第8章 刚体的简单运动练习题
第8讲 刚体角动量典型例题

mv0 y J
y
其中
J
J棒
J子弹
1 3
ML2
my2
mv0 y 1 ML2 my2
3
v0
m
15
刚体转动的典型例题
例10.上题中,若子弹和杆共同偏转30o,子弹的质量为 m ,速度为 v0 。 求 子弹的初速度v0 。
解 由机械能守恒有
1 J2 mgy L Mg (mgy L Mg )cos
11 M Jω0 (t1 t2 )
22
刚体转动的典型例题
例16.求一半径R 50cm 的飞轮对过其中心轴的
转动惯量,在飞轮上绕以细绳,绳末端挂一重物, 其
质量 m1 8.0kg 的让其从 h 2.0m 处静止下落,
测得下落时间 t1 16s ;若用质量 m2 4.0kg 的
重物时, t2 25s , 假定摩擦力矩 Mf 是一个常量 ,
m
S 1 r r sin
F
G
ms m
r
r3
t 2 t
lim S 1 rvsin 1 L
t0 t 2
2m
L C 所以相等的时间内扫过相等的面积。
26
刚体转动的典型例题
例18. 一滑冰者开始转动时 Ek0 J002 2 ,然后
将手臂收回,使转动惯量减少为原来的 1/3,求此时的
转动角速度.
由因为: v2 2ah v 2 mgh
M 2m
6
刚体转动的典型例题
解2 圆盘受力矩 FTR 作用
利用刚体的动能定理, 得
0
FT Rd
1 2
J 2
1 2
J02
绳与圆盘间无相对滑动 v = Rω
高二物理竞赛课件:刚体的运动习题课

解: 质心运动方程为
F cos Ff mac
绕质心转动方程为
R1
Ff R1 FR2 J
N
F
R2 O
纯滚动 ac R1
mg
ac
FR1(R1 cos
mR12 J
R2 )
Ff
o
x
ac
讨论:
FR1(R1 cos
mR12 J
R2 )
R1
N
R2 O
F
(1)当ac < 0,大木轴向左作
角绕动自 量身定轴 理转的动微的分角式动:量d:LLMJ drˆt
dL L sin d J sin d
dL M dt mgr sin dt
进动角速度
M L
d mgr dt J
Ω
Lห้องสมุดไป่ตู้
c
r
M
O mg
Ω
d
L
dL
L dL
O
结论:进动现象是自旋(spin)的物体在外力距作用下,沿外 力矩方向不断改变其自旋角动量方向的结果.
转动惯量
J z miri2 J z r2dm i
说明
刚体的转动惯量与以下三个因素有关:
(1)与刚体的体密度 有关.
(2)与刚体的几何形状及体密度 的分
布有关. (3)与转轴的位置有关.
对于质量连续分布的刚体:
J r2dm
J r 2dm r 2 dV
V
V
J r 2dm r 2dS (面质量分布)
的圆周上,绳的另一端悬挂在天花板上(如图). 设绳的质量不计,求:(1)圆盘质心速度; (2)绳的 张力。
分析:
a. 质心运动定律
(完整版)刚体的转动习题

04第四章刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴 0以角速度针转动。
今将两大小相等、方向相反、但不在同一条直线上的力F 和盘面同时作用到圆盘上,则圆盘的角速度:[](A )必然减少 (B )必然增大(C )不会变化(D )如何变化,不能确定(C ) mg T 1 my T 2)R J B J yR关于刚体对轴的转动惯量,下列说法中正确的是只取决于刚体的质量,与质量的空间分布和轴的位置无关. 取决于刚体的质量和质量的空间分布,与轴的位置无关. 取决于刚体的质量、质量的空间分布和轴的位置.只取决于转轴的位置,与刚体的质量和质量的空间分布无关.2、如图4-17所示,一质量为m 的匀质细杆 AB , A 端靠在粗糙的竖直墙壁上, 端置于粗糙的水平地面上而静止,杆身与竖直方向成 角, 大小为:[ ] BB 则A 端对墙壁的压力 3、 (A) 1 mgcos (B ) - mgtg (C ) mgsin 2(D )不能唯一确定 图 4-17某转轮直径 d 0.4m ,以角量表示的转动方程为 t * *3 *2 3t 4t (SI ),则: (A ) (B ) (C ) (D ) 从t 从t 在t 在t 2s 到t 4s 这段时间内,其平均角加速度为 2s 到t 4s 这段时间内,其平均角加速度为 2s 时,轮缘上一点的加速度大小等于 2s 时,轮缘上一点的加速度大小等于 6rad.s 2 ; 12rad .s 2 ; 3.42m.s 2 ; 26.84m.s 。
