,对比不同保护参数设置下的实验结果,探讨其对继电保护装置性能的影响。
五、实验结果与讨论经过实验,我们观察到继电保护装置对电力系统中的故障具有较高的敏感性和迅速的反应速度。
无论是短路故障还是过载故障,继电保护装置都能及时动作,切断故障电路,保护设备的安全运行。
同时,我们发现不同的保护参数设置会对保护装置的动作特性产生不同的影响。
例如,增加电流保护值可以提高保护装置的灵敏度,但可能导致误动作的风险增加。
六、实验结论继电保护是电力系统中非常重要的一环,通过实验我们深入了解了继电保护的工作原理、基本应用场景和保护对象。
继电保护实验报告

继电保护实验报告
继电保护实验报告
一、实验目的
本实验的主要目的是了解继电保护的原理,运用继电保护系统,对电力系统中的电力设备进行有效的保护,保证电力系统的安全稳定运行。
二、实验内容
1. 综述继电保护的基本原理及功能。
2. 搭建、设置、测试继电保护实验仪器,分别熟练操作和应用它们。
3. 了解继电保护装置的种类、接线及作用原理,以及各种保护动作的原理。
4. 熟练掌握继电保护装置的作用及保护试验的实施方法,并且能够对电力系统中的电力设备进行有效的保护。
5. 熟练掌握继电保护装置的维护与检查,并能够找出系统中存在的负荷覆盖不足、响应时间过长等问题。
三、实验结果
1. 实验中熟练掌握了继电保护装置的作用及保护试验的实施方法,完成了对电力系统中的电力设备进行有效的保护的任务。
2. 熟悉了继电保护装置的维护与检查,了解了电力系统中存在的负荷覆盖不足、响应时间过长等问题,并可以采取相应的措施来解决。
四、结论
本次实验对继电保护的理论基础、原理及其应用有了更加深入的了解,掌握了电力系统中电力设备的保护原理,以及对继电保护的维护与检查等工作的熟练运用。
电力继电保护实验报告

一、实验目的1. 了解电力系统继电保护的基本原理和作用。
2. 熟悉继电保护装置的组成和结构。
3. 掌握继电保护装置的调试和实验方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验原理电力系统继电保护是利用继电器等元件对电力系统中的故障进行检测、判断和动作的一种自动保护装置。
其主要原理是根据电力系统故障时出现的电气量(如电流、电压、频率等)的变化,通过继电保护装置的动作,实现对故障的切除或报警,从而保证电力系统的安全稳定运行。
三、实验仪器与设备1. 继电保护实验装置2. 电流表、电压表、频率表3. 调压器、开关、导线等4. 实验记录表格四、实验内容1. 继电保护装置的组成与结构(1)实验目的:了解继电保护装置的组成和结构。
(2)实验步骤:1. 观察继电保护实验装置的组成,包括继电器、接触器、开关、电流表、电压表、频率表等。
2. 分析各元件的作用和连接方式。
3. 根据实验要求,搭建实验电路。
2. 继电保护装置的调试(1)实验目的:掌握继电保护装置的调试方法。
(2)实验步骤:1. 根据实验要求,设置继电保护装置的动作值、返回值等参数。
2. 通过调节调压器,使电流、电压、频率等电气量达到设定值。
3. 观察继电保护装置的动作情况,记录实验数据。
3. 继电保护装置的实验(1)实验目的:掌握继电保护装置的实验方法。
(2)实验步骤:1. 搭建实验电路,接入电流表、电压表、频率表等测量元件。
2. 根据实验要求,设置故障情况(如短路、过载等)。
3. 观察继电保护装置的动作情况,记录实验数据。
4. 分析实验数据,验证继电保护装置的性能。
五、实验结果与分析1. 继电保护装置的组成与结构通过实验,我们了解了继电保护装置的组成和结构,包括继电器、接触器、开关、电流表、电压表、频率表等。
各元件的作用和连接方式如下:- 继电器:实现电气量的检测和动作。
- 接触器:实现电路的接通和断开。
- 开关:实现电路的控制。
- 电流表、电压表、频率表:测量电气量。
继电保护试验报告

继电保护试验报告摘要:继电保护是电力系统中非常重要的一项技术,它能够及时检测故障和异常情况,并采取保护措施,使电力系统保持稳定运行。
