2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(四十四) 双 曲 线

合集下载

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十二) 排列、组合 Word版含解析

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十二) 排列、组合 Word版含解析

课时达标检测(五十二)排列、组合[小题对点练——点点落实]对点练(一)两个计数原理1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7个.当x≠2时,由P⊆Q,∴x=y,∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点的个数是7+7=14.2.(2018·云南调研)设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种解析:选B赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理,不同的赠送方法有4+6=10(种).4.(2018·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数的个数为900-648=252.5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14C.10 D.9解析:选B第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理,共有12+2=14种选择方式.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.解析:先染顶点S,有5种染法,再染顶点A有4种染法,染顶点B有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420种染色方法.答案:420对点练(二)排列、组合问题1.(2018·福建漳州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种解析:选C特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96种排法,故选C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为()A.13 B.24C.18 D.72解析:选D可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C34种不同的选法;第二步,在调查时,“住房”安排的顺序有A13种可能情况;第三步,其余3个热点调查的顺序有A33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C34A13A33=72.4.(2017·舟山二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C1个路口3人,其余路口各1人的分配方法有C13A33种.1个路口1人,2个路口各2人的分配方法有C23A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13A33+C23A33=36(种).5.(2018·豫南九校联考)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种解析:选B A12(C23C13+C13C23)=36(种).6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.解析:先排最中间位置有1种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共1种排法,所以排法种数为C36=20.答案:207.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.答案:968.若把英语单调“good”的字母顺序写错了,则可能出现的错误种数共有________种.解析:把g,o,o,d 4个字母排一行,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12种.其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案:11[大题综合练——迁移贯通]1.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).2.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种情况,后排有A55种情况,则符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C47·C14·A44=3 360.(4)先从除去该男生该女生的6人中选3人有C36种情况,再安排该男生有C13种情况,选出的3人全排有A33种情况,则符合条件的选法数为C36·C13·A33=360.3.有编号分别为1,2,3,4的四个盒子和四个小球,把小球全部放入盒子.(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?解:(1)∵1号球可放入任意一个盒子内,有4种放法.同理,2,3,4号小球也各有4种放法,∴共有44=256种放法.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1,1,2. 先从4个小球中任选2个放在一起,有C 24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 34种放法.∴由分步乘法计数原理知共有C 24A 34=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 14种分法,再放到2个盒子内,有A 24种放法,共有C 14A 24种放法;②把4个小球平均分成2组,每组2个,有C 242种分法,放入2个盒子内,有A 24种放法,共有12C 24A 24种放法. ∴由分类加法计数原理知共有C 14A 24+12C 24A 24=84种不同的放法.。

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 三角函数的图象与性质 Word版含解析

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 三角函数的图象与性质 Word版含解析

课时达标检测(二十) 三角函数的图象与性质[小题对点练——点点落实]对点练(一) 三角函数的定义域和值域) (是的值a -b ,则]b ,a [,值域为⎣⎢⎡⎦⎥⎤π3,π的定义域为x 2cos =y 已知函数)考安徽联·(2018.1 A .2 B .3 2+3C.3-2.D -b ,所以2,1]-[的值域为x 2cos =y ,所以函数⎣⎢⎡⎦⎥⎤π3,π的定义域为x 2cos =y 因为函数 B 选解析:a =1-(-2)=3,故选B.)(为的最大值与最小值分别x 2sin -x 2cos =y .函数2 A .3,-1 B .3,-2 C .2,-1D .2,-2 =y ,1,1]-[∈t ,则x sin =t ,令1+x 2sin -x 2sin -=x 2sin -x 2sin -1=x 2sin -x 2cos =y D 选解析: 2.-,最小值为2为,所以最大值2+21)+t (-=1+t 2-2t - )(为的值ab ,则[5,8]的值域是)x (f 时,函数]π,0[∈x ,若b +⎝ ⎛⎭⎪⎫2cos2x 2+sin x a =)x (f .已知函数3 224-42或51-215.A 15-215.B 224-42.C 224+42或51+215.D .b +a +⎝⎛⎭⎪⎫x +π4sin a 2=b +)x sin +x cos +1(a =)x (f A 选解析: ,5π4≤π4+x ≤π4∴,π≤x ≤0∵ 0.≠a ,依题意知1≤⎝⎛⎭⎪⎫x +π4sin ≤22-∴ 5.=b ,3-23=a ∴⎩⎨⎧ 2a +a +b =8,b =5,时,0>a 当① 8.=b ,23-3=a ∴⎩⎨⎧2a +a +b =5,b =8,时,0<a 当② 8.=b ,23-3=a 或5=b ,3-23=a 综上所述, .224-42或51-215=ab 所以)(1]如例⎩⎪⎨⎪⎧a ,a≤b,b ,a>b.=b *a 定义运算:)考湖南衡阳八中月·(2018.4 ⎣⎢⎡⎦⎥⎤-22,22A. 1,1]-[.B ⎣⎢⎡⎦⎥⎤22,1C. ⎣⎢⎡⎦⎥⎤-1,22D. 解析:选D 根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可.设x ∈[0,2π],,x >sin x cos ,时π2≤x <5π4或π4<x ≤0当,⎣⎢⎡⎦⎥⎤-1,22∈)x (f ,x cos =)x (f ,x cos ≥x sin ,时5π4≤x ≤π4当.⎣⎢⎡⎦⎥⎤-1,22的值域为)x (f 综上知.]1,0-[∪⎣⎢⎡⎭⎪⎫0,22∈)x (f ,x sin =)x (f ________________.=x ,此时________为的最大值⎝⎛⎭⎪⎫x +π42cos -3=y .函数5 .)Z ∈k (πk 2+3π4=x ,即πk 2+π=π4+x ,此时5=2+3为的最大值⎝⎛⎭⎪⎫x +π42cos -3=y 函数解析: )Z ∈k (πk 2+3π45答案: 对点练(二) 三角函数的性质) (为的单调递增区间⎝ ⎛⎭⎪⎫π3-2x 2sin =y )考安徽六安一中月·(2018.1 )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π12,kπ+5π12A. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+5π12,kπ+11π12B. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π3,kπ+π6C. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3D. 5π12+πk ,即)Z ∈k (3π2+πk 2≤π3-x 2≤π2+πk 2∴,⎝⎛⎭⎪⎫2x -π32sin -=y 函数可化为∵ B 选解析:.)Z ∈k (11π12+πk ≤x ≤ 2.(2018·云南检测)下列函数中,存在最小正周期的是( )A .y =sin|x |B .y =cos|x | |x tan|=y .C01)+2x (=y .D =T ,最小正周期x cos =|x cos|=y :B ;不是周期函数⎩⎪⎨⎪⎧sin x ,x≥0,-sin x ,x<0,=|x sin|=y :A B 选解析:,无最小正周期.1=01)+2x (=y :D ;不是周期函数⎩⎪⎨⎪⎧tan x ,x≥0,-tan x ,x<0,=|x tan|=y :C ;π2 π12=x 的图象关于直线)<14ω(1<⎝⎛⎭⎪⎫ωx-π43cos =)x (f 若函数)模辽宁抚顺一·(2018.3对称,则ω=( )A .2B .3C .6D .9 ,即Z ∈k ,πk =π4-ωπ12∴对称,π12=x 的图象关于直线)<14ω(1<⎝⎛⎭⎪⎫ωx-π43cos =)x (f ∵ B 选解析:ω=12k +3,k ∈Z .∵1<ω<14,∴ω=3.故选B.)(=⎝ ⎛⎭⎪⎫π6f ,则)x -(f =⎝ ⎛⎭⎪⎫π3+x f 都有x 对任意)φ+x ω2sin(=)x (f 若函数)考福建六校联·(2018.4 A .2或0 B .0 C .-2或0D .-2或2 ,可知函数图象的一条对称轴为)x -(f =⎝ ⎛⎭⎪⎫π3+x f 都有x 对任意)φ+x ω2sin(=)x (f 由函数 D 选解析:-或2=⎝ ⎛⎭⎪⎫π6f ∴时,函数取得最大值或者最小值.π6=x 根据三角函数的性质可知,当.π6=π3×12=x 直线 2.故选D.⎝ ⎛⎭⎪⎫π4+x f,都有x 对任意实数②是偶函数;)x (f ①同时具有以下两个性质:)x (f .若函数5)(是的解析式可以)x (f 则.⎝ ⎛⎭⎪⎫π4-x f = xcos =)x (f .A ⎝⎛⎭⎪⎫2x +π2cos =)x (f .B ⎝⎛⎭⎪⎫4x +π2sin =)x (f .Cx cos 6=)x (f .D 是偶函x cos =)x (f ∵对称,π4=x 数,且它的图象关于直线是偶函)x (f 由题意可得,函数 C 选解析:sin -=⎝⎛⎭⎪⎫2x +π2cos =)x (f 函数∵A.除对称,故排π4=x ,不是最值,故不满足图象关于直线22=⎝ ⎛⎭⎪⎫π4f 数,,是最小值,1-=⎝ ⎛⎭⎪⎫π4f 是偶函数,x cos 4=⎝⎛⎭⎪⎫4x +π2sin =)x (f 函数∵B.除是奇函数,不满足条件,故排x 2,不是最值,故0=⎝ ⎛⎭⎪⎫π4f 是偶函数.x cos 6=)x (f 函数∵满足条件.C 故对称,π4=x 故满足图象关于直线 D.除对称,故排π4=x 不满足图象关于直线∈x 对一切⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6≤)x (f 若.0≠ab ,R ∈b ,a ,其中x cos 2b +x sin 2a =)x (f 已知)考洛阳统·(2018.6) (是的单调递增区间)x (f ,则0>⎝ ⎛⎭⎪⎫π2f 恒成立,且R ) Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π3,kπ+π6A. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3B. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ,kπ+π2C. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π2,kπD. 是π6=x ∴,⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6≤)x (f ∵.b a =φtan 中,其)φ+x sin(2a2+b2=x cos 2b +x sin 2a =)x (f B 选解析:的取值可以φ∴,0>⎝ ⎛⎭⎪⎫π2f .又)Z ∈k (πk +π6=φ,)Z ∈k (πk +π2=φ+π3的图象的一条对称轴,即)x (f 函数k (2π3+πk ≤x ≤π6+πk 得)Z ∈k (π2+πk 2≤5π6-x 2≤π2-πk 2由,⎝⎛⎭⎪⎫2x -5π6sin a2+b2=)x (f ∴,5π6是-∈Z ),故选B.⎝ ⎛⎭⎪⎫π2,0的图象关于)π<θ)(0<θ+x cos(2+)θ+x sin(23=)x (f 若函数)检河北石家庄一·(2018.7) (是上的最小值⎣⎢⎡⎦⎥⎤-π4,π6在)x (f 对称,则函数 1-.A 3.-B 12.-C 32.-D =⎝ ⎛⎭⎪⎫π2f ,则由题意,知⎣⎢⎡⎦⎥⎤2x +θ+π62sin =)θ+x cos(2+)θ+x sin(23=)x (f B 选解析:上是减函数,所以⎣⎢⎡⎦⎥⎤-π4,π4在)x (f ,x 2sin 2-=)x (f ,所以5π6=θ,所以π<θ0<又,0=⎝ ⎛⎭⎪⎫π+θ+π62sin B.选,故3=-π32sin -=⎝ ⎛⎭⎪⎫π6f 上的最小值为⎣⎢⎡⎦⎥⎤-π4,π6在)x (f 函数[大题综合练——迁移贯通].⎝ ⎛⎭⎪⎫x +π222sin +⎝⎛⎭⎪⎫2x -π3cos =)x (f 设函数)模湖南岳阳二·(2017.1 (1)求f (x )的最小正周期和对称轴方程;的值域.)x (f 时,求⎣⎢⎡⎦⎥⎤-π3,π4∈x 当)(2)π+x cos(2-1+x sin 232+x cos 212=)x (f (1)解: ,1+⎝⎛⎭⎪⎫2x +π3sin 3=1+x sin 232+x cos 232= 所以f (x )的最小正周期T =π. ,Z ∈k ,π2+πk =π3+x 2由 .Z ∈k ,π12+kπ2=x 得对称轴方程为 ,5π6≤π3+x 2≤π3,所以-π4≤x ≤π3因为-)(2 .⎣⎢⎡⎦⎥⎤-12,3+1的值域为)x (f 所以 1.-x 2 cos +2)x cos +x (sin =)x (f 已知函数)拟北京怀柔区模·(2018.2 (1)求函数f (x )的最小正周期;上的最大值和最小值.⎣⎢⎡⎦⎥⎤-π4,π4在区间)x (f 求函数)(2 ,⎝⎛⎭⎪⎫2x +π4sin 2=x cos2+x sin 2=x cos2+x cos x 2sin =1-x cos 2+2)x cos +x (sin =)x (f ∵(1)解: .π=2π2=T 的最小正周期)x (f 函数∴ .⎝⎛⎭⎪⎫2x +π4sin 2=)x (f 可知,)(1由)(2 ,⎣⎢⎡⎦⎥⎤-π4,3π4∈π4+x 2∴,⎣⎢⎡⎦⎥⎤-π4,π4∈x ∵ 1.-,2上的最大值和最小值分别为⎣⎢⎡⎦⎥⎤-π4,π4在区间)x (f 故函数.⎣⎢⎡⎦⎥⎤-22,1∈⎝⎛⎭⎪⎫2x +π4sin ∴ .)R ∈x (x cos 23-x cos x 2sin =)x (f 已知函数)模辽宁葫芦岛普通高中二·(2017.3 的值;αcos 2求,⎝ ⎛⎭⎪⎫5π12,2π3∈α且12=)α(f 若)(1 的最小值.a 上单调递增,求实数)b <a (]πb ,πa [在)x (f ,且函数b 上的最大值为⎣⎢⎡⎦⎥⎤π4,π2在)x (f 记函数)(2 .⎝⎛⎭⎪⎫2x -π32sin =x cos 23-x sin 2=)x (f (1)解: .14=⎝⎛⎭⎪⎫2α-π3sin ∴,12=)α(f ∵ ,⎝ ⎛⎭⎪⎫5π12,2π3∈α∵,⎝ ⎛⎭⎪⎫π2,π∈π3-α2∴ .154=-⎝⎛⎭⎪⎫2α-π3cos ∴ 32×14-12×154=-⎝⎛⎭⎪⎫2α-π3+π3cos =α2 cos ∴ .3+158=-∈k ,πk 2+π2≤π3-x 2≤πk 2+π2由-.2=b ∴,[1,2]∈)x (f ,⎣⎢⎡⎦⎥⎤π6,2π3∈π3-x 2,时⎣⎢⎡⎦⎥⎤π4,π2∈x 当)(2Z ,.Z ∈k ,πk +5π12≤x ≤πk +π12得- 又∵函数f (x )在[a π,2π](a <2)上单调递增,,⎣⎢⎡⎦⎥⎤-π12+2π,5π12+2π⊆]π2,πa [∴ ,π2<πa ≤π2+π12-∴ .2312的最小值是a 实数∴,2<a ≤2312∴。