4、 轮 动过程中,下列哪个方程能成立? (A ) mg ky倔强系数为 k 的弹簧连接一轻绳,绳子跨过滑m 的物体,问物体在运 ] T 2如图4-2所示, (转动惯量为 J ),下端连接一质量为 [ (B) mg T 2 0Z图4-25、(A) (B ) (C ) (D) 6、 有两个力作用在一个有固定转轴的刚体上:(1) (2) (3) (4)[B 环的质量分布不(C) J A = J B .(D)不能确定J A 、J B 哪个大.&一力F (3i 5j)N ,其作用点的矢径为 r (4i 3j)m ,则该力对坐标原点的力矩 为:[] (A ) 3kN m (B )29kN m 9、一圆盘绕过盘心且与盘面垂直的光滑固定轴 向转动.若如图所示的情况那样, (C ) 19kN m O 以角速度按图示方 将两个大小相等方向相反但不在同一 (D) 3kN m 条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A)必然增大. (B)必然减少. (C)不会改变. (D)如何变化,不能确定. 10、均匀细棒OA 可绕通过其一端 O 而与棒垂直的水平固定光滑轴转 动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到 竖直位置的过程中,下述说法哪一种是正确的? 角加速度从大到小. 角加速度从小到大. 角加速度从大到小. 角加速度从小到大. Q 、R 、S 是附于刚性轻杆上的四个质点, (A) (B) (C) (D) 角速度从小到大, 角速度从小到大, 角速度从大到小, 角速度从大到小, Og11、如图4-19所示P 、 PQ QR RS则系统对00轴的转动惯量为:[ ] (A) 50ml 2(C ) 10ml 2 (B) 14ml 2 (D ) 9ml 24m oP3m OQ 图 4-192m mR So 12、如图4-1所示, A 、B 为两个相同的绕着轻绳的定滑轮, 一质量为M 的物体, B 滑轮受拉力F ,而且F Mg 。
理论力学题库

2014级理论力学期末考试试题题库理论力学试题第一章物系受力分析画图题1、2、3、4、5、第二章平面汇交力系计算题1、2、4、6、第三章平面任意力系计算题1、2、6、7、8、第四章空间力系计算题1、2、3、4、5、6、第五章静力学综合填空题1、作用在刚体上某点的力,可以沿着其作用线移动到刚体上任意一点,并不改变它对刚体的作用效果。
2、光滑面约束反力方向沿接触面公法线指向被约束物体。
3、光滑铰链、中间铰链有1个方向无法确定的约束反力,通常简化为方向确定的 2 个反力。
4、只受两个力作用而处于平衡的刚体,叫二力构件,反力方向沿二力作用点连线。
5、约束力的方向与该约束所能阻碍的位移方向相反 .6、柔软绳索约束反力方向沿绳索 ,指向背离被约束物体.7、在平面内只要保持力偶矩和转动方向不变,可以同时改变力偶中力的大小和力臂的长短,则力偶对刚体的作用效果不变。
8、力偶的两个力在任一坐标轴上投影的代数和等于零,它对平面内的任一点的矩等于力偶矩,力偶矩与矩心的位置无关。
9、同一平面内的两个力偶,只要力偶矩相等,则两力偶彼此等效.10、平面汇交力系可简化为一合力 ,其大小和方向等于各个力的矢量和,作用线通过汇交点.11、平面汇交力系是指力作用线在同一平面内 ,且汇交与一点的力系.12、空间平行力系共有 3 个独立的平衡方程.13、空间力偶对刚体的作用效果决定于力偶矩大小、力偶作用面方位、力偶的转向三个因素。