本试验报告主要介绍了继电保护试验的目的、方法和结果分析。
试验目的是验证继电保护装置的可靠性和准确性,通过模拟各种故障情况,检测继电保护装置的动作和判别能力。
一、试验目的1.验证继电保护装置是否符合设计要求,是否能够在故障情况下快速切除故障线路;2.检测继电保护装置的判别和动作能力,评估其可靠性和准确性;3.分析继电保护装置在各种故障情况下的动作特性和动作时间,为系统的故障排除提供参考。
二、试验方法1.根据电力系统的拓扑结构和故障类型,制定试验方案,确定试验对象和试验参数;2.利用模拟设备和实际硬件进行试验,根据试验方案进行故障模拟,并记录继电保护装置的动作和判别情况;3.根据试验结果进行数据分析和处理,评估继电保护装置的性能和可靠性。
三、试验结果分析1.故障判据能力:在各种故障情况下,继电保护装置能够准确判别故障位置和类型,能够迅速切除故障线路,保证电力系统的稳定运行。
2.动作时间:试验结果表明,继电保护装置的动作时间符合设计要求,能够在短时间内响应故障信号并切除故障线路,最大限度地减少电力系统的损坏。
3.可靠性评估:根据试验数据分析,继电保护装置的误动率非常低,能够在故障情况下稳定工作,并可靠地切除故障线路。
四、存在问题及改进措施根据试验结果分析,本次试验中继电保护装置的性能表现较好,但仍存在以下问题:1.动作时间略长:尽管继电保护装置的动作时间符合设计要求,但仍可以通过优化硬件和软件的结构,进一步缩短动作时间,提高故障切除的效率。
2.对复杂故障情况的判别能力有待提高:在复杂故障情况下,继电保护装置的判别能力有一定的局限性,需要进一步优化算法和数据处理方法,提高判别的准确性。
改进措施:1.更新继电保护装置的硬件和软件版本,采用先进的算法和数据处理方法,提高故障判别的准确性;2.加强继电保护装置的定期维护和检修,确保其正常运行和可靠工作。
继电保护实验报告

四川大学电气信息学院继电保护实验报告姓名:学号:专业:班级:实验一电流继电器特性实验报告一、实验目的1、了解继电器的結构及工作原理。
2、掌握继电器的调试方法。
3、了解有关仪器、仪表的选择原则及使用方法。
二、实验内容1. 外部检查2. 内部及机械部分的检查3. 绝缘检查4. 刻度值检查5. 接点工作可靠性检查6. 仔细观察继电器的各种构造,并记录下继电器铭牌的主要参数;三、实验仪器设备①电流继电器一个②电脑一台四、实验原理继电器由电磁铁、线圈、Z型舌片、弹簧、动触点、静触点、整定把手、刻度盘、轴承、限制螺杆等组成。
继电器动作的原理:当继电器线圈中的电流增加到一定值时,该电流产生的电磁力矩能够克服弹簧反作用力矩和摩擦力矩,使Z型舌片沿顺时针方向转动,动静接点接通,继电器动作。
当线圈的电流中断或减小到一定值时,弹簧的反作用力矩使继电器返回。
利用连接片可将继电器的线圈串联或并联,再加上改变调整把手的位置可使其动作值的调整范围变更四倍。
继电器的内部接线图如下:图一为动合触点,图二为动断触点,图三为一动合一动断触点。
五、实验注意事项1.计时器不能带电归零。
2.进行实验时,应先估算电流值。
六、实验步骤1、外部检查检查外壳与底座间的接合应牢固、紧密;外罩应完好,继电器端子接线应牢固可靠。
2. 内部和机械部分的检查a.检查转轴纵向和横向的活动范围,该范围不得大于0.15~0.2mm,检查舌片与极间的间隙,舌片动作时不应与磁极相碰,且上下间隙应尽量相同,舌片上下端部弯曲的程度亦相同,舌片的起始和终止位置应合适,舌片活动范围约为7度左右。
b. 检查刻度盘把手固定可靠性,当把手放在某一刻度值时,应不能自由活动。
c. 检查继电器的螺旋弹簧:弹簧的平面应与转轴严格垂直,弹簧由起始位置转至刻度最大位置时,其层间不应彼此接触且应保持相同的间隙。
d. 检查接点:动接点桥与静接点桥接触时所交的角度应为55~65度,且应在距静接点首端约1/3处开始接触,并在其中心线上以不大的摩擦阻力滑行,其终点距接点末端应小于1/3。
电力系统继电保护实验实验报告

电力系统继电保护实验实验报告一、实验目的电力系统继电保护是保障电力系统安全稳定运行的重要技术手段。