2018-2019学年高中新创新一轮复习理数通用版:第八章 立体几何 Word版含解析 (64)

2018-2019学年高中新创新一轮复习理数通用版:第八章 立体几何 Word版含解析 (64)

课时达标检测(五)函数的单调性与最值[小题对点练——点点落实]对点练(一)函数的单调性1.(2018·阜阳模拟)给定函数①y=x 12,②y=log12(x+1),③y=|x-1|,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是() A.①②B.②③C.③④D.①④解析:选B①y=x 12在(0,1)上递增;②∵t=x+1在(0,1)上递增,且0<12<1,故y=log12(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④∵u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.(2018·天津模拟)若函数f(x)满足“对任意x1,x2∈(0,+∞),当x1<x2时,都有f(x1)>f(x2)”,则f(x)的解析式可以是()A.f(x)=(x-1)2B.f(x)=e xC.f(x)=1x D.f(x)=ln(x+1)解析:选C根据条件知,f(x)在(0,+∞)上单调递减.对于A,f(x)=(x-1)2在(1,+∞)上单调递增,排除A;对于B,f(x)=e x在(0,+∞)上单调递增,排除B;对于C,f(x)=1x在(0,+∞)上单调递减,C正确;对于D,f(x)=ln(x+1)在(0,+∞)上单调递增,排除D.3.(2018·宜春模拟)函数f(x)=log3(3-4x+x2)的单调递减区间为()A.(-∞,2) B.(-∞,1),(3,+∞)C.(-∞,1) D.(-∞,1),(2,+∞)解析:选C由3-4x+x2>0得x<1或x>3.易知函数y=3-4x+x2的单调递减区间为(-∞,2),函数y=log3x在其定义域上单调递增,由复合函数的单调性知,函数f(x)的单调递减区间为(-∞,1),故选C.4.(2018·贵阳模拟)下列四个函数中,在定义域上不是单调函数的是()A.y=-2x+1 B.y=1 xC.y=lg x D.y=x3解析:选B y =-2x +1在定义域上为单调递减函数;y =lg x 在定义域上为单调递增函数;y =x 3在定义域上为单调递增函数;y =1x 在(-∞,0)和(0,+∞)上均为单调递减函数,但在定义域上不是单调函数.故选B.5.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C 由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k8≥5,解得k ≤8或k ≥40,所以实数k的取值范围是(-∞,8]∪[40,+∞).故选C.6.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-∞,-2)D .(-∞,-2]解析:选D ∵⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减,∴(-∞,m )⊆(-∞,-2),即m ≤-2.故选D. 对点练(二) 函数的最值1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a +1-22 018-a +1=4 034.2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D 由题意知a <1,又函数g (x )=x +ax -2a 在[|a |,+∞)上为增函数,故选D.3.(2018·湖南雅礼中学月考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )A .(1,2]B .(0,2]C .[2,+∞)D .(1,2 2 ]解析:选A 当x ≤2时,-x +6≥4.当x >2时,⎩⎪⎨⎪⎧3+log a x ≥4,a >1,∴a ∈(1,2],故选A.4.(2018·安徽合肥模拟)已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( )A .4B .2C .1D .0解析:选A 设t =x -1,则y =(x 2-2x )sin(x -1)+x +1=(t 2-1)sin t +t +2,t ∈[-2,2].记g (t )=(t 2-1)sin t +t +2,则函数y =g (t )-2=(t 2-1)sin t +t 是奇函数.由已知得y =g (t )-2的最大值为M -2,最小值为m -2,所以M -2+(m -2)=0,即M +m =4.故选A.5.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x -3≥2x ·2x -3=22-3,当且仅当x =2x ,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-36.(2018·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎣⎡⎦⎤13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,78[大题综合练——迁移贯通]1.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a <0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a =1,∴当a =1时,g (a )取最大值1.2.(2018·衡阳联考)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.解:(1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,且f (0)+f (0)=f (0),∴f (0)=0,又f (-3)+f (3)=f (-3+3)=0,∴f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.3.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].。