14、空间任意力系有 6 个独立的平衡方程.15、空间汇交力系的合力等于各分力的矢量和,合力的作用线通过汇交点 .第五章静力学综合摩擦填空题1、当作用在物体上的全部主动力的合力作用线与接触面法线间的夹角小于摩擦角时,不论该合力大小如何,物体总是处于平衡状态,这种现象称为自锁现象.2、答案:50N3、答案:φm/24、静摩擦力Fs的方向与接触面间相对滑动趋势的方向相反,其值满足__0<=F S<=F MAX摩擦现象分为滑动摩擦和__滚动摩阻__两类。
刚体的运动学与动力学问题练习

刚体的运动学与动力学问题练习刚体的运动学与动力学问题练习1.如图14—14所示,一个圆盘半径为R ,各处厚度一样,在每个象限里,各处的密度也是均匀的,但不同象限里的密度则不同,它们的密度之比为1ρ:2ρ:3ρ:4ρ=1:2:3:4,求这圆盘的质心位置.2.如图14—15所示,质量为m 的均匀圆柱体,截面半径为R ,长为2R .试求圆柱体绕通过质心及两底面边缘的转轴(如图中的1Z 、2Z )的转动惯量J .3.如图14—16所示,匀质立方体的边长为a ,质量为m .试求该立方体绕对角线轴PQ 的转动惯量J .4.椭圆细环的半长轴为A ,半短轴为B ,质量为m (未必匀质),已知该环绕长轴的转动惯量为A J ,试求该环绕短轴的转动惯量B J .5.如图14—17所示矩形均匀薄片ABCD 绕固定轴AB 摆动,AB 轴与竖直方向成30α=°角,薄片宽度AD d =,试求薄片做微小振动时的周期.6.一个均匀的薄方板,质量为M ,边长为a ,固定它的一个角点,使板竖直悬挂,板在自身的重力作用下,在所在的竖直平面内摆动.在穿过板的固定点的对角线上的什么位置(除去转动轴处),贴上一个质量为m 的质点,板的运动不会发生变化?已知对穿过板中心而垂直于板的轴,方板的转动惯量为216J Ma =. 7.如图14—18所示,两根等质量的细杆BC 及AC ,在C 点用铰链连接,质量不计,放在光滑水平面上,设两杆由图示位置无初速地开始运动,求铰链C 着地时的速度.8.如图14—19所示,圆柱体A 的质量为m ,在其中部绕以细绳,绳的一端B 固定不动,圆柱体初速为零地下落,当其轴心降低h 时,求圆柱体轴心的速度及绳上的张力.图14-14图14-15 图14-16 图14-17图14-18图14-199.如图14—20所示,实心圆柱体从高度为h 的斜坡上从静止纯滚动地到达水平地面上,继续纯滚动,与光滑竖直墙做完全弹性碰撞后返回,经足够长的水平距离后重新做纯滚动,并纯滚动地爬上斜坡,设地面与圆柱体之间的摩擦系数为μ,试求圆柱体爬坡所能达到的高度'h .10.在一个固定的、竖直的螺杆上的一个螺帽,螺距为s ,螺帽的转动惯量为J ,质量为m .假定螺帽与螺杆间的摩擦系数为零,螺帽以初速度0v 向下移动,螺帽竖直移动的速度与时间有什么关系?这是什么样的运动?重力加速度为g .11.在水平地面上有两个完全相同的均匀实心球,其一做纯滚动,质心速度v ,另一静止不动,两球做完全弹性碰撞,因碰撞时间很短,碰撞过程中摩擦力的影响可以不计.试求:(1)碰后两球达到纯滚动时的质心速度; (2)全部过程中损失的机械髓的百分数. 12.如图14—21所示,光滑水平地面上静止地放着质量为M 、长为l 的均匀细杆.质量为m 的质点以垂直于杆的水平初速度0v 与杆一端做完全非弹性碰撞.求(1)碰后系统的速度及绕质心的角速度,(2)实际的转轴(即静止点)位于何处?13.如图14—22所示,实心匀质小球静止在圆柱面顶点,受到微扰而自由滚下,为了令小球在θ≤45°范围内做纯滚动,求柱面与球间摩擦因数μ至少多大?14.如图14—23所示,半径为R 的乒乓球,绕质心轴的转动惯量223J mR =,m 为乒乓球的质量,以一定的初始条件在粗糙的水平面上运动,开始时球的质心速度为0C v ,初角速度为0?,两者的方向如图.已知乒乓球与地面间的摩擦因数为μ.试求乒乓球开始做纯滚动所需的时间及纯滚动时的质心速度.15.如图14—24所示,一个刚性的固体正六角棱柱,形状就像通常的铅笔,棱柱的质量为M ,密度均匀.横截面六边形的边长为a .六角棱柱相对于它的中心轴的转动惯量2512J Ma =.相对于棱边的转动惯量是'2512J Ma =.现令棱柱开始不均匀地滚下斜面.假设摩擦力足以阻止任何滑动,并且一直接触斜面.