本次实验的目的在于通过实际操作和观察,深入理解继电保护的原理、功能和动作特性,掌握继电保护装置的调试和测试方法,提高对电力系统故障分析和处理的能力。
二、实验设备1、继电保护测试仪2、模拟电力系统实验台3、各种类型的继电保护装置,如过流继电器、差动继电器、距离继电器等4、示波器、万用表等测量仪器三、实验原理1、过流保护过流保护是根据线路或设备中的电流超过预定值时动作的保护原理。
当电流超过整定值时,过流继电器启动,经过一定的延时后,发出跳闸信号,切断故障线路或设备。
2、差动保护差动保护是基于被保护设备两端电流的差值来判断是否发生故障。
正常运行时,两端电流差值很小;当发生内部故障时,差值会显著增大,超过整定值时,差动继电器动作。
3、距离保护距离保护是根据测量故障点到保护安装处的阻抗来确定保护动作的。
通过测量电压和电流的比值,计算出阻抗值,与整定值比较,判断是否动作。
四、实验内容及步骤1、过流保护实验(1)按照实验接线图将过流继电器、模拟负载和电源连接好。
(2)设置过流继电器的整定值,例如 12 倍额定电流。
(3)逐渐增加负载电流,观察过流继电器的动作情况,记录动作电流和动作时间。
2、差动保护实验(1)将差动继电器与模拟变压器的两侧绕组连接。
(2)在变压器正常运行和内部故障情况下,测量两侧电流,观察差动继电器的动作情况。
3、距离保护实验(1)在模拟电力系统实验台上设置不同的故障点和故障类型。
(2)使用继电保护测试仪向距离保护装置施加电压和电流信号。
(3)观察距离保护装置的动作情况,记录动作距离和动作时间。
五、实验数据及分析1、过流保护实验数据|负载电流(A)|动作电流(A)|动作时间(s)|||||| 10 |未动作||| 12 | 125 | 05 || 15 | 152 | 03 |分析:实验结果表明,过流继电器在电流超过整定值时能够可靠动作,动作时间符合设定的延时要求。
电力系统继电保护》实验报告

电力系统继电保护》实验报告实验一:电磁型电流继电器和电压继电器实验实验目的:1.熟悉DY型电压继电器和DL型电流继电器的结构、工作原理和基本特性。
2.研究动作电流、动作电压参数的整定方法。
实验电路:1.过流继电器实验接线图2.低压继电器实验接线图预题:1.过流继电器线圈采用串联接法时,电流动作值可由转动刻度盘上的指针所对应的电流值读出;低压继电器线圈采用并联接法时,电压动作值可由转动刻度盘上的指针所对应的电压值读出。
2.动作电流(压)、返回电流(压)和返回系数的定义是什么?答:在电压继电器或中间继电器的线圈上,从逐步升压到继电器动作的这个电压是动作电压;继电器动作后再逐步降低电压,到继电器动作返回的这个电压是返回电压。
返回电流与启动电流的比值称为继电器的返回系数。
实验内容:1.电流继电器的动作电流和返回电流测试表一:过流继电器实验结果记录表整定电流I(安)测试序号实测起动电流I dj 实测返回电流I fj 返回系数K f 起动电流与整定电流误差%2.7A 1 2.66A 2.37A 0.83 1.00 4.665.4A 2 2.76A 2.35A 0.87 1.04 4.64线圈接线方式为:1串联接法,2并联接法。
2.低压继电器的动作电压和返回电压测试表二:低压继电器实验结果记录表整定电压U(伏)测试序号实测起动电压U dj 实测返回电压U fj 返回系数K f 起动电压与整定电压误差%24V 1 23.2V 28.4V 1.24 0.96 4.2848V 2 23.4V 28.8V 1.28 0.97 4.82线圈接线方式为:1串联接法,2并联接法。
实验仪器设备:控制屏、EPL-20A、EPL-04、EPL-12、EPL-11、EPL-13、EPL-05.问题与思考:无。
3、掌握功率方向电流保护的整定方法;4、掌握实际操作中功率方向电流保护的接线方法。
二、实验原理功率方向继电器是一种用于检测电源供电方向的继电器。
系统继电保护实验报告(3篇)

第1篇一、实验目的1. 理解电力系统继电保护的基本原理和作用。
2. 掌握继电保护装置的组成、工作原理及调试方法。