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(四十三) 椭 圆

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(四十三) 椭 圆

课时达标检测(四十三) 椭 圆[小题对点练——点点落实]对点练(一) 椭圆的定义和标准方程1.若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A.x 25+y 2=1 B.x 24+y 25=1 C.x 25+y 2=1或x 24+y 25=1 D .以上答案都不对解析:选C 直线与坐标轴的交点为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,∴a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,∴a 2=5,所求椭圆的标准方程为y 25+x 24=1.2.已知椭圆C :x 24+y 23=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( )A .4B .8C .12D .16解析:选B 设MN 的中点为D ,椭圆C 的左、右焦点分别为F1,F 2,如图,连接DF 1,DF 2,因为F 1是MA 的中点,D 是MN 的中点,所以F 1D 是△MAN 的中位线,则|DF 1|=12|AN |,同理|DF 2|=12|BN |,所以|AN |+|BN |=2(|DF 1|+|DF 2|),因为D 在椭圆上,所以根据椭圆的定义知|DF 1|+|DF 2|=4,所以|AN |+|BN |=8.3.已知三点P (5,2),F 1(-6,0),F 2(6,0),那么以F 1,F 2为焦点且经过点P 的椭圆的短轴长为( )A .3B .6C .9D .12解析:选B 因为点P (5,2)在椭圆上,所以|PF 1|+|PF 2|=2a ,|PF 2|=5,|PF 1|=55,所以2a =65,即a =35,c =6,则b =3,故椭圆的短轴长为6,故选B.4.如图,已知椭圆C 的中心为原点O ,F (-25,0)为C 的左焦点,P 为C 上一点,满足|OP |=|OF |,且|PF |=4,则椭圆C 的方程为( )A.x 225+y 25=1 B.x 236+y 216=1C.x 230+y210=1 D.x 245+y225=1 解析:选B 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,右焦点为F ′,连接PF ′,如图所示.因为F (-25,0)为C 的左焦点,所以c =2 5.由|OP |=|OF |=|OF ′|知,∠FPF ′=90°,即FP ⊥PF ′.在R t △PFF ′中,由勾股定理,得|PF ′|=|FF ′|2-|PF |2=(45)2-42=8.由椭圆定义,得|PF |+|PF ′|=2a =4+8=12,所以a =6,a 2=36,于是b 2=a 2-c 2=36-(25)2=16,所以椭圆C 的方程为x 236+y 216=1.5.已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A ,B ,则△ABM 的周长为________.解析:M (3,0)与F (-3,0)是椭圆的焦点,则直线AB 过椭圆的左焦点F (-3,0),且|AB |=|AF |+|BF |,△ABM 的周长等于|AB |+|AM |+|BM |=(|AF |+|AM |)+(|BF |+|BM |)=4a =8.答案:86.若方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是________.解析:因为方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,所以|a |-1>a +3>0,解得-3<a <-2.答案:(-3,-2)对点练(二) 椭圆的几何性质1.如图所示,已知椭圆x 2a 2+y 2b 2=1(a >b >0),以O 为圆心,短半轴长为半径作圆O ,过椭圆长轴的一端点P 作圆O 的两条切线,切点分别为A ,B ,若四边形PAOB 为正方形,则椭圆的离心率为( )A.32B.22C.53D.33解析:选B 由题意知|OA |=|AP |=b ,|OP |=a ,OA ⊥AP ,所以2b 2=a 2,即b 2a 2=12,故e =1-b 2a 2=22,故选B. 2.已知F 1,F 2为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,EF 1―→·EF 2―→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,8解析:选B 由题意知F 1(-1,0),F 2(1,0),设E (x ,y ),则EF 1―→=(-1-x ,-y ),EF 2―→=(1-x ,-y ),所以EF 1―→·EF 2―→=x 2-1+y 2=x 2-1+8-89x 2=19x 2+7(-3≤x ≤3),所以当x =0时,EF 1―→·EF 2―→有最小值7;当x =±3时,EF 1―→·EF 2―→有最大值8.故选B.3.焦点在x 轴上的椭圆方程为x 2a 2+y 2b 2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则该椭圆的离心率为( )A.14B.13C.12D.23解析:选C 短轴的一个端点和两个焦点相连构成一个三角形的面积S =12×2c ×b =12×(2a +2c )×b 3,整理得a =2c ,即e =c a =12.故选C.4.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x-4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫32,1D.⎣⎡⎭⎫34,1解析:选A 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离和为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+(-4)2≥45,所以1≤b <2,而e =c a =1-b 2a2= 1-b 24,所以0<e ≤32.5.已知椭圆x 24+y 2b 2=1(0<b <2)与y 轴交于A ,B 两点,点F 为椭圆的一个焦点,则△ABF面积的最大值为________.解析:由题意可知b 2+c 2=4,则△ABF 的面积为12×2bc =bc ≤b 2+c 22=2,当且仅当b=c =2时取等号.答案:26.已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0),A ,B 分别是椭圆长轴的两个端点,M ,N 是椭圆上关于x 轴对称的两点,直线AM ,BN 的斜率分别为k 1,k 2,若|k 1·k 2|=14,则椭圆的离心率为________.解析:设M (x 0,y 0),则N (x 0,-y 0),|k 1·k 2|=⎪⎪⎪⎪y 0x 0+a ·y 0a -x 0=y 20a 2-x 20=b 2⎝⎛⎭⎫1-x 20a 2a 2-x 20=b 2a 2=14, 从而e = 1-b 2a 2=32. 答案:327.已知椭圆x 24+y 2=1的左、右焦点分别为F 1,F 2,以原点为圆心,椭圆的短轴为直径作圆.若点P 是圆O 上的动点,则|PF 1|2+|PF 2|2的值是________.解析:由椭圆方程可知a 2=4,b 2=1,∴c 2=4-1=3,∴c =3,a =2,b =1.∴F 1(-3,0),F 2(3,0).圆O 的方程为x 2+y 2=1.设P (x 0,y 0),则x 20+y 20=1.∴|PF 1|2+|PF 2|2=[(x 0+3)2+y 20]+[(x 0-3)2+y 20]=2(x 20+y 20)+6=8.答案:88.如图,椭圆的中心在坐标原点O ,顶点分别是A 1,A 2,B 1,B 2,焦点分别为F 1,F 2,延长B 1F 2与A 2B 2交于P 点,若∠B 1PA 2为钝角,则此椭圆的离心率的取值范围为________.解析:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),∠B 1PA 2为钝角可转化为B 2A 2―→,F 2B 1―→所夹的角为钝角,则(a ,-b )·(-c ,-b )<0,即b 2<ac ,则a 2-c 2<ac ,故⎝⎛⎭⎫c a 2+c a -1>0,即e 2+e -1>0,e >5-12或e <-5-12,又0<e <1,所以5-12<e <1.答案:⎝ ⎛⎭⎪⎫5-12,1[大题综合练——迁移贯通]1.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2―→=2F 2B ―→, AF 1―→·AB ―→=32,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形,所以有OA =OF 2,即b =c . 所以a =2c ,e =c a =22.(2)由题知A (0,b ),F 1(-c,0),F 2(c,0),其中c =a 2-b 2,设B (x ,y ). 由AF 2―→=2F 2B ―→,得(c ,-b )=2(x -c ,y ), 解得x =3c 2,y =-b2,即B ⎝⎛⎭⎫3c 2,-b 2. 将B 点坐标代入x 2a 2+y 2b 2=1,得94c 2a 2+b 24b 2=1,即9c 24a 2+14=1,解得a 2=3c 2.① 又由AF 1―→·AB ―→=(-c ,-b )·⎝⎛⎭⎫3c 2,-3b 2=32, 得b 2-c 2=1,即有a 2-2c 2=1.② 由①②解得c 2=1,a 2=3,从而有b 2=2. 所以椭圆的方程为x 23+y 22=1.2.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 在第一象限上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据c =a 2-b 2及题设知M ⎝⎛⎭⎫c ,b 2a ,由k MN =kMF 1=34,得b 2a -0c -(-c )=34,即2b 2=3ac .将b 2=a 2-c 2代入,解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |,得|DF 1|=2|F 1N |.设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2(-c -x 1)=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b2=1.②将①及c =a 2-b 2代入②得9(a 2-4a )4a 2+14a=1,解得a =7,b 2=4a =28, 故a =7,b =27.3.设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1且斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a , 又2|AB |=|AF 2|+|BF 2|,得|AB |=43a ,设直线l 的方程为y =x +c ,其中c =a 2-b 2. 设A (x 1,y 1),B (x 2,y 2),则A ,B 两点的坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,消去y ,化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2ca 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|=2[(x 1+x 2)2-4x 1x 2], 即43a =4ab 2a 2+b 2,故a 2=2b 2, 所以E 的离心率e =c a =1-b 2a2= 1-12=22. (2)设AB 的中点为N (x 0,y 0), 由(1)知x 0=x 1+x 22=-a 2c a 2+b2=-2c3,y0=x0+c=c 3.由|PA|=|PB|,得k PN=-1,即y0+1x0=-1,得c=3,从而a=32,b=3.故椭圆E的方程为x218+y29=1.。