某一棱刚碰上斜面之前的角速度为i ?,碰后瞬间角速度为f ?,在碰撞前后瞬间的动能记为ki E 和kf E .试证明f i s ??=,kf ki E rE =,并求出系数s 和r 的值.图14-20图14-21图14-23 图14-22 图14-24参考答案1.先确定一半径为R 的1/4圆的匀质薄板的质心,如图答14—1所示,在xOy 坐标中,若质心坐标为(x c ,y c ),由对称性知x c =yc ,则根据质心的等效意义,有231lim cos()cos()sin()lim[sin 3()sin()]42222822nc x x i R x RiR iR iR iinnnnnnnππππππππ→∞→∞===+∑,于是有313sin()sin ()1432222lim [sin 3()sin()]lim[3222234sin() 4c x x n n R R n n x i i n n n nnπππππππ→∞→∞+=+=??1sin ()sin ()442222]43sin()4n n R n n nnππππππ++=.针对本题中圆盘各象限密度不同有下列方程22123412344()()443c R R R x ππρρρρρρρρπ+++=--+, 22123412344()()443c R R R y ππρρρρρρρρπ+++=--+,解以上方程得0c x =,815c y R π=-.故质心坐标为(0,815R π-).2.如图答14—2所示,对图中所示的1Z 、2Z 、Z 坐标系与3Z 、4Z 、Z 坐标系运用正交轴定理,有1234J J J J J J ++=++,其中2312JmR =,24712J mR =,由对称等效可知 2121324J J mR ==. 3.如图答14—3所示,将立方体等分为边长为2a的八个小立方体,每个小立方体体对角线到大立方体体对角线距离d ==,依照本专题例3用量纲分析法求解有22222()()6()()(82828m a m a m kma k k ??=++,所以有 16k =,21 6J ma =.图答14-11Z R2ZZ4Z3Z图答14-2图答14-34.由正交轴定理22()A B i iiJ J m x y +=+∑及椭圆方程22221y x A B+=,得22222222()(1)A B i i i A A A J J m A y y mA J B B +=-+=+-∑,所以222B A A J mA J B=-.5.如图答14—4所示,设板质量为M ,则对AB 轴的转动惯量2211lim ()3nn i M d J i Md n n →∞===∑,对应于与竖直成α角的转轴,等效的重力是与轴垂直的分量sin Mg α,则24T =. 6.薄板上未贴m 时对悬点的转动惯量22023J J Md Ma =+=, 贴m后22123J Ma mx =+.振动周期相同,应有01'()J J Mgl M m gl =+,贴上m 后,质心相对悬点'mx Mll M m+=+,l =,解得x =.7.初始时,系统具有的重力势能P E mgh =,m 为一根杆的质量,铰链C 刚着地时,速度C v 竖直向下,各杆的瞬时转轴为()A B ,转动惯量2/3J ml =,l 表示每段杆长:由于铰链C 质量不计,则系统总动能22221112()233C k Cv E J ml mv l ?===,下落中机械能守恒,有 213Cmgh mv =,mgh:得C v =. 8.如图答14—5所示,圆柱体关于几何轴的转动惯量212J mR =,对过与绳相切点P 的平行轴的转动惯量232P J m R =;设轴心降低h 时速度为v ,由机械能守恒定律 2213()24v mgh J mv R ==,所以v 又由质心运动定律mg T m R β-=,由转动定律2mgR mR β=.则13T mg =.9.纯滚动时,无机械能损失,于是满足方程2222113()2224mR v mgh mv mv R =+?