3. 熟悉继电保护装置在实际电力系统中的应用和运行维护。
二、实验原理电力系统继电保护是一种自动装置,用于检测电力系统中的故障,并在故障发生时迅速切断故障电路,以保护电力系统的安全稳定运行。
继电保护装置由测量元件、执行元件和逻辑元件组成。
1. 测量元件:测量元件用于检测电力系统中的电流、电压、功率等参数,并将测量结果传递给执行元件。
2. 执行元件:执行元件根据测量元件传递的信号,实现对断路器等设备的控制,从而切断故障电路。
3. 逻辑元件:逻辑元件用于对测量元件传递的信号进行处理,实现对保护装置的协调和优化。
三、实验内容1. 继电保护装置的组成与原理- 学习继电保护装置的组成和各部分的功能。
- 理解继电保护装置的工作原理,包括测量、执行和逻辑处理过程。
2. 继电保护装置的调试- 学习继电保护装置的调试方法,包括调试步骤、调试参数设置等。
- 通过实际操作,掌握继电保护装置的调试技巧。
3. 继电保护装置的运行与维护- 了解继电保护装置的运行过程,包括启动、运行、停止等环节。
- 学习继电保护装置的维护方法,包括定期检查、故障排除等。
4. 实验操作- 根据实验指导书,进行继电保护装置的安装、接线、调试和运行。
- 观察实验现象,分析实验结果,总结实验经验。
四、实验步骤1. 准备工作- 检查实验设备是否完好,包括继电保护装置、电源、测试仪器等。
- 熟悉实验指导书,了解实验目的、原理和步骤。
2. 安装与接线- 按照实验指导书的要求,将继电保护装置安装在实验台上。
- 按照电路图进行接线,确保接线正确、牢固。
3. 调试- 根据实验指导书的要求,设置继电保护装置的参数。
- 进行调试,观察实验现象,分析实验结果。
4. 运行与维护- 启动实验装置,观察继电保护装置的运行情况。
- 定期检查继电保护装置,发现故障及时排除。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气信息学院继电保护实验报告实验内容:实验二:LG_10系列功率方向继电器特性实验三:重合闸继电器特性实验二 LG_10系列功率方向继电器特性实验一、实验目的1. 了解继电器的原理及构造(采用整流式原理,嵌入式结构)2. 掌握继电器的检验方法(主要部分)3. 掌握移相器和相位表的使用方法二、结构原理继电器的原理接线图如下:三、实验步骤1、按图接好实验电路2、电流潜动和电压潜动的检查,要求电流和电压均无潜动a、电流潜动:电压回路⑦、⑧端经20Ω电阻端接,电流回路⑤、⑥端子通入额定电流5A,测量极化继电器线圈上的电压(即⑨、⑩端子上的电压),测得的电压应接近于0V(或不大于0.1v),如电压不为零,可调整电位器Rp1使电压为零。
b、电压潜动:电流回路⑤、⑥端开路,在电压回路⑦、⑧端子加电压100v,测量极化继电器线圈上的电压,测得的电压应接近于0v(或不大于0.1v),如电压不为0,可调整电位器Rp2,使电压为0。
反复调整电压及电流潜动,使极化继电器线圈上的电压均接近于0,然后突然加入及切除额定电流5A及额定电压100v,继电器接点不应有短时动作现象。
在电流回路开路情况下突然加入或切除(电压回路)100v,继电器触点同样要求不应有瞬时闭合现象。
若发现触点有瞬时接通现象,可更换比较回路的电阻核电容,使制动回路电容放电时间常数不小于工作回路电容放电时间常数。
更换后应重新进行潜动调整。
潜动调整结束后,将电位器锁紧。
3、动作区和最大灵敏角检查在额定电流及额定电压下,用移相器改变电流和电压之间的相角,读出动作边界的两个角度θ1和θ2(即继电器接点闭合和断开的两个边界交度)如图一或图二所示,按下式求最大灵敏角:φm=(θ1+θ)/2式中:θ1、θ2——加在继电器端子上的电流和电压之间的相角,电流滞后电压时,角度为正值,电流超前电压时,角度为负值。
对于LG-11型继电器,当连接片HP接到-45°位置时,要求Φm=-45°±5°,当HP改接到-30°位置时,要求Φm=-30°±5°。
如上述要求达不到,可以改变谐振绕组的抽头及加减一小绕组来达到。
如改变匝数仍达不到要求时,则应检查谐振回路。