2018版高考数学人教A版理科一轮复习课时跟踪检测44 含

2018版高考数学人教A版理科一轮复习课时跟踪检测44 含

课时跟踪检测(四十四)1.点M (-8,6,1)关于x 轴的对称点的坐标是( ) A .(-8,-6,-1) B .(8,-6,-1) C .(8,-6,1) D .(-8,-6,1)答案:A解析:点P (a ,b ,c )关于x 轴的对称点为P ′(a ,-b ,-c ).2.O 为空间任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断 答案:B解析:因为OP →=34OA →+18OB →+18OC →,且34+18+18=1,所以P ,A ,B ,C 四点共面.3.在空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直 答案:B 解析:由题意得, AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线.又AB →与CD →没有公共点,∴AB ∥CD .4.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)答案:B解析:由b =12x -2a ,得x =4a +2b =(8,12,-16)+(-8,-6,-4)=(0,6,-20).5.若平面α,β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A .α∥βB .α⊥βC .α与β相交但不垂直D .以上均不正确 答案:C解析:∵n 1·n 2=2×(-3)+(-3)×1+5×(-4)≠0, ∴n 1与n 2不垂直,∴α与β相交但不垂直.6.空间四边形ABCD 的各边和对角线均相等,E 是BC 的中点,那么( ) A.AE →·BC →<AE →·CD → B.AE →·BC →=AE →·CD → C.AE →·BC →>AE →·CD →D.AE →·BC →与AE →·CD →的大小不能比较 答案:C解析:取BD 的中点F ,连接EF ,则EF 綊12CD ,因为〈AE →,EF →〉=〈AE →,CD →〉>90°,所以AE →·CD →<0. 又因为AE →·BC →=0,所以AE →·BC →>AE →·CD →.7.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k =( ) A .-1 B .43 C.53 D .75答案:D解析:由题意,得k a +b =(k -1,k,2),2a -b =(3,2,-2),所以(k a +b )·(2a -b )=3(k -1)+2k -2×2=5k -7=0,解得k =75.8.在空间直角坐标系中,点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.答案:(0,2,3) 解析:由题意知,点Q 即为点P 在平面yOz 内的射影, 所以垂足Q 的坐标为(0,2,3).9.已知点A (1,2,1),B (-1,3,4),D (1,1,1),若AP →=2PB →,则|PD →|=________. 答案:773解析:设P (x ,y ,z ), ∴AP →=(x -1,y -2,z -1), PB →=(-1-x,3-y,4-z ),由AP →=2PB →,得点P 的坐标为⎝ ⎛⎭⎪⎫-13,83,3.又D (1,1,1),∴|PD →|=773.10.已知2a +b =(0,-5,10),c =(1,-2,-2),a·c =4,|b|=12,则以b ,c 为方向向量的两直线的夹角为________.答案:60°解析:由题意,得(2a +b )·c =0+10-20=-10, 即2a·c +b·c =-10. 又∵a·c =4,∴b·c =-18, ∴cos 〈b ,c 〉=b·c |b||c |=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°.1.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2 C.14a 2 D .34a 2 答案:C解析: 如图,设AB →=a ,AC →=b ,AD →=c ,则|a|=|b|=|c|=a ,且a ,b ,c 三向量两两夹角为60°. AE →=12(a +b ),AF →=12c , ∴AE →·AF →=12(a +b )·12c=14(a·c +b·c )=14(a 2cos 60°+a 2cos 60°)=14a 2.2.如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案:B解析:分别以C 1B 1,C 1D 1,C 1C 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,∵A 1M =AN =23a , 则M ⎝ ⎛⎭⎪⎫a ,23a ,a 3,N ⎝ ⎛⎭⎪⎫2a 3,2a 3,a , ∴MN →=⎝ ⎛⎭⎪⎫-a3,0,23a .又C 1(0,0,0),D 1(0,a,0),∴C 1D 1→=(0,a,0), ∴MN →·C 1D 1→=0,∴MN →⊥C 1D 1→.∵C 1D 1→是平面BB 1C 1C 的法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .3.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,若动点P 在线段BD 1上运动,则DC →·AP →的取值范围是________.答案:解析:由题意,设BP →=λBD 1→, 其中λ∈,DC →·AP →=AB →·(AB →+BP →) =AB →·(AB →+λBD 1→)=AB →2+λAB →·BD 1→ =AB →2+λAB →·(AD 1→-AB →) =(1-λ)AB →2=1-λ∈. 因此DC →·AP →的取值范围是.4.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是________.答案:⎝ ⎛⎭⎪⎫43,43,83 解析:∵点Q 在直线OP 上, ∴设点Q (λ,λ,2λ), 则QA →=(1-λ,2-λ,3-2λ), QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23.此时OQ →=⎝ ⎛⎭⎪⎫43,43,83.5.如图,在平行六面体ABCD -A 1B 1C 1D 1中,以顶点A 为端点的三条棱的长度都为1,且两两夹角为60°.(1)求AC 1→的长;(2)求BD 1→与AC →夹角的余弦值. 解:记AB →=a ,AD →=b ,AA 1→=c ,则|a|=|b|=|c|=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a·b =b·c =c·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a·b +b·c +c·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC 1→|= 6.(2)BD 1→=b +c -a ,AC →=a +b , ∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a·c +b·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.即BD 1→与AC →夹角的余弦值为66.6.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 的坐标;若不存在,请说明理由.(1)证明:如图,以DA ,DC ,DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a,0,0),B (a ,a,0),C (0,a,0),E ⎝ ⎛⎭⎪⎫a ,a2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2, EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD . (2)解:假设存在满足条件的点G ,设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴点G 的坐标为⎝ ⎛⎭⎪⎫a2,0,0,即存在满足条件的点G ,且点G 为AD 的中点.。

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十四) 导数与函数的单调性 含解析

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十四) 导数与函数的单调性 含解析

课时达标检测(十四) 导数与函数的单调性[小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( ) A .(-∞,-2) B .[3,+∞) C .[-2,3]D.⎣⎡⎭⎫12,+∞ 解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x -2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧ 4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,故选B. 3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.解析:函数f (x )的定义域为(0,+∞),再由f ′(x )=1x -x -1>0可解得0<x <5-12.答案:⎝ ⎛⎭⎪⎫0,5-12 对点练(二) 利用导数解决函数单调性的应用问题1.(2018·河南洛阳模拟)已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B f ′(x )=-3x 2+2ax -1,由题意知,f ′(x )≤0在R 上恒成立,则Δ=(2a )2-4×(-1)×(-3)≤0恒成立,解得-3≤a ≤ 3.2.(2018·河北正定中学月考)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:选B 由f (x )=f (2-x )可知,f (x )的图象关于直线x =1对称.根据题意知当x ∈(-∞,1)时,f ′(x )>0,f (x )为增函数,当x ∈(1,+∞)时,f ′(x )<0,f (x )为减函数,所以f (3)=f (-1)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .故选B.3.(2018·河北唐山期末)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x的取值范围是( )A .(-1,3)B .(-∞,-3)∪(3,+∞)C .(-3,3)D .(-∞,-1)∪(3,+∞)解析:选D 因为f (-x )=ln(e -x +e x )+(-x )2=ln(e x +e -x )+x 2=f (x ),所以函数f (x )是偶函数.通过导函数可知函数y =e x +e-x在(0,+∞)上是增函数,所以函数f (x )=ln(e x +e-x)+x 2在(0,+∞)上也是增函数,所以不等式f (2x )>f (x +3)等价于|2x |>|x +3|,解得x <-1或x >3.故选D.4.(2018·云南大理州统测)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 017为奇函数,则不等式f (x )+2 017e x <0的解集是( )A .(-∞,0)B .(0,+∞) C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞解析:选B 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 017为奇函数,所以f (0)=-2 017,h (0)=-2 017.因为f (x )+2 017e x <0,所以f (x )e x <-2 017,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 017e x <0的解集是(0,+∞).故选B.5.若函数f (x )=x +4mx -m ln x 在[1,2]上为减函数,则m 的最小值为( ) A.32 B.34 C.23D.43解析:选C 因为f (x )=x +4m x -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x2-m x =x 2-mx -4mx2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C.6.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.7.已知函数f (x )=-ln x +ax ,g (x )=(x +a )e x ,a <0,若存在区间D ,使函数f (x )和g (x )在区间D 上的单调性相同,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,-12 B .(-∞,0) C.⎝⎛⎭⎫-1,-12 D .(-∞,-1)解析:选D f (x )的定义域为(0,+∞),f ′(x )=-1x +a =ax -1x ,由a <0可得f ′(x )<0,即f (x )在定义域(0,+∞)上单调递减.g ′(x )=e x +(x +a )e x =(x +a +1)e x ,令g ′(x )=0,解得x =-(a +1),当x ∈(-∞,-a -1)时,g ′(x )<0,当x ∈(-a -1,+∞)时,g ′(x )>0,故g (x )的单调递减区间为(-∞,-a -1),单调递增区间为(-a -1,+∞).因为存在区间D ,使f (x )和g (x )在区间D 上的单调性相同,所以-a -1>0,即a <-1,故a 的取值范围是(-∞,-1),故选D.8.(2018·宁夏育才中学月考)若函数f (x )=a ln x -x 在区间(1,2)上单调递增,则实数a 的取值范围是________.解析:由f ′(x )=ax -1=a -x x ≥0得a -x ≥0,即a ≥x ,又x ∈(1,2),所以a ≥2. 答案:[2,+∞)[大题综合练——迁移贯通]1.设函数f (x )=12x 2+e x -x e x .(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.解:(1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x ).若x <0,则1-e x >0,所以f ′(x )<0; 若x >0,则1-e x <0,所以f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调递减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴[f (x )]min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立. 2.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x在[1,+∞)上单调,求实数a 的取值范围.解:(1)由题意知,函数的定义域为(0,+∞),当a =-2时,f ′(x )=2x -2x =2(x +1)(x -1)x ,由f ′(x )<0得0<x <1,故f (x )的单调递减区间是(0,1).(2)由题意得g ′(x )=2x +a x -2x2,函数g (x )在[1,+∞)上是单调函数.①若g (x )为[1,+∞)上的单调递增函数,则g ′(x )≥0在[1,+∞)上恒成立,即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x-2x 2,∵φ(x )在[1,+∞)上单调递减, ∴φ(x )max =φ(1)=0,∴a ≥0.②若g (x )为[1,+∞)上的单调递减函数, 则g ′(x )≤0在[1,+∞)上恒成立,不可能. ∴实数a 的取值范围为[0,+∞).3.(2018·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x.当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373.∴-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。