=,圆柱体与光滑墙碰撞,开始做非纯滚动,经时间t 达到纯滚动,质心速度由'C C v v →,角速度从'C C v v R R →,运用动量定理及动量矩定理'()C C ft m v v =-,'2()2C C v v mR fRt R R =-,解得'3C C v v =,此后机械能守恒,联系第一式可得''234mgh mv =,得'9h h =10.由机械能守恒定律,得22220011()()22t t mgs J m v v ??=-+-,又因2v sπ=,可得图答14-4图答14-522'022224t m v v gs g s J m s π-==+,即螺帽匀加速直线下降'0t v v g t =+,'224m g g Jm sπ=+. 11.(1)如图答14—6所示,两球225mv J =,刚完成弹性碰撞时,两球交换质心速度,角速度未变;设两球各经1t 、2t 达到纯滚动状态,质心速度为1v 、2v ,对球1有11ft mv =,2112()5v mR v fRt R R =-,所以127v v =;对球2有22()ft m v v =-,22225v mR fRt R =,257v v =.(2)系统原机械能222211127()22510k mR v E mv mv R =+?=;达到纯滚动后2222221125122529()()()()277257770k v v mR v v E m mv =++?+=,则2041%49η=≈. 12.(1)碰后系统质心位置从杆中点右移为2m lx m M ?=+.由质心的动量守恒0()C mv M m v =+,求得质心速度0C mv v M m=+. (2)由角动量守恒202122l Ml lmv m x ??=+,x 为瞬时轴距杆右端的距离,考虑质心速度与角速度关系022()2()C v mv Ml m M x Ml x M m ?==+--+,在23x l =处,有06(4)mv M m l ?=+. 13.圆柱半径与小球半径分别以R 、r 表示,小球滚到如图14—7位置时,质心速度设为C v ,角加速度β,转动惯量225J mr =,受到重力mg 、圆柱面支持力N 、静摩擦力f ,由质心运动定律,有 2cos Cmv mg N R rθ-=+,①sin mg f m r θβ-=,②自转动定律有 225fr mr β=,③ 又因小球做纯滚动,摩擦力为静摩擦力不做功,球的机械能守恒 22221127()(1cos )()22510C C Cv mr mg R r mv mv r θ+-=+?=,④ 将③式代入②式得5sin 2f mg f mr mr θ-=,于是2sin 7f mg θ=;将④式代人①式得10()(1cos )cos 7()mg R r mg N R r θθ+--=+,所以1710(cos )77N mg θ=-.图答14-6图答14-7C因做滚动,必定f ≤N μ,即μ≥2sin 17cos 10θθ-,在θ≤45°范围内μ≈0.7.14.乒乓球与地接触点O 既滚又滑且达到纯滚时,由角动量守恒,得 00C C mRv J mRv J ??-=+,即002()3C C v v R ??-=+.达到纯滚动时C v R ?=,由此可得纯滚动质心的速度002233C C v v R ?=-;其中,002233C v R ?>,纯滚后球向右顺时针纯滚,若002233C v R ?<,则纯滚后球向左逆时针纯滚.质心匀加速滚动,达到纯滚时间设为t ,由0C C v v gt μ=-,可得002()5C v R t gμ+=. 15.设以某棱为轴转动历时t ?,角速度i f ??→,时间短,忽略重力冲量及冲量矩,矢量关系如图答14—8所示,对质心由动量定理 ()sin 6i f N t Ma π=+,()cos6f i f t Ma π-?=-.对刚体动量矩定理25cossin()6612f i f ta N ta Ma ππ-?=-.解得1117f i ??=,1117s =,2121 289r s ==.图答14-8。
刚体习题和答案