测量电容上电压和电感上电压,要求Uc-UL=10v~15v,如电压差过大则允许在电容C1上并联0.1uf ~0.47uf耐压为400v的电容。
4、动作电压检查在灵敏角及额定电流下,测量继电器的动作电压,要求动作电压不大于2v,返回系数不小于0.45,如发现动作电压过大,则应检查谐振回路电感线圈,有无短路匝存在,在正常情况下,在电压回路加100v电压时,电感线圈上电压UL应达到80v~90v,如发现返回系数过小,则应检查潜动是否调好,以及极化继电器的动作电流及返回电流。
5、记忆特性检查在灵敏角下突然加0.5倍额定电流和10倍额定电流,电压自100v突然降到零,继电器应可靠动作。
做此项检验,模拟突然短路,因电流大,故需折除相位表,为能做到10倍的额定电流,可采用升流器来调节电流,可以减轻调压器负担。
四、实验数据1、电流潜动和电压潜动的检查结果:电流潜动:测出⑨、⑩端子上电压V=0.02V。
电压潜动:测出⑨、⑩端子上电压V=0.01V,接近于0,表示电压无潜动。
分析:V=0.02V,接近于0,表示电流无潜动。
V=0.01V,接近于0,表示电压无潜动。
2、动作区检查结果:相电压线电压φm =-30°0.3V 灭灯0.52V 灭灯0.6V 亮灯 1.039V 亮灯φm =-45°0.2V 灭灯0.346V 灭灯0.5V 亮灯0.866V 亮灯分析:当连接片HP接到-30°且接相电压时,动作区为0.3V-0.6V 当连接片HP接到-45°且接相电压时,动作区为0.2V-0.5V 3、最大灵敏角检查结果:分析:依据公式:φm=(θ1+θ2)/2可以计算出,同时从图中也可以读出当连接片HP接到-30°时,最大灵敏角为-30.23°;当连接片HP接到-45°,最大灵敏角为-42.93°。
4、动作电压检查结果:分析:从图中可以读出,在最大灵敏角-42.93°和额定电流下,继电器的动作电压V=1V,满足动作电压不大于2V的要求;而返回电压V=0.5V,那么依据:返回系数K=返回电压/动作电压,得出返回系数K=0.5,也满足返回系数不小于0.45的要求。
五、实验思考1、为了检验继电器在正方向出口短路时,是否能可靠动作,在灵敏角下,必须使加入继电器的电流由某一电流(例如额定电流)突然增加至另一电流(例如10倍额定电流),与此同时,电压由100v突然降到零,继电器应可靠动作。
答:功率方向继电器在出口正方向短路时有电压死区,在电压为零时继电器拒动。
所以要用90°接线方式或加电压记忆回路来弥补这个缺陷,使在出口正方向短路时继电器也能正确动作。
在在最大灵敏角-42.93°下,继电器在正方向出口短路时,继电器会动作。
因为出现短路时电流会达到动作电流,而电压本来数值不大,影响就很小了,使得|KiIj+KuUj|>|KiIj-KuUj|,那么继电器会动作。
2、为了检验继电器在反方向出口短路时,是否能可靠不动作,在灵敏角反向处,所加电流、电压同于a,继电器应可靠不动作。
答:在在最大灵敏角-42.93°下,继电器在反方向出口短路时,继电器会动作。
因为出现短路时电流会达到动作电流,而电压数值不大,而虽然是反方向出口短路,但是仍然使得|KiIj+KuUj|>|KiIj-KuUj|,那么继电器会动作。
3、对实验结果进行讨论,通过实验有何收获,体会及改进的意见。
答:功率方向继电器对保护范围有方向性的区别,正方向短路时应可靠动作,反方向短路时应该安全不动作。
其原理是电压电流的相位差是否在整定范围内。
但是出口短路的情况会出现电压死区,导致继电器不能灵敏动作。
弥补措施为90°接线方式和加装电压记忆回路。
六、实验总结和体会在本次试验中出现的问题,一是指针超出了0—9 0 o 范围。
主要原因是象限开关选择不对,应立即切换象限开关,使指针在读数范围内。
若相位表指针过9 0度,象限开关就进行不同端的切换;若相位表指针在零点以外,则进行同一端的切换。
二是电压与电流的实际相位差角测量错误。
主要原因是测角与读角间的关系没搞清楚。
当象限开关处于不同位置时,只要将实际测量的电压、电流问的相位差角与表针指示角问的关系搞清楚,就能正确测量相位差。