2018-2019学年高中新创新一轮复习理数江苏专版:课时

课时达标检测(四)1.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为________.解析:依题意可得,M={5,6,7,8},所以集合M中共有4个元素.答案:42.(2018·苏北四市联考)设全集U={0,1,2,3,4,5},集合A={x∈Z|0<x<2.5},B={x∈Z|(x-1)(x-4)<0},则∁U(A∪B)=____________.解析:∵A={x∈Z|0<x<2.5}={1,2},B={x∈Z|1<x<4}={2,3},∴A∪B={1,2,3},∵全集U={0,1,2,3,4,5},∴∁U(A∪B)={0,4,5}.答案:{0,4,5}3.(2018·甘肃会宁一中月考)已知命题p:∀x>0,总有(x+1)e x>1,则綈p为________________.解析:命题p:∀x>0,总有(x+1)e x>1的否定为∃x>0,使得(x+1)e x≤1.答案:∃x>0,使得(x+1)e x≤14.(2018·盐城中学月考)若命题p:“x<1”,命题q:“log2x<0”,则p是q的____________条件.(选填“充分不必要”“必要不充分”“充要”“既不充分又不必要”) 解析:由log2x<0得0<x<1,则p是q的必要不充分条件.答案:必要不充分5.(2018·湖北百所重点学校联考)已知命题p:∀x∈(0,+∞),log4x<log8x,命题q:∃x∈R,使得tan x=1-3x,则下列命题为真命题的序号是________.①p∧q;②綈p∧綈q;③p∧綈q;④綈p∧q.解析:对于命题p:当x=1时,log4x=log8x=0,所以命题p是假命题;对于命题q:当x=0时,tan x=1-3x=0,所以命题q是真命题.由于綈p是真命题,所以綈p∧q是真命题.答案:④6.设集合A={x|y=ln(x-a)},集合B={-1,1,2},若A∪B=A,则实数a的取值范围是________.解析:因为A={x|y=ln(x-a)},所以A={x|x>a},因为A∪B=A,所以B⊆A,因为B={-1,1,2},所以a<-1,所以实数a的取值范围是(-∞,-1).答案:(-∞,-1)7.已知命题p:x2+4x-5>0;命题q:x<a,且綈q的一个充分不必要条件是綈p,则a的取值范围是________.解析:由x2+4x-5>0,得x<-5或x>1,由綈q的一个充分不必要条件是綈p,可知綈p是綈q的充分不必要条件,等价于q是p的充分不必要条件.故a≤-5.答案:(-∞,-5]8.(2018·南通模拟)设集合A={n|n=3k-1,k∈Z},B={x||x-1|>3},则A∩(∁R B)=____________.解析:∵B ={x |x >4或x <-2},∴∁R B ={x |-2≤x ≤4},∴A ∩(∁R B )={-1,2}.答案:{-1,2}9.(2018·南京调研)下列说法中正确的序号是________.①命题“若x 2=1,则x =1”的否命题是“若x 2=1,则x ≠1”;②“x =-1”是“x 2-x -2=0”的必要不充分条件;③命题“若x =y ,则sin x =sin y ”的逆否命题是真命题;④“tan x =3”是“x =π3”的充分不必要条件. 解析:由原命题与否命题的关系知,原命题的否命题是“若x 2≠1,则x ≠1”,即①不正确;因为x 2-x -2=0,所以x =-1或x =2,所以由“x =-1”能推出“x 2-x -2=0”,反之,由“x 2-x -2=0”推不出“x =-1”,所以“x =-1”是“x 2-x -2=0”的充分不必要条件,即②不正确;因为由x =y 能推得sin x =sin y ,即原命题是真命题,所以它的逆否命题是真命题,故③正确;由x =π3能推出tan x =3,但由tan x =3推不出x =π3,所以“tan x =3”是“x =π3”的必要不充分条件,即④不正确. 答案:③10.(2018·如东中学月考)“p ∨q 是真命题”是“綈p 为真命题”的______________条件.解析:若“p ∨q 是真命题”成立,则p 、q 中至少一个为真,“綈p 为真命题”不一定成立;若“綈p 为真命题”成立,则命题p 为假命题,所以“p ∨q 是真命题”不一定成立;所以“p ∨q 是真命题”是“綈p 为真命题”的既不充分又不必要条件.答案:既不充分又不必要11.(2018·江苏如皋中学月考)若“数列a n =-n 2+2λn (n ∈N *)是递减数列”为假命题,则λ的取值范围是________.解析:若数列a n =-n 2+2λn (n ∈N *)为递减数列,则有a n +1-a n <0,即2λ< 2n +1对任意的n ∈N *都成立,于是可得2λ<3,即λ<32,故所求λ的取值范围是⎣⎡⎭⎫32,+∞. 答案:⎣⎡⎭⎫32,+∞ 12.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ y =1-x 2+4x -3,B ={y |y =4x -1,x ≥0},则A ∩B =______. 解析:由题意得,集合A ={x |-x 2+4x -3>0}={x |x 2-4x +3<0}={x |1<x <3},集合B ={y |y ≥0},所以A ∩B ={x |1<x <3}.答案:{x |1<x <3}13.(2018·北京海淀区期中考试)已知非空集合A ,B 满足以下两个条件:(ⅰ)A ∪B ={1,2,3,4,5,6},A ∩B =∅;(ⅱ)A 的元素个数不是A 中的元素,B 的元素个数不是B 中的元素.则有序集合对(A ,B )的个数为________.解析:由题意得:①若A 中只有1个元素,B 中5个元素,所以5∈A,1∈B ,则A ={5},B ={1,2,3,4,6},1对;②若A 中有2个元素,B 中4个元素,所以4∈A,2∈B ,此时有序集合对(A ,B )有4对,即({1,4},{2,3,5,6}),({3,4},{1,2,5,6}),({5,4},{1,2,3,6}),({6,4},{1,2,3,5});③若A 中有3个元素,B 中3个元素,所以3∉A,3∉B ,与条件A ∪B ={1,2,3,4,5,6}矛盾;④若A 中有4个元素,B 中2个元素,所以2∈A,4∈B ,此时有序集合对(A ,B )有4对,即({2,3,5,6},{1,4}),({1,2,5,6},{3,4}),({1,2,3,6},{5,4}),({1,2,3,5},{6,4});⑤若A 中有5个元素,B 中只有1个元素,所以5∈B,1∈A ,则A ={1,2,3,4,6},B ={5},1对;综上有序集合对(A ,B )的个数为10.答案:1014.已知命题p :f (x )=1-2m x 2在区间(0,+∞)上是减函数;命题q :不等式x 2-2x >m -1的解集为R .若命题“p ∨q ”为真,“p ∧q ”为假,则实数m 的取值范围是________.解析:对于命题p ,由f (x )=1-2m x 2在区间(0,+∞)上是减函数,得1-2m >0,解得m <12;对于命题q ,不等式x 2-2x >m -1的解集为R 等价于不等式(x -1)2>m 的解集为R ,因为(x -1)2≥0恒成立,所以m <0,因为命题“p ∨q ”为真,“p ∧q ”为假,所以命题p和命题q 一真一假.当命题p 为真,命题q 为假时,⎩⎪⎨⎪⎧ m <12,m ≥0,得0≤m <12;当命题p 为假,命题q 为真时,⎩⎪⎨⎪⎧m ≥12,m <0,此时m 不存在,故实数m 的取值范围是⎣⎡⎭⎫0,12. 答案:⎣⎡⎭⎫0,12。