作业5 刚体力学♫刚体:在力的作用下不发生形变的物体⎰=-⇒=210t t dt dtd ωθθθω角速度⎰=-⇒=210t t dt dtd βωωωβ角加速度1、根底训练〔8〕绕定轴转动的飞轮均匀地减速,t =0时角速度为05rad s ω=,t =20s 时角速度为00.8ωω=,那么飞轮的角加速度β= -0.05 rad/s 2 ,t =0到 t =100 s 时间飞轮所转过的角度θ= 250rad . 【解答】飞轮作匀变速转动,据0t ωωβ=+,可得出:200.05rad s tωωβ-==-据2012t t θωβ=+可得结果。
♫定轴转动的转动定律:定轴转动的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比.βJ M =质点运动与刚体定轴转动对照[C ]1、根底训练〔2〕一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如下图.绳与轮之间无相对滑动.假设某时刻滑轮沿逆时针方向转动,那么绳中的力 (A) 处处相等. (B) 左边大于右边. (C) 右边大于左边. (D) 哪边大无法判断. 【解答】逆时针转动时角速度方向垂直于纸面向外, 由于(m 1<m 2),实际上滑轮在作减速转动,角加速m 2m 1 O度方向垂直纸面向,所以,由转动定律21()T T R J β-=可得:21T T >[C ] 2、自测提高〔2〕将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将(A) 小于. (B) 大于,小于2. (C) 大于2. (D) 等于2. 【解答】设飞轮的半径为R ,质量为m ,根据刚体定轴转动定律M J β=,当挂质量为m 的重物是:mg T maTR J a R ββ-=== 所以2mgRJ mRβ=+,当以2F mg =的拉力代替重物拉绳时,有: '2mgR J β=,2'mgRJβ=,比拟二者可得出结论。
《刚体运动习题》课件

刚体的转动问题涉及到分析刚体的转动惯量、角速度、角加速度等物理量,以及力和扭矩对刚体转动的影响。通过解决刚体的转动问题,可以了解刚体在转动过程中的运动规律和特点。
刚体的复合运动问题涉及到刚体的平动和转动同时发生的情况。
总结词
刚体的复合运动问题需要综合考虑刚体的平动和转动,分析其相互影响和耦合作用。这类问题通常比较复杂,需要运用力学和运动学的知识进行求解。
总结词
在解答进阶习题时,学生需要具备较强的分析能力和计算能力,能够根据题目要求进行正确的分析和计算,并得出正确的结论。
详细描述
总结词:高难度习题是刚体运动中的高级题目类型,主要考察学生对刚体运动理论的深入理解和应用能力。
感谢您的观看
THANKS
详细描述
刚体的振动问题主要研究刚体在周期性外力作用下的振动现象。
总结词
刚体的振动问题涉及到分析刚体的振动频率、振幅、相位等物理量,以及周期性外力对刚体振动的影响。通过解决刚体的振动问题,可以了解刚体在振动过程中的运动规律和特点,对于工程实践中的振动控制和减振设计具有重要意义。
详细描述
刚体运动的解题方法
03
它基于力学的基本原理和数学工具,如微积分、线性代数和常微分方程等,来推导和求解刚体运动的数学模型。
解析法可以给出精确的解,但有时可能比较复杂,需要较高的数学水平。
解析法是一种通过数学公式和定理来求解刚体运动问题的方法。
几何法是通过图形和几何形状来描述和解决刚体运动问题的方法。
它通过绘制刚体的运动轨迹、速度和加速度等矢量图,以及分析刚体的转动和角速度等来解决问题。
04
建筑结构中的刚体运动是指建筑物在风、地震等外力作用下产生的运动,包括平动、扭转和复合运动等。
刚体的简单运动习题及答案

刚体的简单运动习题及答案刚体的简单运动习题及答案刚体是物理学中的一个基本概念,它指的是在运动过程中形状和大小不发生改变的物体。
在学习刚体的运动时,我们可以通过一些简单的习题来加深对刚体运动的理解。
下面,我将为大家提供一些常见的刚体运动习题及答案。
习题一:平抛运动小明站在一个高处,手中拿着一个小球,以一定的初速度将球水平抛出。
假设空气阻力可以忽略不计,请问球的运动轨迹是什么形状?答案:球的运动轨迹是一个抛物线。