从本次实验了解继电器的原理及构造,及采用整流式原理和嵌入式结构,掌握了继电器的检验方法,掌握了移相器和相位表的使用方法从本次实验,我还了解到,新型继电保护测试仪在现场的应用,给继电保护检验工作带来了方便,利用测试仪对功率方向继电器进行检验更加简便。
无论采用综合测试仪还是分立仪表对继电器进行检验,只要掌握继电器的工作原理,熟悉各种仪器仪表的使用方法,就能做到快速准确地完成试验,充分发挥继电保护的作用,保证电力系统的安全稳定运行。
实验三 DCH-1型重合闸继电器特性实验一、实验目的1. 了解DCH系列重合闸继电器的结构及各元件的作用2. 掌握DCH系列重合闸继电器的调试方法二、继电器的构造及用途用途:DCH-1型重合闸继电器用于输电线路、变压器及母线的三相一次重合闸装置中,作为主要元件。
DCH-1型重合闸继电器的内部接线如下图所示:继电器各元件作用如下:时间元件SJ:DCH-1型重合闸继电器内采用DS_32C/2型时间继电器作为时间元件,用于整定重合闸继电器的动作时间。
中间元件ZJ:DCH-1型继电器内采用DZK_226型快速中间继电器作为装置的出口元件,用于发出接通断路器合闸回路的脉冲。
继电器有二个线圈,电压线圈靠电容放电时起动,电流线圈与断路器合闸回路串联,起自保持作用,直到断路器合闸完毕,继电器才失磁复归。
电容器C:用于保证重合闸装置只动作一次。
充电电阻4R:用于限制电容器C的充电速度,防止一次重合闸不成功时而发生多次重合。
放电电阻6R:在不需要重合闸时,电容器C经6R放电,起放电作用。
电阻5R:用于保证时间元件SJ线圈的热稳定。
信号灯XD:用于监视有无直流操作电源;用于监视重合闸继电器的所有元件及控制开关的接点是否完好。
电阻17R:用于限制信号灯XD上的电压。
电位器3R:用于调整充电时间的大小。
三、实验步骤按图接好实验电路1、时间元件的动作电压和返回电压检查(1)增大输入电压,直到SJ铁芯可靠吸下时的动作电压,要求动作电压不大于70%的额定电压。
记录数据,填入记录表中。
(2)减小输入电压,直到SJ铁芯完全返回时的返回电压,要求返回电压不小于5%的额定电压。
记录数据,填入记录表中。
2、中间元件的动作电压和最小保持电流的检查输出电压为额定电压,手按中间元件衔铁,使其在动作位置,增大电流,松开衔铁,直到中间元件应自保持,记录最小保持电流。
重复上述步骤,测出中间元件电流线圈的最小保持电流。
3、充电时间的检查电压为额定电压,经15~25s后,短接⑤⑦,时间元件SJ线圈励磁,中间元件ZJ电压线圈因时间元件的延时接点闭合,电容C对中间元件电压线圈放电,而使中间元件可靠动作并能自保持住。
断开K1后,重合闸复归;再重复测定冲电时间。
4、检查放电电阻输出电压为额定电压,充电60s后,瞬间短接③、⑥端子,使电容C放电,接着短接⑤⑦,此时中间元件ZJ不应动作。
5、重合闸整定时间检查电压为额定电压,待电容C充电25s后,短接⑤⑦,电秒表起动并计时,待时间元件SJ的延时接点闭合,电容器C对中间元件的电压线圈放电,使中间元件ZJ动作,其常开接点闭合,停止计时,即电秒表上的时间为重合闸的动作时间。
试验应重复三次,要求每次实测值与整定值比较的误差不超过±0.1s。
四、实验数据重合闸继电器型号规范型号规格规范D C H— 1 220V1 A内、外部检查情况正常时间元件动作电压(V)返回电压(V)动作时间(s)整定值一次二次三次平均值129 18 2.2235 2.2211 2.2771 2.2498 2.2493 中间元件自保持电流(A)0.6T1- T=2.2211-2.2235=-0.0024(s)> (-0.1)sT2- T=2.2771-2.2235= 0.0536(s)< 0.1 sT3- T=2.2498-2.2235= 0.0263(s)< 0.1 sT均-T=2.2493-2.2235=0.0258 (s)< 0.1 s七、实验结论根据资料1. 在额定电压下,当环境温度为±20℃,相对湿度不大于70%时,电容器充电到使中间元件动作的电压值所必须的时间为15~25s。