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 集 合 Word版含解析

课时达标检测(一) 集 合[小题对点练——点点落实]对点练(一) 集合的概念与集合间的基本关系 1.已知集合A ={1,2,3},B ={2,3},则( )A .A =BB .A ∩B =∅C .A BD .B A 解析:选D ∵A ={1,2,3},B ={2,3},∴B A .⊆C |C {=B ,}0≤3-x 2+2x |N ∈x {=A 已知集合)拟莱州一中模·(2018.2A },则集合B 中元素的个数为( )A .2B .3C .4D .5 B个子集,因此集合4=22有,共}{0,1=}1≤x ≤3-|N ∈x {=}0≤1)-x 3)(+x |(N ∈x {=A C 选解析:中元素的个数为4,选C.3.(2018·广雅中学测)(是图n Ven 的关系}0=x +2x |x {=N 和}1,0,1-{=M ,则正确表示集合R =U 若全集)试B.选,故M N ,所以}1,0,1-{=M ,而}1,0-{=}0=x +2x |x {=N 由题意知, B 选解析: .________为的值m ,则A ∈3若,}m +2m 2,2+m {=A .已知集合4 ,3=m +2m 2且3=2+m 时,1=m ,当32=-m 或1=m ,则3=m +2m 2或3=2+m 由题意得解析:.32=-m ,故3=m +2m 2则,12=2+m 时,32=-m 根据集合中元素的互异性可知不满足题意;当 32-答案: .________是的取值范围 b -a ,则实数B ⊆A ,若]b ,a [=B ,}16≤x 2≤|4x {=A .已知集合5,所4≥b ,2≤a ,所以B ⊆A ,因为[2,4]=}4≤x ≤|2x {=}42≤x 2≤2|2x {=}16≤x 2≤|4x {=A 集合解析:以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]对点练(二) 集合的基本运算)(=N ∪M ,则}0≤x |lg x {=N ,}x =2x |x {=M .设集合1 A .[0,1]B .(0,1]C .[0,1)D .(-∞,1] .][0,1=N ∪M ,}1≤x <0|x {=}0≤x |lg x {=N ,}{0,1=}x =2x |x {=M A 选解析: )(=B ∩A ,则}A ∈x ,2x =y |y {=B ,}1,0,1-{=A .若集合2 A .{0}B .{1}C .{0,1}D .{0,-1} .}{0,1=B ∩A ,所以}{0,1=}A ∈x ,2x =y |y {=B 因为 C 选解析: )(=B ∪)A U ∁(则,}3≤y ≤|1y {=B ,}2≤x ≤|0x {=A ,集合R =U 设全集)考中原名校联·(2018.3 A .(2,3]B .(-∞,1]∪(2,+∞)C .[1,2)D .(-∞,0)∪[1,+∞).)∞,+1[∪0),∞-(=B ∪)A U ∁(以,所}3≤y ≤|1y {=B ,}<0x 或2>x |x {=A U ∁因为 D 选解析: 4.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉)(=Q -P ,那么}2|<1-x ||x {=Q ,}<1x 2|log x {=P ,如果}Q A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3} .由}<3x |1<x {=Q ,所以3<x 1<得,12|<-x |由;}<2x |0<x {=P ,所以2<x 0<得,1<x 2log 由 B 选解析:题意,得P -Q ={x |0<x ≤1}.∪P .若}0≤b +ax +2x |x {=Q ,}2>0-y -2y |y {=P 已知集合)考河北正定中学月·(2018.5Q =R ,且P ∩Q =(2,3],则a +b =( )A .-5B .5C .-1D .1 ,所以1,3]-[=Q ,得](2,3=Q ∩P 及R =Q ∪P .由}1-<y 或2>y |y {=}2>0-y -2y |y {=P A 选解析:-a =-1+3,b =-1×3,即a =-2,b =-3,a +b =-5,故选A.6.(2018·唐山统一考) (是,则图中阴影部分表示的集合}<1x |2x {=B ,}6<0-x 5-2x |x {=A ,集合R =U 若全集)试A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1} =B ,所以0<x ,解得1<x 2由.}<6x 1<-|x {=A ,所以6<x 1<-,解得06<-x 5-2x 由 C 选解析: C.选,故}<6x ≤|0x {=A ∩)B U ∁(以,所}0≥x |x {=B U ∁,A ∩)B U ∁(为.又题图中阴影部分表示的集合}<0x |x { )(是的取值范围m ,则实数}>4x |x {=B ∩A .若}m ≥x |x {=B ,}12>0-x -2x |x {=A .已知集合7 A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4] 解析:选B 集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B.)(为}{1,4,7合,则集}0=21+x 8-2x |x {=N ,}{2,3,5=M ,集合}<8x |0<Z ∈x {=U .已知全集8 )N U ∁(∩M .A)N ∩M (U ∁.B )N ∪M (U ∁.C N ∩)M U ∁(.D =N ∩M ,}{3,5=}{1,3,4,5,7∩{2,3,5}=)N U ∁(∩M ,}{2,6=N ,}{1,2,3,4,5,6,7=U 由已知得 C 选解析:选,}{6=}{2,6∩{1,4,6,7}=N ∩)M U ∁(,}{1,4,7=)N ∪M (U ∁,}{2,3,5,6=N ∪M ,},3,4,5,6,7{1=)N ∩M (U ∁,}{2 C.[大题综合练——迁移贯通].}R ∈m ,R ∈x ,0≤4-2m +mx 2-2x |x {=B ,}0≤3-x 2-2x |x {=A .已知集合1 (1)若A ∩B =[0,3],求实数m 的值;的取值范围.m ,求实数B R ∁⊆A 若)(2 解:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[0,3],2.=m 所以⎩⎪⎨⎪⎧ m -2=0,m +2≥3.所以,}2+m >x 或2-m <x |x {=B R ∁(2) ,1-<2+m 或32>-m ,所以B R ∁⊆A 因为 即m >5或m <-3. 因此实数m 的取值范围是(-∞,-3)∪(5,+∞). 2.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. ,2-≤m 解得⎩⎪⎨⎪⎧ 1-m >2m ,2m≤1,1-m≥3,知B ⊆A 由)(2 即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得 ,符合题意;∅=B 时,13≥m ,即m -1≥m 2若① ⎩⎪⎨⎪⎧ m <13,2m≥3,或⎩⎪⎨⎪⎧ m <13,1-m≤1时,需13<m ,即m -1<m 2若② .13<m ≤0即,∅或13<m ≤0得 综上知m ≥0,即实数m 的取值范围为[0,+∞). .}>1x 2|log x {=B ,}27≤x 3≤|3x {=A 已知集合)考江西玉山一中月·(2018.3;A ∪)B R ∁(,B ∩A 分别求)(1 (2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. ,33≤x 3≤13即,72≤x 3≤3∵(1)解: ∴1≤x ≤3,∴A ={x |1≤x ≤3}. ,22>log x 2log 即,1>x 2log ∵ ∴x >2,∴B ={x |x >2}. ∴A ∩B ={x |2<x ≤3}.B R∁∴,x|x{=}2≤A)B R∁(∴=∪≤.}3x|x{(2)由(1)知A={x|1≤x≤3},C⊆A.当C为空集时,满足C⊆A,a≤1;当C为非空集合时,可得1<a≤3.综上所述,a≤3.实数a的取值范围是{a|a≤3}.。

2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(四) 函数及其表示 Word版含解析

课时达标检测(四) 函数及其表示[小题对点练——点点落实]对点练(一) 函数的定义域1.(2018·吉林省实验中学模拟)下列函数中,与函数y =13x的定义域相同的函数为( )A .y =1sin xB .y =ln xx C .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0};y =1sin x 的定义域为{x |x ≠k π,k ∈Z };y =ln x x 的定义域为{x |x >0};y =x e x 的定义域为R ;y =sin x x的定义域为{x |x ≠0}.故选D.2.(2018·河南南阳一中月考)函数f (x )=-x 2-3x +4lg (x +1)的定义域为( )A .(-1,0)∪(0,1]B .(-1,1]C .(-4,-1]D .(-4,0)∪(0,1]解析:选A要使函数f (x )有意义,应有⎩⎪⎨⎪⎧-x 2-3x +4≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤1.故选A.3.(2018·山东枣庄期末)已知函数f (x )的定义域为[0,2],则函数g (x )=f (2x )+8-2x 的定义域为( )A .[0,1]B .[0,2]C .[1,2]D .[1,3]解析:选A 由题意,得⎩⎪⎨⎪⎧0≤2x ≤2,8-2x≥0,解得0≤x ≤1.故选A.4.(2018·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞)D .[-9,1)解析:选B f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],其定义域为⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0的解集,解得-9<x <1,所以f [f (x )]的定义域为(-9,1).故选B.5.函数y =ln(x 2-x -m )的定义域为R ,则m 的范围是________. 解析:由条件知,x 2-x -m >0对x ∈R 恒成立,即Δ=1+4m <0,∴m <-14.答案:⎝⎛⎭⎫-∞,-14 对点练(二) 函数的表示方法1.设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的解析式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:选A 令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,故选A.2.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0且x ≠1时,f (x )=( ) A.1x B.1x -1 C.11-xD.1x-1 解析:选B 令1x =t ,得x =1t ,∴f (t )=1t1-1t =1t -1,∴f (x )=1x -1. 3.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax+5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.答案:2x +74.(2018·洛阳质检)若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )的解析式为________________.解析:令x +2=t ,则x =t -2.因为f (x )=2x +3, g (x +2)=f (x )=2x +3,所以g (t )=2(t-2)+3=2t -1.故函数g (x )的解析式为g (x )=2x -1.答案:g (x )=2x -1对点练(三) 分段函数1.(2018·湖北襄阳四校联考)已知f (x )=⎩⎪⎨⎪⎧cos πx 2,x ≤0,f (x -1)+1,x >0,则f (2)=( )A.12 B .-12C .-3D .3解析:选D f (2)=f (1)+1=f (0)+2=cos ⎝⎛⎭⎫π2×0+2=1+2=3.故选D.2.(2017·山东高考)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,∴2(a -1)=2a ,无解.综上,f ⎝⎛⎭⎫1a =6.3.(2018·江西师范大学附属中学月考)已知函数f (x )=⎩⎪⎨⎪⎧-log 2(3-x ),x <2,2x -2-1,x ≥2.若f (2-a )=1,则f (a )=( )A .-2B .-1C .1D .2解析:选A 当2-a ≥2,即a ≤0时,f (2-a )=22-a -2-1=1,解得a =-1,则f (a )=f (-1)=-log 2[3-(-1)]=-2;当2-a <2,即a >0时,f (2-a )=-log 2[3-(2-a )]=1,解得a =-12,舍去.综上,f (a )=-2.故选A.4.(2018·福建泉州质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0.若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D 根据题意,当a >0时,f (a )-f (-a )>0,即a 2+a -[-3(-a )]>0,∴a 2-2a >0,解得a >2;当a <0时,f (a )-f (-a )<0,即-3a -[(-a )2+(-a )]<0,∴a 2+2a >0,解得a <-2.综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).故选D.5.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)[大题综合练——迁移贯通]1.(1)已知f (2x +1)=4x 2+2x +1,求f (x )的解析式;(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求f (x )的解析式. 解:(1)令t =2x +1,则x =12(t -1),所以f (t )=4⎣⎡⎦⎤12(t -1)2+2×12(t -1)+1=(t -1)2+(t -1)+1=t 2-t +1,即f (x )=x 2-x +1.(2)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1),① 以-x 代替x 得2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).2.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0, 所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.。