在平抛运动中,刚体在水平方向上做匀速直线运动,在竖直方向上受到重力的作用,所以球的轨迹是一个抛物线。
习题二:滚动运动一个圆柱体沿着水平面滚动,它的质心速度和边缘速度哪个更大?答案:质心速度和边缘速度相等。
在滚动运动中,刚体的质心沿着运动方向做匀速直线运动,而刚体的边缘点则具有线速度和角速度的叠加效果。
由于圆柱体的每个点都有相同的角速度,所以质心速度和边缘速度相等。
习题三:转动惯量一个均匀的圆盘和一个均匀的长方体,它们的质量和半径(或边长)相同,哪个的转动惯量更大?答案:圆盘的转动惯量更大。
转动惯量是刚体旋转时惯性的量度,它与刚体的质量分布有关。
由于圆盘的质量分布更加均匀,所以它的转动惯量更大。
习题四:平衡条件一个悬挂在绳子上的物体处于平衡状态,绳子与竖直方向的夹角是多少?答案:绳子与竖直方向的夹角等于物体所受的重力与绳子张力的夹角。
在平衡状态下,物体所受的重力与绳子张力必须保持平衡,即两者的合力为零。
因此,绳子与竖直方向的夹角取决于物体所受的重力与绳子张力的大小关系。
习题五:平移运动和转动运动一个刚体在平面上做平移运动时,它的转动惯量是多少?答案:在平移运动时,刚体的转动惯量为零。
平移运动是指刚体的质心沿直线运动,此时刚体没有绕任何轴心旋转,所以转动惯量为零。
通过以上习题的解答,我们可以更好地理解刚体的运动特性。
刚体的运动涉及到平抛运动、滚动运动、转动惯量和平衡条件等方面的知识,通过解答这些习题,我们可以加深对刚体运动的理解,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章刚体的简单运动练习题
一、判断题
1. 在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。
()
2.定轴转动刚体上与转动轴平行的任一直线上的各点加速度的大小相等,而且方向也相同。
3.刚体作平动时,其上各点的轨迹可以是直线,可以是平面曲线,也可以是空间曲线。
4. 刚体作定轴转动时,垂直于转动轴的同一直线上的各点,不但速度的方向相同而且其加速度的方向也相同。
5. 两个作定轴转动的刚体,若其角加速度始终相等,则其转动方程相同。
6. 刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。
7.定轴转动刚体上点的速度可以用矢积表示为v=ω×r,其中,ω是刚体的角速度矢量,r 是从定轴上任一点引出的矢径。
()
二、选择题
1.圆轮绕固定轴O转动,某瞬时轮缘上一点的速度v和加速度a如图所示,试问那些情况是不可能的?
A(a)(b)的运动是不可能的;
B(a)(c)的运动是不可能的;
C(b)(c)的运动是不可能的;
D均不可能。
2. 在图示机构中,杆,杆,
且cm,cm,
CM = MD = 30cm, 若杆以角速度
匀速转动,则D点的速度的大小为------cm/3,M点
的加速度的大小为------。
A.60
B.120
C.150.
D.360
3. 圆盘作定轴转动,轮缘上一点M 的加速度a
分别有图示三种情况。
则在该三种情况下,圆盘的角速度、角加速度 哪个等于零,哪个不
等于零?
图(a)
﹍﹍﹍,α﹍﹍﹍ 图(b)
﹍﹍﹍,α﹍﹍﹍ 图(c)﹍﹍﹍,α﹍﹍﹍ ① 等于零 ② 不等于零
4. 已知正方形板 ABCD 作定轴转动,转轴垂直于板面,A 点的速度,加速度,方向如图。
则正方形板转动的角速度的大小为----
① ② ③ 无法确定
三、填空题
1.图中轮的角速度是
,则轮的角速度=_________;转向为_________。
2. 已知直角T 字杆某瞬时以角速度ω、角加速
度α在图平面内绕O 转动,则C 点的速度为
( );加速度为( )(方向均应在图
上表示)。
答案:
答案:一、1. ×2. √3. √4. √5. ×6. √
二、1.B;2.B,D;3.a (1)(2),b (2)(2), c(2)(1) 4.(1) 三、1.1133R R ωω= 逆时针方向 2. ω22b a v +=()()4222ω++=a b a a ω22b a v +=()()4222ω++=a b a a。