2019年高考数学一轮复习 课时跟踪检测24 文 新人教A版.doc

2019年高考数学一轮复习 课时跟踪检测24 文 新人教A 版1.[2017·黑龙江哈尔滨模拟]在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为32,则C =( ) A .30° B .45° C .60° D .75° 答案:C解析:解法一:∵S △ABC =12|AB ||AC |sin A =32,即12×3×1×sin A =32,∴sin A =1,∴A =90°,∴C =60°,故选C. 解法二:由正弦定理,得sin B AC =sin C AB ,即12=sin C3,∴C =60°或C =120°.当C =120°时,A =30°,S △ABC =34≠32(舍去).而当C =60°时,A =90°, S △ABC =32,符合条件,故C =60°.故选C. 2.在△ABC 中,A =60°,BC =10,D 是AB 边上不同于A ,B 的任意一点,CD =2,△BCD 的面积为1,则AC 的长为( )A .2 3 B. 3 C.33 D.233答案:D解析:由S △BCD =1,可得12×CD ×BC ×sin∠DCB =1,即sin ∠DCB =55,所以cos ∠DCB=255,或cos ∠DCB =-255,又∠DCB <∠ACB =180°-A -B =120°-B <120°,所以cos ∠DCB >-12,所以cos ∠DCB =-255舍去.在△BCD 中,cos ∠DCB =CD 2+BC 2-BD 22CD ·BC =255,解得BD =2,所以cos ∠DBC =BD 2+BC 2-CD 22BD ·BC =31010,所以sin ∠DBC =1010.在△ABC 中,由正弦定理可得AC =BC sin B sin A =233,故选D. 3.[2017·安徽合肥第一次质检]△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若cos A =78,c -a =2,b =3,则a =( )A .2 B.52 C .3 D.72答案:A解析:由余弦定理,得a 2=b 2+c 2-2bc cos A ⇒a 2=9+(a +2)2-2×3×(a +2)×78⇒a=2,故选A.4.如图所示,为了测量某湖泊两侧A ,B 间的距离,李宁同学首先选定了与A ,B 不共线的一点C (△ABC 的角A ,B ,C 所对的边分别记为a ,b ,c ),然后给出了三种测量方案:①测量A ,C ,b ;②测量a ,b ,C ;③测量A ,B ,a .则一定能确定A ,B 间的距离的所有方案的序号为( )A .①②B .②③C .①③D .①②③ 答案:D解析:由题意可知,在①②③三个条件下三角形均可唯一确定,通过解三角形的知识可求出AB .5.[2017·东北三省哈尔滨、长春、沈阳、大连四市联考]已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a 2=b 2+c 2-bc ,bc =4,则△ABC 的面积为( )A.12 B .1 C.3 D .2 答案:C解析:∵a 2=b 2+c 2-bc ,∴cos A =12,∴A =π3,又bc =4,∴△ABC 的面积为12bc sin A=3,故选C.6.在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°,60°,则塔高是( )A.4003 米 B.40033米C .200 3 米D .200 米答案:A解析:如图所示,AB 为山高,CD 为塔高,则由题意知,在Rt △ABC 中,∠BAC =30°,AB =200(米).则AC =ABcos 30°=40033(米). 在△ACD 中,∠CAD =60°-30°=30°, ∠ACD =30°, ∴∠ADC =120°.由正弦定理,得CD sin 30°=ACsin 120°,∴CD =AC sin 30°sin 120°=4003(米).7.[2017·海南海口调研]如图,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A 等于( )A.223 B.24 C.64 D.63答案:C解析:∵DE =22, ∴BD =AD =DEsin A =22sin A,∵∠BDC =2A ,∴在△BCD 中,由正弦定理,可得BC sin ∠BDC =BDsin C.∴4sin 2A =22sin A ×23=423sin A, ∴cos A =64. 8.在△ABC 中,cos 2B 2=a +c 2c(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形 答案:B 解析:∵cos 2B 2=1+cos B2,cos 2B 2=a +c 2c, ∴(1+cos B )·c =a +c ,∴a =cos B ·c =a 2+c 2-b 22a,∴2a 2=a 2+c 2-b 2,∴a 2+b 2=c 2, ∴△ABC 为直角三角形.9.[2017·北京海淀模拟]在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若c =4,sinC =2sin A ,sin B =154,则S △ABC =________. 答案:15解析:∵sin C =2sin A ,由正弦定理,可得c =2a ,∵c =4,∴a =2,∴S △ABC =12ac sinB =12×2×4×154=15. 10.已知在△ABC 中,A ,B ,C 的对边分别是a ,b ,c ,且a 2sin B +(a 2+b 2-c 2)sin A =0,tan A =2sin B +12cos B +1,则角A 等于________.答案:7π36解析:在△ABC 中,a 2sin B +(a 2+b 2-c 2)sin A =0,∴a 2sin B +2ab cos C sin A =0,a sin B +2b cos C sin A =0,sin A sin B +2sin B cos C sin A =0, 又sin A ≠0,sin B ≠0, ∴cos C =-12,且0<C <π,∴C =2π3,则A =π3-B ,又tan A =2sin B +12cos B +1,∴sin ⎝ ⎛⎭⎪⎫π3-B ·2cos B +sin ⎝ ⎛⎭⎪⎫π3-B =cos ⎝ ⎛⎭⎪⎫π3-B ·2sin B +cos ⎝ ⎛⎭⎪⎫π3-B , ∴2⎣⎢⎡⎦⎥⎤sin ⎝⎛⎭⎪⎫π3-B cos B -cos ⎝ ⎛⎭⎪⎫π3-B sin B=cos ⎝ ⎛⎭⎪⎫π3-B -sin ⎝ ⎛⎭⎪⎫π3-B , 即2sin ⎝⎛⎭⎪⎫π3-2B =2sin ⎝ ⎛⎭⎪⎫π4-π3+B ,∴π3-2B =B -π12或π3-2B -π12+B =π,解得B =5π36或B =-3π4(舍去),故A =π3-5π36=7π36.11.如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =223,AB =32,AD =3,则BD 的长为________.答案: 3解析:sin ∠BAC =sin ⎝ ⎛⎭⎪⎫π2+∠BAD =cos ∠BAD , ∴cos ∠BAD =223.BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD=(32)2+32-2×32×3×223,即BD 2=3,BD = 3.12.如图,为测得河岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点C 到点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.答案:10 6解析:在△BCD 中,CD =10,∠BDC =45°,∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理,得BC sin 45°=CDsin 30°,所以BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=AB BC, AB =BC tan 60°=106(米).[冲刺名校能力提升练]1.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .30°B .45°C .60°D .120° 答案:A解析:由正弦定理a sin A =b sin B =csin C 及(b -c )·(sin B +sin C )=(a -3c )sin A ,得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,所以a 2+c 2-b 2=3ac ,又cos B =a 2+c 2-b 22ac ,所以cos B =32,所以B =30°. 2.[2017·湖南衡阳一模]如图,为了测量A ,C 两点间的距离,选取同一平面上B ,D 两点,测出四边形ABCD 各边的长度(单位:km):AB =5,BC =8,CD =3,DA =5,且B 与D 互补,则AC 的长为( )A .7 kmB .8 kmC .9 kmD .6 km 答案:A解析:在△ABC 中,由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC cos B ,即AC 2=25+64-2×5×8cos B =89-80cos B .在△ADC 中,由余弦定理,得AC 2=AD 2+DC 2-2AD ·DC cos D ,即AC 2=25+9-2×5×3cos D =34-30cos D .因为B 与D 互补,所以cos B =-cos D ,所以-34-AC 230=89-AC 280,解得AC =7(km),故选A.3.[2017·河北石家庄模拟]在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1 B. 2 C. 3 D .3 答案:C解析:由c sin A =3a cos C ,得 sin C sin A =3sin A cos C ,又在△ABC 中,sin A ≠0,所以sin C =3cos C ,tan C =3,C ∈(0,π),所以C =π3. 所以sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫π3+A =32sin A +32cos A =3sin ⎝⎛⎭⎪⎫A +π6,A ∈⎝⎛⎭⎪⎫0,2π3,所以当A =π3时,sin A +sin B 取得最大值3,故选C.4.[2017·河南洛阳统考]如图,在△ABC 中,sin ∠ABC 2=33,AB =2,点D 在线段AC上,且AD =2DC ,BD =433,则cos C =________.答案:79解析:由条件,得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b , 则由余弦定理得9b 2=a 2+4-43a .①因为∠ADB 与∠CDB 互补, 所以cos ∠ADB =-cos ∠CDB ,所以4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6,② 联合①②解得a =3,b =1, 所以AC =3,BC =3.在△ABC 中,cos C =BC 2+AC 2-AB 22BC ·AC=32+32-222×3×3=79. 5.[2016·北京卷]在△ABC 中,a 2+c 2=b 2+2ac . (1)求角B 的大小;(2)求2cos A +cos C 的最大值. 解:(1)由a 2+c 2=b 2+2ac ,得a 2+c 2-b 2=2ac .由余弦定理,得cos B =a 2+c 2-b 22ac =2ac 2ac =22.又0<B <π,所以B =π4.(2)A +C =π-B =π-π4=3π4,所以C =3π4-A,0<A <3π4.所以2cos A +cos C =2cos A +cos ⎝⎛⎭⎪⎫3π4-A=2cos A +cos 3π4cos A +sin 3π4sin A=2cos A -22cos A +22sin A =22sin A +22cos A =sin ⎝⎛⎭⎪⎫A +π4.因为0<A <3π4,所以π4<A +π4<π,故当A +π4=π2即A =π4时,2cos A +cos C 取得最大值为1.6.如图所示,摄影爱好者S 在某公园A 处,发现正前方B 处有一立柱,测得立柱顶端O 的仰角和立柱底部B 的俯角均为π6.设S 的眼睛到地面的距离为3米.(1)求摄影爱好者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆MN 绕其中点O 在S 与立柱所在的平面内旋转.摄影爱好者有一视角范围为π3的镜头,在彩杆转动的任意时刻,摄影爱好者是否都可以将彩杆全部摄入画面?说明理由.解:(1)如图,作SC 垂直OB 于C ,则∠CSB =π6,∠ASB =π3. 又SA =3,故在Rt △SAB 中,可求得BA =3, 即摄影爱好者到立柱的水平距离为3米.在Rt △SCO 中,由SC =3,∠CSO =π6, 可求得OC = 3.因为BC =SA =3,故OB =23,即立柱高为23米.(2)连接SM ,SN ,设SN =a ,SM =b .由(1)知,SO =23,在△SOM 和△SON 中,cos ∠SOM =-cos ∠SON , 即32+1-b 22×23×1=-32+1-a 22×23×1, 可得a 2+b 2=26.在△MSN 中,cos ∠MSN =a 2+b 2-222ab =11ab ≥22a 2+b 2=1113>12, 当且仅当a =b 时等号成立, 又∠MSN ∈(0,π),则0<∠MSN <π3. 故摄影爱好者S 可以将彩杆全部摄入画面.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标检测(四十四) 双 曲 线.;[小题对点练——点点落实];对点练(一) 双曲线的定义和标准方程.1.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等解析:选D 由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等.;2.已知双曲线C 的渐近线方程为y =±2x ,且经过点(2,2),则C 的方程为( ) A.x 23-y 212=1 B.x 212-y 23=1 C.y 23-x 212=1 D.y 212-x 23=1 解析:选A 由题意,设双曲线C 的方程为y 24-x 2=λ(λ≠0),因为双曲线C 过点(2,2),则224-22=λ,解得λ=-3,所以双曲线C 的方程为y 24-x 2=-3,即x 23-y 212=1. 3.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P ―→·F 2F 1―→的值为( );A .3B .2C .-3D .-2解析:选B 由题意得,在△PF 1F 2中,由正弦定理得,sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,又因为|PF 1|-|PF 2|=2,结合这两个条件得,|PF 1|=4,|PF 2|=2,由余弦定理可得cos ∠F 1F 2P =14,则F 2P ―→·F 2F 1―→=2,故选B. 4.(2018·河南新乡模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C 的右支交于点A ,若BA ―→=2AF ―→,且|BF ―→|=4,则双曲线C 的方程为( )A.x 26-y 25=1 B.x 28-y 212=1 C.x 28-y 24=1 D.x 24-y 26=1解析:选D 不妨设B (0,b ),由BA ―→=2AF ―→,F (c,0),可得A ⎣⎡⎭⎫2c 3,b 3,代入双曲线C 的方程可得49×c 2a 2-19=1,即49·a 2+b 2a 2=109,∴b 2a 2=32,① 又|BF ―→|=b 2+c 2=4,c 2=a 2+b 2,∴a 2+2b 2=16,② 由①②可得,a 2=4,b 2=6,∴双曲线C 的方程为x 24-y 26=1,故选D.5.设双曲线x 24-y 23=1的左、右焦点分别为F 1,F 2,过点F 1的直线l 交双曲线左支于A ,B 两点,则|BF 2|+|AF 2|的最小值为( )A.192 B .11 C .12D .16解析:选B 由题意,得⎩⎪⎨⎪⎧|AF 2|-|AF 1|=2a =4,|BF 2|-|BF 1|=2a =4,所以|BF 2|+|AF 2|=8+|AF 1|+|BF 1|=8+|AB |,显然,当AB 垂直于x 轴时其长度最短,|AB |min =2·b 22=3,故(|BF 2|+|AF 2|)min=11.6.(2018·河北武邑中学月考)实轴长为2,虚轴长为4的双曲线的标准方程为____________________.解析:2a =2,2b =4.当焦点在x 轴时,双曲线的标准方程为x 2-y 24=1;当焦点在y 轴时,双曲线的标准方程为y 2-x 24=1.答案:x 2-y 24=1或y 2-x 24=1 7.设F 1,F 2分别是双曲线x 2-y 2b2=1的左、右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线右支于点B ,则△F 1AB 的面积等于________.解析:由题意可得|AF 2|=2,|AF 1|=4,则|AB |=|AF 2|+|BF 2|=2+|BF 2|=|BF 1|.又∠F 1AF 2=45°,所以△ABF 1是以AF 1为斜边的等腰直角三角形,则|AB |=|BF 1|=22,所以其面积为12×22×22=4.答案:44对点练(二) 双曲线的几何性质1.(2018·广州模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±2x ,则双曲线C 的离心率为( )A.52B. 5C.62D. 6解析:选B 依题意知b a =2,∴双曲线C 的离心率e =ca =a 2+b 2a = 1+⎝⎛⎭⎫b a 2= 5.故选B.2.(2018·安徽黄山模拟)若圆(x -3)2+y 2=1上只有一点到双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的距离为1,则该双曲线的离心率为( )A.355B.334C. 3D. 5解析:选A 不妨取渐近线为bx +ay =0,由题意得圆心到渐近线bx +ay =0的距离d =|3b |b 2+a 2=2,化简得b =23c ,∴b 2=49c 2,∴c 2=95a 2,∴e =c a =355,故选A. 3.(2018·湖北四地七校联考)双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,直线l 经过点F 1及虚轴的一个端点,且点F 2到直线l 的距离等于实半轴的长,则双曲线的离心率为( )A.1+52B.3+54C.1+52D.3+52解析:选D 设虚轴的一个端点为B ,则S △F 1BF 2=12b ×2c =12a ×b 2+c 2,即b ×2c=a ×b 2+c 2,∴4c 2(c 2-a 2)=a 2(-a 2+2c 2),∴4e 4-6e 2+1=0,解得e 2=3+54,∴e =3+52(舍负).故选D. 4.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点是F ,左、右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B, C 两点.若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( )A .±12B .±22C .±1D .±2解析:选C 由题设易知A 1(-a,0),A 2(a,0),B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b2a .∵A 1B ⊥A 2C ,∴b 2ac +a ·-b 2a c -a=-1,整理得a =b .∵渐近线方程为y =±ba x ,即y =±x ,∴渐近线的斜率为±1.5.(2018·江西五市部分学校联考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为(1,0),若双曲线上存在点P ,使得P 到y 轴与到x 轴的距离的比值为22,则实数a 的取值范围为( )A.⎝⎛⎦⎤0,223B.⎝⎛⎦⎤0,13 C.⎝⎛⎭⎫0,13 D.⎝⎛⎭⎫0,223 解析:选D 法一:由双曲线的焦点为(1,0),可知c =1.由双曲线上存在点P ,使得P 到y 轴与到x 轴的距离的比值为22,可知b a >122,所以8b 2>a 2,即8(1-a 2)>a 2,所以0<a <223.法二:由双曲线的焦点为(1,0),可知c =1.由双曲线上存在点P ,使得P 到y 轴与到x 轴的距离的比值为22,不妨设P 在第一象限,且P (x 0,y 0),则y 0=122x 0,代入双曲线方程得x 20=8a 2b 28b 2-a2>a 2,可知8b 2>a 2,即8(1-a 2)>a 2,所以0<a <223. 6.(2018·山西重点中学联考)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,若在双曲线上存在点P 满足2|PF 1―→+PF 2―→|≤|F 1F 2―→|,则双曲线C 的离心率的取值范围是( )A .(1,2]B .(1,2]C .[2,+∞)D .[2,+∞)解析:选D 设O 为坐标原点,由2|PF 1―→+PF 2―→|≤|F 1F 2―→|,得4|PO ―→|≤2c (2c 为双曲线的焦距),∴|PO ―→|≤12c ,又由双曲线的性质可得|PO ―→|≥a ,于是a ≤12c ,∴e ≥2.故选D.7.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A ,B ,若F 1A ―→=AB ―→,则双曲线的渐近线方程为________________.解析:由⎩⎪⎨⎪⎧ y =x +c ,y =-b a x 得x =-aca +b ,由⎩⎪⎨⎪⎧y =x +c ,y =b a x , 解得x =ac b -a ,不妨设x A =-ac a +b ,x B =acb -a,由F 1A ―→=AB ―→可得-ac a +b +c =ac b -a +ac a +b ,整理得b =3a .所以双曲线的渐近线方程为3x ±y =0. 答案:3x ±y =08.(2018·安徽池州模拟)已知椭圆x 216+y 212=1的右焦点F 到双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线的距离小于3,则双曲线E 的离心率的取值范围是________.解析:椭圆x 216+y 212=1的右焦点F 为(2,0),不妨取双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为bx +ay =0,则焦点F 到渐近线bx +ay =0的距离d =|2b |b 2+a 2<3, 即有2b <3c ,∴4b 2<3c 2, ∴4(c 2-a 2)<3c 2, ∴e <2, ∵e >1,∴1<e <2. 答案:(1,2)[大题综合练——迁移贯通]1.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上.(1)求双曲线的方程; (2)求证:MF 1―→·MF 2―→=0; (3)求△F 1MF 2的面积. 解:(1)∵e =2,∴双曲线的实轴、虚轴相等. 则可设双曲线方程为x 2-y 2=λ. ∵双曲线过点(4,-10), ∴16-10=λ,即λ=6. ∴双曲线方程为x 26-y 26=1.(2)证明:不妨设F 1,F 2分别为左、右焦点, 则MF 1―→=(-23-3,-m ), MF 2―→=(23-3,-m ).∴MF 1―→·MF 2―→=(3+23)×(3-23)+m 2=-3+m 2, ∵M 点在双曲线上,∴9-m 2=6,即m 2-3=0, ∴MF 1―→·MF 2―→=0.(3)△F 1MF 2的底|F 1F 2|=4 3. 由(2)知m =±3.∴△F 1MF 2的高h =|m |=3, ∴S △F 1MF 2=12×43×3=6.2.(2018·湛江模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F (c,0).(1)若双曲线的一条渐近线方程为y =x 且c =2,求双曲线的方程;(2)以原点O 为圆心,c 为半径作圆,该圆与双曲线在第一象限的交点为A ,过A 作圆的切线,斜率为-3,求双曲线的离心率.解:(1)因为双曲线的渐近线方程为y =±ba x ,所以a =b , 所以c 2=a 2+b 2=2a 2=4,所以a 2=b 2=2, 所以双曲线方程为x 22-y 22=1.(2)设点A 的坐标为(x 0,y 0),所以直线AO 的斜率满足y 0x 0·(-3)=-1,所以x 0=3y 0,①依题意,圆的方程为x 2+y 2=c 2,将①代入圆的方程得3y 20+y 20=c 2,即y 0=12c , 所以x 0=32c ,所以点A 的坐标为⎝⎛⎭⎫32c ,12c ,代入双曲线方程得34c 2a 2-14c 2b 2=1,即34b 2c 2-14a 2c 2=a 2b 2,② 又因为a 2+b 2=c 2,所以将b 2=c 2-a 2代入②式,整理得 34c 4-2a 2c 2+a 4=0, 所以3⎝⎛⎭⎫c a 4-8⎝⎛⎭⎫c a 2+4=0,所以(3e 2-2)(e 2-2)=0, 因为e >1,所以e =2, 所以双曲线的离心率为 2.3.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点,O 为坐标原点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA ―→·OB ―→>2,求k 的取值范围.解:(1)设双曲线C 2的方程为x 2a 2-y 2b 2=1(a >0,b >0),则a 2=4-1=3,c 2=4,再由a 2+b 2=c 2,得b 2=1, 故双曲线C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=(-62k )2+36(1-3k 2)=36(1-k 2)>0, ∴k 2<1且k 2≠13.①设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k1-3k 2,x 1x 2=-91-3k 2. ∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2) =(k 2+1)x 1x 2+2k (x 1+x 2)+2 =3k 2+73k 2-1. 又∵OA ―→·OB ―→>2,即x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1,故k 的取值范围为⎝⎛⎭⎫-1,-33∪⎝⎛⎭⎫33,1.。

相关文档
最新文档